International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:10, No:6, 2016

A Proposal for Systematic Mapping Study of
Software Security Testing, Verification and Validation

Francisco Nunes, Adriano Bessa Albuquerque

Abstract—Software vulnerabilities are increasing and not only
impact services and processes availability as well as information
confidentiality, integrity and privacy, but also cause changes that
interfere in the development process. Security test could be a solution
to reduce vulnerabilities. However, the variety of test techniques with
the lack of real case studies of applying tests focusing on software
development life cycle compromise its effective use. This paper
offers an overview of how a Systematic Mapping Study (MS) about
security verification, validation and test (VVT) was performed,
besides presenting general results about this study.

Keywords—Software test, software security verification
validation and test, security test institutionalization, systematic
mapping study.

[. INTRODUCTION

OMMUNICATION and Information Security (CIS) has
its foundation in the principles of Availability, Integrity
and Confidentiality. It is understood that, in this way, areas or
processes where security is mandatory must also ensure
compliance with these principles to be considered secure, such
as: Logical access control or Software development process.
About development, a considerable lack of resources and
control structures that facilitate or enable systems to meet the
above principles is still not evident. Hence, it follows that
problems and failures during software development cycle are
generating increasingly insecure applications that weaken
business processes and threaten corporate information assets.
The quest for software security should start with improving
software development processes. Thus, software cannot be
considered secure by having just implemented some security
functionality, such as access control to protect confidentiality
[1]. One of the consequences of misalignment between
information security and development methodologies is the
growth in the number of attacks against applications that
generates rework to correct vulnerabilities and find root
causes. For example, the statistic from CERT [2] highlights
the increasing level of incidents of CIS. Moreover, the
exploitation of vulnerabilities found in software products has
increased causing changes in techniques and approaches in
software development processes. Software insecurity is a
reality that concerns those involved with development and
maintenance projects, from managers to technicians, due to
the perspective that incidents can impact negatively the

Francisco Nunes is with Banco do Nordeste do Brasil, Fortaleza, Brazil
(corresponding author, phone: 00-55-85-32515522; e-mail:
fcojbn@yahoo.com.br).

Adriano Albuquerque, Dr., is with University of Fortaleza, Fortaleza,
Ceara, Brazil (e-mail: adrianoba@unifor.br).

availability of processes and services and, above all, the
confidentiality, integrity and privacy of corporate information.
This concern may be justified by the lack of knowledge, lack
of maturity, or ineffective actions that attempt to solve
software insecurity situations. The security test is, in many
cases, the only alternative to reduce vulnerabilities in
applications. However, the diversity and complexity of
techniques and, in particular, the lack of reports about security
test institutionalization focusing on the software development
life cycle, complicate the broad and appropriate use of these
test practices in the corporate environment. Thus, the approach
of systematic study was conducted to characterize existing
studies correlating structure and use of security VVT
techniques as well as identify any influence in improving the
software development process. This paper aims not only to
describe the most relevant aspects of how MS occurred but
also present the overall results achieved with the approach.

This paper is organized as follows: Section II summarizes
the main points of verification, validation, and security testing;
Section III presents a brief description of Systematic
Literature Review; Section IV describes the approach used to
perform the Systematic MS; Section V discusses the main
findings of the study; and Section VI summarizes the main
conclusions of this work.

II. SOFTWARE SECURITY VVT

Software security VVT practices aim to correct most of the
vulnerabilities in order to provide quality and reliable
software. Systems must undergo security tests which can be
executed in various stages of the system development life
cycle in order to increase the confidence that applied controls
work effectively in the application [3].

Sommerville [4] states four complimentary approaches to
verify a software protection condition:

e Validation based on experience: The system is analyzed
in comparison with known types of attacks by validation
team.

e Validation based on tools: Multiple security tools, such as
password checkers, are used to analyze the system.

e Validation based on invasion: A team is formed whose
objective is to break the protection system. The team
simulates attacks to the system and uses its experience
and knowledge to discover new ways to compromise
system safeguards.

e Formal verification: A system can be checked against a
formal specification of security.

Considering the activities of the validation phase of a
development process, the following practices adjust better to

1048

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:10, No:6, 2016

security tests [4]:

e Requirement inspections: Find problems in requirements
specification.

e Management of requirements: Track changes in
requirements and coordinate impact of this change on
development project.

e Design and code inspection: Discover defects before
system security audits do.

e Static analysis: Perform automated analysis to find
erroneous conditions.

III. SYSTEMATIC LITERATURE REVIEW - SLR

Systematic Literature Review (SLR) assumes that it is
feasible to obtain consistent evidences about the presence or
lack of a predefined condition or phenomenon, based on
preselected information (population). According to [5],
evidence is defined as a synthesis of the best quality scientific
studies on a specific topic or research question.

