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Abstract—Software vulnerabilities are increasing and not only
impact services and processes availability as well as information
confidentiality, integrity and privacy, but also cause changes that
interfere in the development process. Security test could be a solution
to reduce vulnerabilities. However, the variety of test techniques with
the lack of real case studies of applying tests focusing on software
development life cycle compromise its effective use. This paper
offers an overview of how a Systematic Mapping Study (MS) about
security verification, validation and test (VVT) was performed,
besides presenting general results about this study.
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[. INTRODUCTION

OMMUNICATION and Information Security (CIS) has
its foundation in the principles of Availability, Integrity
and Confidentiality. It is understood that, in this way, areas or
processes where security is mandatory must also ensure
compliance with these principles to be considered secure, such
as: Logical access control or Software development process.
About development, a considerable lack of resources and
control structures that facilitate or enable systems to meet the
above principles is still not evident. Hence, it follows that
problems and failures during software development cycle are
generating increasingly insecure applications that weaken
business processes and threaten corporate information assets.
The quest for software security should start with improving
software development processes. Thus, software cannot be
considered secure by having just implemented some security
functionality, such as access control to protect confidentiality
[1]. One of the consequences of misalignment between
information security and development methodologies is the
growth in the number of attacks against applications that
generates rework to correct vulnerabilities and find root
causes. For example, the statistic from CERT [2] highlights
the increasing level of incidents of CIS. Moreover, the
exploitation of vulnerabilities found in software products has
increased causing changes in techniques and approaches in
software development processes. Software insecurity is a
reality that concerns those involved with development and
maintenance projects, from managers to technicians, due to
the perspective that incidents can impact negatively the
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availability of processes and services and, above all, the
confidentiality, integrity and privacy of corporate information.
This concern may be justified by the lack of knowledge, lack
of maturity, or ineffective actions that attempt to solve
software insecurity situations. The security test is, in many
cases, the only alternative to reduce vulnerabilities in
applications. However, the diversity and complexity of
techniques and, in particular, the lack of reports about security
test institutionalization focusing on the software development
life cycle, complicate the broad and appropriate use of these
test practices in the corporate environment. Thus, the approach
of systematic study was conducted to characterize existing
studies correlating structure and use of security VVT
techniques as well as identify any influence in improving the
software development process. This paper aims not only to
describe the most relevant aspects of how MS occurred but
also present the overall results achieved with the approach.

This paper is organized as follows: Section II summarizes
the main points of verification, validation, and security testing;
Section III presents a brief description of Systematic
Literature Review; Section IV describes the approach used to
perform the Systematic MS; Section V discusses the main
findings of the study; and Section VI summarizes the main
conclusions of this work.

II. SOFTWARE SECURITY VVT

Software security VVT practices aim to correct most of the
vulnerabilities in order to provide quality and reliable
software. Systems must undergo security tests which can be
executed in various stages of the system development life
cycle in order to increase the confidence that applied controls
work effectively in the application [3].

Sommerville [4] states four complimentary approaches to
verify a software protection condition:

e Validation based on experience: The system is analyzed
in comparison with known types of attacks by validation
team.

e  Validation based on tools: Multiple security tools, such as
password checkers, are used to analyze the system.

e Validation based on invasion: A team is formed whose
objective is to break the protection system. The team
simulates attacks to the system and uses its experience
and knowledge to discover new ways to compromise
system safeguards.

e Formal verification: A system can be checked against a
formal specification of security.

Considering the activities of the validation phase of a
development process, the following practices adjust better to
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security tests [4]:

e Requirement inspections: Find problems in requirements
specification.

e Management of requirements: Track changes in
requirements and coordinate impact of this change on
development project.

e Design and code inspection: Discover defects before
system security audits do.

e Static analysis: Perform automated analysis to find
erroneous conditions.

III. SYSTEMATIC LITERATURE REVIEW - SLR

Systematic Literature Review (SLR) assumes that it is
feasible to obtain consistent evidences about the presence or
lack of a predefined condition or phenomenon, based on
preselected information (population). According to [5],
evidence is defined as a synthesis of the best quality scientific
studies on a specific topic or research question.

SLR is a means of evaluating and interpreting a research
question, results, subject, or phenomenon of interest, relevant
and available. Kitchenham [6] states that SLR is a coherent
assessment of a research topic from a methodologically
reliable, accurate, repeatable, and auditable approach.
Therefore, the SLR is of benefit to Software Engineering,
including its related processes, such as the testing process,
since it helps to obtain some evidences originated from
research in scientific basis [6]. These evidences can contribute
with more experience and improvement of security
verification, validation, and testing during development and
maintenance of software.