SLR is a means of evaluating and interpreting a research
question, results, subject, or phenomenon of interest, relevant
and available. Kitchenham [6] states that SLR is a coherent
assessment of a research topic from a methodologically
reliable, accurate, repeatable, and auditable approach.
Therefore, the SLR is of benefit to Software Engineering,
including its related processes, such as the testing process,
since it helps to obtain some evidences originated from
research in scientific basis [6]. These evidences can contribute
with more experience and improvement of security
verification, validation, and testing during development and
maintenance of software.

Systematic literature reviews are referenced as a secondary
study and studies that SLR analyzes are referred to as primary
studies. According to [7], results originated from primary
studies provide evidences which can be investigated by
secondary studies. Kitchenham et al. [8] presents two different
types of SLR:

e Conventional SLR: Combine results related to a specific
research question, for example: “Would test approach 'A’
be more effective in detecting defects than approach 'B'?”.

e Mapping or Systematic Study (MS): These studies are
aimed at finding and classifying primary studies in
specific knowledge area and can identify available
literature before performing conventional SLR.

Kitchenham [6] divides the process of SLR into three main
phases: Plan review, conduct the review, and Report result.
During planning, a protocol is prepared that specifies the
approach to be conducted to perform a systematic review as
well as indicates the level of rigor and completeness. Such
protocol is necessary to reduce deviations or inconsistencies in
the results of scientific research. When the protocol is
completed, it begins the search for primary studies.

In the protocol, it should specify the purpose (question) of
research as well as procedures to be conducted to review the
literature, including the query used in the search for specific
content. The protocol also indicates the inclusion and
exclusion criteria which select and indicate explicitly those
primary studies that will participate or not in the study.

The aim of the conducted systematic study was to identify
relevant material stating results and experience in
institutionalizing software security ver VVT actions in a
development process (life cycle), in such a way that it can be
perceived as a process improvement initiative to produce more
secure applications. To accomplish such objective, method
and protocol proposed by [6] were followed as a model.

The next section presents a general description of how the
MS was conducted, including the components of the defined
protocol that make it possible to replicate the study.

IV. APPLICATION OF A SYSTEMATIC MAPPING

The scope to apply this systematic mapping relates to
experiences or initiatives in software security verification,
validation, and test in an iterative and incremental process. In
other words, the research question focuses on identifying the
reflection of adaptation or improvement of the development
process by institutionalizing practices of security verification,
validation, and tests that are being used in the corporate
environment.

The study was based on the classification of research
approaches described by [9]. The contribution facet used was
adapted from [10].

A. Research Questions

According to [11], one of the differences between a
systematic literature review and a systematic MS is the fact
that the research questions of the mapping are more general.
Thus, the research questions that guided this study include:

e What are the most researched software security VVT
practices? (According to the mapped scientific papers).

e What are the advantages and difficulties of performing
software security VVT practices researched by mapped
papers?

Based on the proposal presented by [6] and [12] of
subdivision of the research question in separated categories,
also known as PICOC approach (P - problem or population, I -
intervention, C - comparison, control or comparator, O -
outcomes, C - Context), Table I shows this division.

TABLEI
SUBDIVISION OF RESEARCH QUESTION — PICOC APPROACH

Population

software life cycle OR software development OR software
security test OR secure test OR security verification OR
security validation
assess OR understand OR know
effect OR experience OR result OR adopt

corporate

Intervention

Comparison
Outcome
Context

B. Research Process

The research took place from March to August, 2014.
Initially, the scope of the questions was restricted to refer only
to Unified Process or RUP [13]. However, this approach
presented inadequate since no evidence directly related to the
effect of applying software security VVT has been found.
Therefore, the scope was widened so that evidence of
experience in applying security VVT in any iterative and
incremental software development life cycle would be

1049

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:10, No:6, 2016

considered. Once the scope was agreed, it was defined the
inclusion and exclusion criteria (Table II), and the search
string (Table III).

TABLE I
INCLUSION AND EXCLUSION CRITERIA

Criteria

Description

Inclusion

« Paper demonstrating some experience or assessing the adoption
of software security VVT practices in a development project.

« Full paper accepted in scientific journals or conference
proceedings.

« Paper without any experience description in applying software
security VVT.

« Paper not directly related to software security VVT practices or
approaches in a software life cycle domain.

Exclusion < Oldest paper by the same authors.

« Paper whose focus is only to propose security VVT tools.
« Gray literature and technical reports.

« Short or extended paper.

« Monographs, dissertations and theses.

TABLEIII
SEARCH STRING

("software life cycle" OR "software development" OR software) AND
("security test" OR "secure test" OR "security verification" OR "security
validation") AND (assess OR understand OR know) AND (effect OR
experience OR result OR adopt)

C.Data Collection and Analysis
In order to simplify the modus operandi of the MS, its

implementation was divided in five phases:

il.

Phase 1 - The most common method of SLR described by
[6] was used. That is, instead of a manual research
process, considered restricted; a broad automated research
was conducted [8], considering only the search string in
Table III. Automatic research involved the following
scientific and digital databases of papers: Web of Science
(Thomson Reuters Scientific), Compendex (Engineering
Village 2), SCOPUS (Elsevier), ScienceDirect (Elsevier),
ACM Digital Library, and IEEE Xplore. Table IV shows
the general criteria, specific criteria of each database,
where applicable, as well as some peculiarity of research
performed, and, finally, the amount of records found.
Phase 2 - After identifying the quantity of items listed
from the search string, manual search was performed by
analyzing paper abstracts, introductions, and conclusions
to separate papers related, directly or indirectly, with
software security verification, validation, and test,
following the inclusion and exclusion criteria from Table
II. Search from Phase 1 returned many results with little
relevance. Fig. 1 provides an overview of the results of
this phase.

Phase 3 — Based on the results of Phase 2, it was decided
to organize the papers using a manual selection, according
to the four questions listed as follows:

In which category (model based, source code, executable,
etc.) is the security test being applied?

Based on the stage of the life cycle, which security test
techniques (injection, static analysis, dynamic analysis,
etc.) are being used in each phase of the cycle?

SCOPUS
Science Direct
Wb of stence
Cornpenex
A0 IEEE

Total of 55 items adherent to the criteria,

Fig. 1 Vision of results from Phase 2

TABLEIV
SEARCH CRITERIA OF DIGITAL SCIENTIFIC BASES

Scientific base

Criteria details # Papers

Web of Science

ScienceDirect

ACM Digital
Library

IEEE Xplore

Compendex

SCOPUS

 General criterion: “command search” was used
- (text box to insert all the search command). -
» There was no restriction in the search.
* An error appeared in the survey. So, it was used
a variance of the search string, suggested by the
scientific base: TS=((“software life cycle” OR
“software development” OR software)) AND
TS=((“security test” OR “secure test” OR
“security verification” OR “security validation™))
AND TS=((assess OR understand OR know))
AND TS=((effect OR experience OR result OR
adopt)).
« Search from the website
www.engineeringvillage.com, with date starting 03
at year 1980.
* There was no restriction in the search. 21
« “Expert Search” was used. The search was
refined for “Journals” and “Computer Science”, 166
with publication date starting from 1980.
« The only restriction was the type of publication,
with selection of “Journal”, “Proceeding” and
“Transaction”.
« The result was inconsistent and showed error
when changing the list of paper. Thus, the search
string was adapted to: (software AND (“security
test” OR “secure test” OR “security verification”
OR “security validation”) AND (assess OR
understand OR know) AND (effect OR
experience OR result OR adopt)).
* Option “full text and metadata” was chosen. 686

iii.

TABLE V
RESULTING ARTICLES FROM PHASE 4 (SNOWBALL APPROACH)

Backtrack
[70]
Forward
[19] [44]
[71]
[72]

Paper

A real case study (pilot project) or experimental /
simulation validation was performed? (Real case study
involves a pilot in a commercial / enterprise application,
outside the academic environment, with the application of
the pilot in development, ongoing maintenance or
approval).

1050

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:10, No:6, 2016

iv. Does the paper describe some result or experience to
apply security verification, validation or test activity
(approach, method, model, framework, methodology or
technique) with focus on software development process
(life cycle)?

The organization of papers among the previous questions
contributed to restrict the analysis. So, it was decided to map
only the papers related to real case and focusing on the process
which resulted in a total of three papers.

e Phase 4 — The three papers from Phase 3 were refined by
the snowball technique [14] using Google Scholar,
considering criteria of Table II, as presented in Table V.
The snowball identifies two variations:

a. Backtrack: After reading abstract and assessing its
conformance, the references of each paper were analyzed,
checking papers that apply. In this case, the applicable
references were researched, at least, by reading the
abstract, introduction, and conclusion.

b. Forward: Papers that referenced the paper under review
were searched, identifying the applicable, ones. In this
case, these references were analyzed, at least, by reading
the abstract, introduction, and or conclusion.

e Phase 5 — With the result of the snowball, it could be
possible to confirm or refute the existence of any primary
study that can, in some way, answer questions from the
protocol. As a complimentary objective, it was expected
that the study showed, among software security VVT
practices, which, in fact, have empirical evidence of their
effectiveness. However, deciding on a level of
effectiveness requires an associated metric that reflects
the meaning of this effectiveness, such as: number of
security vulnerabilities found in the software produced.
Nonetheless, it will only be possible to assess the
effectiveness if the MS indicates, among papers found,
the effect of adoption as well as advantages and
disadvantages of the practices.