Systematic literature reviews are referenced as a secondary
study and studies that SLR analyzes are referred to as primary
studies. According to [7], results originated from primary
studies provide evidences which can be investigated by
secondary studies. Kitchenham et al. [8] presents two different
types of SLR:

e Conventional SLR: Combine results related to a specific
research question, for example: “Would test approach 'A’
be more effective in detecting defects than approach 'B'?”.

e Mapping or Systematic Study (MS): These studies are
aimed at finding and classifying primary studies in
specific knowledge area and can identify available
literature before performing conventional SLR.

Kitchenham [6] divides the process of SLR into three main
phases: Plan review, conduct the review, and Report result.
During planning, a protocol is prepared that specifies the
approach to be conducted to perform a systematic review as
well as indicates the level of rigor and completeness. Such
protocol is necessary to reduce deviations or inconsistencies in
the results of scientific research. When the protocol is
completed, it begins the search for primary studies.

In the protocol, it should specify the purpose (question) of
research as well as procedures to be conducted to review the
literature, including the query used in the search for specific
content. The protocol also indicates the inclusion and
exclusion criteria which select and indicate explicitly those
primary studies that will participate or not in the study.

The aim of the conducted systematic study was to identify
relevant material stating results and experience in
institutionalizing software security ver VVT actions in a
development process (life cycle), in such a way that it can be
perceived as a process improvement initiative to produce more
secure applications. To accomplish such objective, method
and protocol proposed by [6] were followed as a model.

The next section presents a general description of how the
MS was conducted, including the components of the defined
protocol that make it possible to replicate the study.

IV. APPLICATION OF A SYSTEMATIC MAPPING

The scope to apply this systematic mapping relates to
experiences or initiatives in software security verification,
validation, and test in an iterative and incremental process. In
other words, the research question focuses on identifying the
reflection of adaptation or improvement of the development
process by institutionalizing practices of security verification,
validation, and tests that are being used in the corporate
environment.

The study was based on the classification of research
approaches described by [9]. The contribution facet used was
adapted from [10].

A. Research Questions

According to [11], one of the differences between a
systematic literature review and a systematic MS is the fact
that the research questions of the mapping are more general.
Thus, the research questions that guided this study include:

e What are the most researched software security VVT
practices? (According to the mapped scientific papers).

e  What are the advantages and difficulties of performing
software security VVT practices researched by mapped
papers?

Based on the proposal presented by [6] and [12] of
subdivision of the research question in separated categories,
also known as PICOC approach (P - problem or population, I -
intervention, C - comparison, control or comparator, O -
outcomes, C - Context), Table I shows this division.

TABLEI
SUBDIVISION OF RESEARCH QUESTION — PICOC APPROACH

Population

software life cycle OR software development OR software
security test OR secure test OR security verification OR
security validation
assess OR understand OR know
effect OR experience OR result OR adopt

corporate

Intervention

Comparison
Outcome
Context

B. Research Process

The research took place from March to August, 2014.
Initially, the scope of the questions was restricted to refer only
to Unified Process or RUP [13]. However, this approach
presented inadequate since no evidence directly related to the
effect of applying software security VVT has been found.
Therefore, the scope was widened so that evidence of
experience in applying security VVT in any iterative and
incremental software development life cycle would be
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considered. Once the scope was agreed, it was defined the
inclusion and exclusion criteria (Table II), and the search
string (Table III).

TABLE I
INCLUSION AND EXCLUSION CRITERIA

Criteria

Description

Inclusion

« Paper demonstrating some experience or assessing the adoption
of software security VVT practices in a development project.

« Full paper accepted in scientific journals or conference
proceedings.

« Paper without any experience description in applying software
security VVT.

« Paper not directly related to software security VVT practices or
approaches in a software life cycle domain.

Exclusion < Oldest paper by the same authors.

« Paper whose focus is only to propose security VVT tools.
« Gray literature and technical reports.

« Short or extended paper.

« Monographs, dissertations and theses.

TABLEIII
SEARCH STRING

("software life cycle" OR "software development" OR software) AND
("security test" OR "secure test" OR "security verification" OR "security
validation") AND (assess OR understand OR know) AND (effect OR
experience OR result OR adopt)

C.Data Collection and Analysis
In order to simplify the modus operandi of the MS, its

implementation was divided in five phases:

il.

Phase 1 - The most common method of SLR described by
[6] was used. That is, instead of a manual research
process, considered restricted; a broad automated research
was conducted [8], considering only the search string in
Table III. Automatic research involved the following
scientific and digital databases of papers: Web of Science
(Thomson Reuters Scientific), Compendex (Engineering
Village 2), SCOPUS (Elsevier), ScienceDirect (Elsevier),
ACM Digital Library, and IEEE Xplore. Table IV shows
the general criteria, specific criteria of each database,
where applicable, as well as some peculiarity of research
performed, and, finally, the amount of records found.
Phase 2 - After identifying the quantity of items listed
from the search string, manual search was performed by
analyzing paper abstracts, introductions, and conclusions
to separate papers related, directly or indirectly, with
software security verification, validation, and test,
following the inclusion and exclusion criteria from Table
II. Search from Phase 1 returned many results with little
relevance. Fig. 1 provides an overview of the results of
this phase.