V.COMPARATIVE ANALYSIS AND RESULTS

TABLE VI
COMPLETE RESULTS FROM MS
Base Phase 1 Phase2 Phase3 Phase4
Web of Science 4 2 0 0
Compendex 3 1 0 0
SCOPUS 21 2 0 0
ScienceDirect 166 4 1 4
ACM Digital Library 336 12 0 0
IEEE Xplore 686 38 2 0

Table VI summarizes and compares the results from phases
1, 2, 3 and 4, presented in Section III of this paper.

Table VII includes general conclusions arising from Phase 3
and points to the respective graphical representation (Figs. 2
and 3).

The MS has offered evidences to confirm the existence of
studies that answer questions of protocol. The main
conclusions arising from the study, corresponding to Phase 5,
include:

e It was noticed that different practices of security
verification, validation, and test were used
interchangeably. Nevertheless, the snowball confirmed
that static and dynamic analyzes act as the most surveyed
practices.

e Although it was realized that papers exalt the positive
effects (benefits) of the proposed practices, compared to
others, it was not possible to assess the veracity of this
effect, since few articles report numbers or results which
could prove the effectiveness of the technique
investigated. It is therefore not possible to confirm which
are the advantages and disadvantages of those most
adopted practices.

e Although the practices (categories) based on model,
source code or executable are more used, this does not
imply that they have more or less benefits than others,
since, for each paper reviewed, it was evident that the
researcher highlights the benefits of the studied technique
compared to the other(s). Nevertheless, the variety of
types of systems tested, their criticality, and its context of
use (operation) influence the effectiveness or
ineffectiveness of a practice. It is also stated that there is a
combined use of practices in order to add facilities and
overcome difficulties or gaps in functionality.

The representation stated in Table VIII shows the
distribution of the type of papers by contribution facet, for all
the 55 papers included in our study. According their
contributions, some papers were classified under more than
one facet. For example, [18] made four contributions: (1) test
based on real case, (2) paper referencing a test category of
executable code, (3) paper referencing a test category of
source code, and (4) paper referencing a test technique of
static analysis.

35,0%
30,0% -
25,0% -
20,0% -
15,0% -
10,0% -
50% -
0.0% -
> o
F & F S .Qob g ‘}bqg & Qeg’}' &
¢ & & (C‘Q} & & & & 7T
\,.50 0& &) > Y Q 7 06;0
£ T .

Fig. 2 Categories of verification, validation and security testing

1051

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:10, No:6, 2016

Fig. 3 Techniques of verification, validation and security testing

TABLE VII
CONCLUSIONS FROM PHASE 3
Question Conclusion
i The three main categories perceived include "executable code",

"model" and "source code", respectively 32.7%, 30.9% and
27.3% (Fig. 2). This result can be explained by the fact that these
categories are the most studied and known by many researchers
and software testers.

ii Although the most used techniques are "static analysis" (40%)
and "dynamic analysis" (29,1%), the papers demonstrated that,
in general, more than one technique is used in conjunction,
complementarily (Fig. 3).

iii Few articles involve corporate environment (real case), 18%,
against 82% for experimental validation. This conclusion is
attributed to the fact that the majority of practices are conducted
in academic environment, more controlled and predictable,
which facilitates the experiment.

iv Few articles focus on software development process (life cycle),
only 15%. Most of the papers deal, directly, with practices of
software security verification, validation or test, explaining its
evolution and applicability as well as restricting the context in
the development process. One of the probable explanations may
be the limitation of pages in a paper that prevents more details.

VI. FINAL REMARKS

TABLE VIII
CONTRIBUTION FACET

Based onreal case [18]-[20], [24], [25], [37], [42], [46], [49], [55], [65]

[191, [34], [371-[39], [42], [43], [49], [53]
[15]-[17], [20], [21], [28], [29], [35], [39], [40], [52],
[54], [58], [62], [65], [67], [68]

[17], [18], [22], [23], [27], [33], [38], [41], [43], [45]-
[48], [53], [55], [63], [64], [69]

[18], [24], [30], [31], [36], [41]-[43], [45], [53], [55],
[60], [61], [63], [66]

[15], [16], [18], [24], [26], [29], [31], [32], [34], [37],
[42]-[45], [52]. [53], [55], [57], [59], [63], [65], [66],
[68]

[16], [20], [23], [28], [33], [38], [45]-[48]. [50], [51],
[56]. [62], [63]

Based on process
Based on model

Executable code
Source code

Static analysis

Dynamic analysis

This paper was aimed at showing a simplified and
straightforward way to perform a Systematic MS as well as
presenting an overview of what security VVT practices are
most applied in a context of software development life cycle.
Thus, by the study, it was inferred that: (a) the most
commonly used practices involve static and dynamic analysis,
(b) there is no certainty about the effect of applying them, nor

a direction about its advantages and disadvantages.

As a complementary intention of the work, it was presented
the execution of a Systematic MS and an example of a
research protocol, to disseminate knowledge about revisions,
besides facilitate the development of other protocols for
different research contexts. Therefore, it is seemed as
appropriate to express the following lessons learned from MS:
¢ Knowledge about the subject to be revised contributes

with a fast execution of the process and effectiveness of
the result.

e Remains the feeling that there may still be a paper that
was not found and could change any conclusion of the
review.

e Restrict the scope of the systematic study is
recommended, but it can be complex in some situations to
be proven.

o It takes time to be done (at least, it should follow: i -
search, read, and understand papers / ii - analyze, organize
and report results).

e Abstract, Introduction and Conclusion of a paper cannot
provide the information needed, requiring reading the
entire content.

e Important information to reach a conclusion or find
evidence may be omitted in a paper and be only available
in more complete works such as theses and dissertations.

It is important to point that whether the question to be
proven in the MS would focus on identifying the
institutionalization of software security VVT actions in an
iterative and incremental development cycle, contextualizing
process improvement, there would be no paper attending this
scenario.

Note that security verification, validation, and test represent
just one important piece in the complex software security
mechanism. One should persevere to institutionalize and
integrate information security actions in all stages of the
development process, beginning at initiation, and, specially,
keeping objectives and requirements of the project aligned. In
this context, practices of security VVT would also be applied
from the beginning of the life cycle and act as a validation tool
of security and quality of software products.

Due to time constraints further analysis of the results would
be expected as a future work, such as interpreting and
detailing in which way static and dynamic analysis influence
or contribute with the results of the research project.

REFERENCES

[1] Gary McGraw, “Software security”, IEEE Security and Privacy,
March/April 2004, pages 32-35.

[2] CERT.BR. Available: http://www.cert.br/stats/incidentes/.

[3] NIST (2010) Special Publication 800-53A, Revision 1, 2010 - Guide for
Assessing the Security Controls in Federal Information Systems and
Organizations - Building Effective Security Assessment Plans.

[4] Sommerville, I. (2010), Software Engineering, Addison Wesley, 9th
edition.

[5] Kitchenham, B., Brereton P., Budgen, D., Turner M., Bailey J.,
Linkman, S. (2009) “Systematic literature reviews in software
engineering - A systematic literature review”. Information and Software
Technology Journal. Vol. 51. Issue 1. Pages 7 - 15. Elsevier. January
2009.

1052

[

[10]

(1]

[12]

[13]
[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:10, No:6, 2016

Kitchenham, B. and Charters, S. (2007) “Guidelines for performing
Systematic Literature Reviews in Software Engineering”. Technical
Report EBSE 2007-001, Keele University and Durham University Joint
Report.

Mafra, S., Barcelos, R., Travassos, G. (2006) “Aplicando uma
Metodologia Baseada em Evidéncia na Defini¢do de Novas Tecnologias
de Software”, v. 1, pages 239 — 254.

Kitchenham et al. (2010) “Systematic literature reviews in software
engineering — A tertiary study”. Information and Software Technology
52 (2010) 792-805. Elsevier.

R. Wieringa, N.A.M. Maiden, N.R. Mead, C. Rolland. Requirements
engineering paper classification and evaluation criteria: a proposal and a
discussion. Requirements Engineering, 11 (1) (2006), pp. 102-107.

K. Petersen, R. Feldt, S. Mujtaba, M. Mattsson, Systematic mapping
studies in software engineering, in: 12th International Conference on
Evaluation and Assessment in Software Engineering (EASE), 2008, pp.
71-80.

Budgen, D., Turner, M., Brereton, P., Kitchenham, B. (2008) “Using
Mapping Studies in Software Engineering”. Available:
https://community.dur.ac.uk/ebse/biblio.php?id=86.

Petticrew, Mark and Roberts, Helen. Systematic Reviews in the Social
Sciences: A Practical Guide, Blackwell Publishing, 2005, ISBN
1405121106.

RUP. (2013) IBM - Rational Unified Process ®. IBM Corporation.
Copyright © 1987 —2013.