Phase 3 — Based on the results of Phase 2, it was decided
to organize the papers using a manual selection, according
to the four questions listed as follows:

In which category (model based, source code, executable,
etc.) is the security test being applied?

Based on the stage of the life cycle, which security test
techniques (injection, static analysis, dynamic analysis,
etc.) are being used in each phase of the cycle?

SCOPUS
Science Direct
Wb of stence
Cornpenex
A0 IEEE

Total of 55 items adherent to the criteria,

Fig. 1 Vision of results from Phase 2

TABLEIV
SEARCH CRITERIA OF DIGITAL SCIENTIFIC BASES

Scientific base

Criteria details # Papers

Web of Science

ScienceDirect

ACM Digital
Library

IEEE Xplore

Compendex

SCOPUS

 General criterion: “command search” was used
- (text box to insert all the search command). -
» There was no restriction in the search.
* An error appeared in the survey. So, it was used
a variance of the search string, suggested by the
scientific base: TS=((“software life cycle” OR
“software development” OR software)) AND
TS=((“security test” OR “secure test” OR
“security verification” OR “security validation™))
AND TS=((assess OR understand OR know))
AND TS=((effect OR experience OR result OR
adopt)).
« Search from the website
www.engineeringvillage.com, with date starting 03
at year 1980.
* There was no restriction in the search. 21
« “Expert Search” was used. The search was
refined for “Journals” and “Computer Science”, 166
with publication date starting from 1980.
« The only restriction was the type of publication,
with selection of “Journal”, “Proceeding” and
“Transaction”.
« The result was inconsistent and showed error
when changing the list of paper. Thus, the search
string was adapted to: (software AND (“security
test” OR “secure test” OR “security verification”
OR “security validation”) AND (assess OR
understand OR know) AND (effect OR
experience OR result OR adopt)).
* Option “full text and metadata” was chosen. 686

iii.

TABLE V
RESULTING ARTICLES FROM PHASE 4 (SNOWBALL APPROACH)

Backtrack
[70]
Forward
[19] [44]
[71]
[72]

Paper

A real case study (pilot project) or experimental /
simulation validation was performed? (Real case study
involves a pilot in a commercial / enterprise application,
outside the academic environment, with the application of
the pilot in development, ongoing maintenance or
approval).

1050



International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:10, No:6, 2016

iv. Does the paper describe some result or experience to
apply security verification, validation or test activity
(approach, method, model, framework, methodology or
technique) with focus on software development process
(life cycle)?

The organization of papers among the previous questions
contributed to restrict the analysis. So, it was decided to map
only the papers related to real case and focusing on the process
which resulted in a total of three papers.

e Phase 4 — The three papers from Phase 3 were refined by
the snowball technique [14] using Google Scholar,
considering criteria of Table II, as presented in Table V.
The snowball identifies two variations:

a. Backtrack: After reading abstract and assessing its
conformance, the references of each paper were analyzed,
checking papers that apply. In this case, the applicable
references were researched, at least, by reading the
abstract, introduction, and conclusion.

b. Forward: Papers that referenced the paper under review
were searched, identifying the applicable, ones. In this
case, these references were analyzed, at least, by reading
the abstract, introduction, and or conclusion.

e Phase 5 — With the result of the snowball, it could be
possible to confirm or refute the existence of any primary
study that can, in some way, answer questions from the
protocol. As a complimentary objective, it was expected
that the study showed, among software security VVT
practices, which, in fact, have empirical evidence of their
effectiveness. However, deciding on a level of
effectiveness requires an associated metric that reflects
the meaning of this effectiveness, such as: number of
security vulnerabilities found in the software produced.
Nonetheless, it will only be possible to assess the
effectiveness if the MS indicates, among papers found,
the effect of adoption as well as advantages and
disadvantages of the practices.

V.COMPARATIVE ANALYSIS AND RESULTS

TABLE VI
COMPLETE RESULTS FROM MS
Base Phase 1 Phase2 Phase3 Phase4
Web of Science 4 2 0 0
Compendex 3 1 0 0
SCOPUS 21 2 0 0
ScienceDirect 166 4 1 4
ACM Digital Library 336 12 0 0
IEEE Xplore 686 38 2 0

Table VI summarizes and compares the results from phases
1, 2, 3 and 4, presented in Section III of this paper.

Table VII includes general conclusions arising from Phase 3
and points to the respective graphical representation (Figs. 2
and 3).