UBC. (2014) Snowballing technique.
http://hlwiki.slais.ubc.ca/index.php/Snowballing.
Marback, Aaron, Do, Hyunsook, He, Ke, Kondamarri, Samuel and Xu,
Dianxiang (2013) "A threat model-based approach to security testing".
Software: Practice and Experience, v. 43, n. 2, p. 241-258, 2013.
Gilliam, David P. et al. (2006) “Security verification techniques applied
to patchlink COTS software”. In: Enabling Technologies: Infrastructure
for Collaborative Enterprises, 2006. WETICE'06. 15th IEEE
International Workshops on. IEEE, 2006. p. 319-325.

Shahmehri, Nahid et al. (2012) “An advanced approach for modeling
and detecting software vulnerabilities”. Information and Software
Technology, v. 54, n. 9, p. 997-1013, 2012.

Austin, Andrew; Holmgreen, Casper; Williams, Laurie. (2013) “A
comparison of the efficiency and effectiveness of vulnerability discovery
techniques”. Information and Software Technology, v. 55, n. 7, p. 1279-
1288,2013.

Mouratidis, Haralambos; Giorgini, Paolo. (2007) “Security Attack
Testing (SAT)—testing the security of information systems at design
time”. Information systems, v. 32, n. 8, p. 1166-1183, 2007.

Jirjens, Jan. (2208) “Model-based security testing using umlsec: A case
study”. Electronic Notes in Theoretical Computer Science, v. 220, n. 1,
p. 93-104, 2008.

Xu, Dianxiang et al. (2012) “A model-based approach to automated
testing of access control policies”. In: Proceedings of the 17th ACM
symposium on Access Control Models and Technologies. ACM, 2012.
p. 209-218.

Wei, Tian et al. (2012) “Attack model based penetration test for SQL
injection vulnerability”. In: Computer Software and Applications
Conference Workshops (COMPSACW), 2012 IEEE 36th Annual. IEEE,
2012. p. 589-594.

Antunes, Nuno; Vieira, Marco. (2209) “Detecting SQL injection
vulnerabilities in web services”. In: Dependable Computing, 2009.
LADC'09. Fourth Latin-American Symposium on. IEEE, 2009. p. 17-24.
Wassermann, Gary; Su, Zhendong. (2007) “Sound and precise analysis
of web applications for injection vulnerabilities”. In: ACM Sigplan
Notices. ACM, 2007. p. 32-41.

Ciampa, Angelo; Visaggio, Corrado Aaron; Di Penta, Massimiliano.
(2010) “A heuristic-based approach for detecting SQL-injection
vulnerabilities in Web applications”. In: Proceedings of the 2010 ICSE
Workshop on Soft. Eng. for Secure Systems. ACM, 2010. p. 43-49.
Shaffer, Alan B. et al. (2008) “A security domain model to assess
software for exploitable covert channels”. In: Proceedings of the third
ACM SIGPLAN workshop on Programming languages and analysis for
security. ACM, 2008. p. 45-56.

Morais, Anderson; Cavalli, Ana; Martins, Eliane. (2011) “A model-
based attack injection approach for security validation”. In: Proceedings
of the 4th international conference on Security of information and
networks. ACM, 2011. p. 103-110.

Wang, Linzhang; Wong, Eric; Xu, Dianxiang. (2007) “A threat model
driven approach for security testing”. In: Proceedings of the Third

Available:

[29]

[30]

B31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

International Workshop on Software Engineering for Secure Systems.
IEEE Computer Society, 2007. p. 10.

Al-Azzani, Sarah; Bahsoon, Rami. (2010) “Using implied scenarios in
security testing”. In: Proceedings of the 2010 ICSE Workshop on
Software Engineering for Secure Systems. ACM, 2010. p. 15-21.

Xu, Dianxiang. (2013) “Software security testing of an online banking
system: a unique research experience for undergraduates and computer
teachers”. In: Proceeding of the 44th ACM technical symposium on
Computer science education. ACM, 2013. p. 705-710.

Avancini, Andrea. (2012) “Security testing of web applications: A
research plan”. In:Proceedings of the 2012 International Conference on
Software Engineering. IEEE Press, 2012. p. 1491-1494.

Huang, Song et al. (2010) “A Case Study of Software Security Test
Based On Defects Threat Tree Modeling”. In: Multimedia Information
Networking and Security (MINES), 2010 International Conference on.
1EEE, 2010. p. 362-365.

Smith, Ben; Williams, Laurie. (2012) “On the Effective Use of Security
Test Patterns”. In: Software Security and Reliability (SERE), 2012 IEEE
Sixth International Conference on. IEEE, 2012. p. 108-117.

Gilliam, David P. et al. (2001) “Reducing software security risk through
an integrated approach”. In: Software Engineering Workshop, 2001.
Proceedings. 26th Annual NASA Goddard. IEEE, 2001. p. 36-42.

Xu, Dianxiang et al. (2012) “Automated security test generation with
formal threat models”. Dependable and Secure Computing, IEEE
Transactions on, v. 9, n. 4, p. 526-540, 2012.

Du, Wenliang; Mathur, Aditya P. (2002) “Testing for software
vulnerability using environment perturbation”. Quality and Reliability
Engineering International, v. 18, n. 3, p. 261-272, 2002.

Murthy, K. Krishna; Thakkar, Kalpesh R.; Laxminarayan, Shirsh. (2009)
“Leveraging Risk Based Testing in Enterprise Systems Security
Validation”. In:Emerging Network Intelligence, 2009 First International
Conference on. IEEE, 2009. p. 111-116.

Smith, Ben. (2011) “Systematizing security test case planning using
functional requirements phrases”. In: Proceedings of the 33rd
International Conference on Software Engineering. ACM, 2011. p.
1136-1137.

Xiong, Pulei; Peyton, Liam. (2010) “A model-driven penetration test
framework for Web applications”. In: Privacy Security and Trust (PST),
2010 Eighth Annual International Conference on. IEEE, 2010. p. 173-
180.

Ouchani, Samir; Jarraya, Yosr; Mohamed, Otmane Ait. (2011) “Model-
based systems security quantification”. In: Privacy, Security and Trust
(PST), 2011 Ninth Annual International Conference on. IEEE, 2011. p.
142-149.

Fonseca, José; Vieira, Marco; Madeira, Henrique. (2013) “Evaluation of
Web Security Mechanisms using Vulnerability and Attack Injection”.
Dependable and Secure Computing, IEEE Transactions on, v. PP, Issue
99, p. 1,2013.

Carlsson, Bengt; Baca, Dejan. (2005) “Software security analysis-
execution phase audit”. In: Software Engineering and Advanced
Applications, 2005. 31st EUROMICRO Conference on. IEEE, 2005. p.
240-247.

Ghindici, Dorina et al. (2006) “Integrated security verification and
validation: Case study”. In: Local Computer Networks, Proceedings
2006 31st IEEE Conference on. IEEE, 2006. p. 1000-1007.

He, Ke; Feng, Zhiyong; Li, Xiaohong. (2008) “An attack scenario based
approach for software security testing at design stage”. In: Computer
Science and Computational Technology, 2008. ISCSCT'08. International
Symposium on. IEEE, 2008. p. 782-787.

Savola, R. M. (2009) “Software security assurance of
telecommunication systems”. In: Multimedia Computing and Systems,
2009. ICMCS '09. International Conference on Multimedia Computing
and Systems.

Mallouli, Wissam et al. (2008) “Modeling and Testing Secure Web-
Based Systems: Application to an Industrial Case Study”. In: Signal
Image Technology and Internet Based Systems, 2008. SITIS'08. IEEE
International Conference on. IEEE, 2008. p. 128-136.

Turpe, S. et al. (2008) “Supporting Security Testers in Discovering
Injection Flaws”. In: Practice and Research Techniques, 2008. TAIC
PART'08. Testing: Academic & Industrial Conference. IEEE, 2008. p.
64-68.

Tappenden, Andrew et al. (2005) “Agile security testing of web-based
systems via httpunit”. In: Agile Conference, 2005. Proceedings. IEEE,
2005. p. 29-38.

1053

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

(61]

[62]

[63]

[64]

[65]

[66]

[67]

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:10, No:6, 2016

Bessayah, Faycal; Cavalli, Ana; Martins, Eliane. (2009) “A formal
approach for specification and verification of fault injection process”. In:
Proceedings of the 2nd International Conference on Interaction Sciences:
Information Technology, Culture and Human. ACM, 2009. p. 883-890.
Berbar, Ahmed; Ahmednacer, Mohamed. (2009) “Testing and fault
tolerance approach for distributed software systems using nematode
worms”. In:Proceedings of the 4th International Conference on
Queueing Theory and Network Applications. ACM, 2009. p. 7.

Zech, Philipp et al. (2013) “A Concept for Language-Oriented Security
Testing”. In:Software Security and Reliability-Companion (SERE-C),
2013 IEEE 7th International Conference on. IEEE, 2013. p. 53-62.
Katkalov, Kuzman et al. (2012) “Model-Driven Testing of Security
Protocols with SecureMDD”. In: New Technologies, Mobility and
Security (NTMS), 2012 5th International Conference on. IEEE, 2012. p.
1-5.

Hui, Zhanwei et al. (2010) “Software security testing based on typical
SSD: A case study”. In: Advanced Computer Theory and Engineering
(ICACTE), 2010 3rd International Conference on. IEEE, 2010. p. V2-
312-V2-316.

Jinhua, Li; Jing, Li. (2010) “Model Checking Security Vulnerabilities in
Software Design”. In: Wireless Communications Networking and
Mobile Computing (WiCOM), 2010 6th International Conference on.
IEEE, 2010. p. 1-4.

Bodeau, D. J.; Brusil, N. R.; Chang, I. N.; Reece, M. J. (1992) “Security
test and evaluation for multilevel-mode accreditation: Lessons learned”.
In: Proceedings of eighth Annual Computer Security Applications
Conference, 1992. p. 37-45.

Wang, Wenhua et al. (2011) “A combinatorial approach to detecting
buffer overflow vulnerabilities”. In: Dependable Systems & Networks
(DSN), 2011 IEEE/IFIP 41st International Conference on. IEEE, 2011.
p. 269-278.

Wang, Weiguang; Zeng, Qingkai; Mathur, Aditya P. (2012) “A Security
Assurance Framework Combining Formal Verification and Security
Functional Testing”. In: Quality Software (QSIC), 2012 12th
International Conference on. IEEE, 2012. p. 136-139.

Schanes, Christian et al. (2013) “Generic Approach for Security Error
Detection Based on Learned System Behavior Models for Automated
Security Tests”. In:Software Testing, Verification and Validation
Workshops (ICSTW), 2013 IEEE Sixth International Conference on.
IEEE, 2013. p. 453-460.

Belblidia, Nadia et al. (2006) “AOP extension for security testing of
programs”. In:Electrical and Computer Engineering, 2006. CCECE'06.
Canadian Conference on. IEEE, 2006. p. 647-650.

Mouelhi, Tejeddine; Le Traon, Yves; Baudry, Benoit. (2007) “Mutation
analysis for security tests qualification”. In: Testing: Academic and
Industrial Conference Practice and Research Techniques-sMUTATION,
2007. TAICPART-MUTATION 2007. IEEE, 2007. p. 233-242.

Hwang, JeeHyun et al. (2012) “Selection of regression system tests for
security policy evolution”. In: Proceedings of the 27th IEEE/ACM
International Conference on Automated Software Engineering. ACM,
2012. p. 266-269.

Lebeau, Franck et al. (2013) “Model-Based Vulnerability Testing for
Web Applications”. In: Software Testing, Verification and Validation
Workshops (ICSTW), 2013 IEEE Sixth International Conference on.
IEEE, 2013. p. 445-452.

Huang, Yao-Wen et al. (2004) “Securing web application code by static
analysis and runtime protection”. In: Proceedings of the 13th
international conference on World Wide Web. ACM, 2004. p. 40-52.

Li, Li et al. (2013) “The Application of Fuzzing in Web Software
Security Vulnerabilities Test”. In: Information Technology and
Applications (ITA), 2013 International Conference on. IEEE, 2013. p.
130-133.

Fourneret, Elizabeta et al. (2011) “Model-based security verification and
testing for smart-cards”. In: Availability, Reliability and Security
(ARES), 2011 Sixth International Conference on. IEEE, 2011. p. 272-
279.

Jing-Nong, Du; Yan-Sheng, Lu. (2010) “An Effect Evaluation Model for
Vulnerability Testing of Web Application”. In: Networks Security
Wireless Communications and Trusted Computing (NSWCTC), 2010
Second International Conference on. IEEE, 2010. p. 382-385.

Ma, Jianli et al. (2010) “Information system security function validating
using model checking”. In: Computer Engineering and Technology
(ICCET), 2010 2nd International Conference on. IEEE, 2010. p. V1-
517-V1-521.

[68]

[69]

[70]

[71]

[72]

Salas, Percy Antonio Pari; Krishnan, Padmanabhan; Ross, Kelvin J.
(2007) “Model-based security vulnerability testing”. In: Software
Engineering Conference, 2007. ASWEC 2007. 18th Australian. IEEE,
2007. p. 284-296.

Zhang, Xiao-Song; Shao, Lin; Zheng, Jiong. (2008) “A novel method of
software vulnerability detection based on fuzzing technique”. In:
Apperceiving Computing and Intelligence Analysis, 2008. ICACIA
2008. Intl. Conf. on. IEEE, 2008. p. 270-273.

Blackburn, Mark et al. (2001) “Model-based approach to security test
automation”. In: Proceedings of Quality Week 2001.

Gupta, Daya; Chatterjee, Kakali; Jaiswal, Shruti. (2013) “A Framework
for Security Testing”. In: Computational Science and Its Applications—
ICCSA, 2013. Springer Berlin Heidelberg, 2013. p. 187-198.
Ouedraogo, Moussa et al. (2012) “Appraisal and reporting of security
assurance at operational systems level”. In: Journal of Systems and
Software, v. 85, n. 1,2012, p. 193-208.

1054