The MS has offered evidences to confirm the existence of
studies that answer questions of protocol. The main
conclusions arising from the study, corresponding to Phase 5,
include:

e It was noticed that different practices of security
verification,  validation, and test were used
interchangeably. Nevertheless, the snowball confirmed
that static and dynamic analyzes act as the most surveyed
practices.

e Although it was realized that papers exalt the positive
effects (benefits) of the proposed practices, compared to
others, it was not possible to assess the veracity of this
effect, since few articles report numbers or results which
could prove the effectiveness of the technique
investigated. It is therefore not possible to confirm which
are the advantages and disadvantages of those most
adopted practices.

e Although the practices (categories) based on model,
source code or executable are more used, this does not
imply that they have more or less benefits than others,
since, for each paper reviewed, it was evident that the
researcher highlights the benefits of the studied technique
compared to the other(s). Nevertheless, the variety of
types of systems tested, their criticality, and its context of
use (operation) influence the effectiveness or
ineffectiveness of a practice. It is also stated that there is a
combined use of practices in order to add facilities and
overcome difficulties or gaps in functionality.

The representation stated in Table VIII shows the
distribution of the type of papers by contribution facet, for all
the 55 papers included in our study. According their
contributions, some papers were classified under more than
one facet. For example, [18] made four contributions: (1) test
based on real case, (2) paper referencing a test category of
executable code, (3) paper referencing a test category of
source code, and (4) paper referencing a test technique of
static analysis.
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0.0% -
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Fig. 2 Categories of verification, validation and security testing
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Fig. 3 Techniques of verification, validation and security testing

TABLE VII
CONCLUSIONS FROM PHASE 3
Question Conclusion
i The three main categories perceived include "executable code",

"model" and "source code", respectively 32.7%, 30.9% and
27.3% (Fig. 2). This result can be explained by the fact that these
categories are the most studied and known by many researchers
and software testers.

ii Although the most used techniques are "static analysis" (40%)
and "dynamic analysis" (29,1%), the papers demonstrated that,
in general, more than one technique is used in conjunction,
complementarily (Fig. 3).

iii Few articles involve corporate environment (real case), 18%,
against 82% for experimental validation. This conclusion is
attributed to the fact that the majority of practices are conducted
in academic environment, more controlled and predictable,
which facilitates the experiment.

iv Few articles focus on software development process (life cycle),
only 15%. Most of the papers deal, directly, with practices of
software security verification, validation or test, explaining its
evolution and applicability as well as restricting the context in
the development process. One of the probable explanations may
be the limitation of pages in a paper that prevents more details.

VI. FINAL REMARKS

TABLE VIII
CONTRIBUTION FACET

Based onreal case  [18]-[20], [24], [25], [37], [42], [46], [49], [55], [65]

[191, [34], [371-[39], [42], [43], [49], [53]
[15]-[17], [20], [21], [28], [29], [35], [39], [40], [52],
[54], [58], [62], [65], [67], [68]

[17], [18], [22], [23], [27], [33], [38], [41], [43], [45]-
[48], [53], [55], [63], [64], [69]

[18], [24], [30], [31], [36], [41]-[43], [45], [53], [55],
[60], [61], [63], [66]

[15], [16], [18], [24], [26], [29], [31], [32], [34], [37],
[42]-[45], [52]. [53], [55], [57], [59], [63], [65], [66],
[68]

[16], [20], [23], [28], [33], [38], [45]-[48]. [50], [51],
[56]. [62], [63]

Based on process
Based on model

Executable code
Source code

Static analysis

Dynamic analysis

This paper was aimed at showing a simplified and
straightforward way to perform a Systematic MS as well as
presenting an overview of what security VVT practices are
most applied in a context of software development life cycle.
Thus, by the study, it was inferred that: (a) the most
commonly used practices involve static and dynamic analysis,
(b) there is no certainty about the effect of applying them, nor

a direction about its advantages and disadvantages.

As a complementary intention of the work, it was presented
the execution of a Systematic MS and an example of a
research protocol, to disseminate knowledge about revisions,
besides facilitate the development of other protocols for
different research contexts. Therefore, it is seemed as
appropriate to express the following lessons learned from MS:
¢ Knowledge about the subject to be revised contributes

with a fast execution of the process and effectiveness of
the result.

e Remains the feeling that there may still be a paper that
was not found and could change any conclusion of the
review.

e Restrict the scope of the systematic study is
recommended, but it can be complex in some situations to
be proven.

o It takes time to be done (at least, it should follow: i -
search, read, and understand papers / ii - analyze, organize
and report results).

e  Abstract, Introduction and Conclusion of a paper cannot
provide the information needed, requiring reading the
entire content.

e Important information to reach a conclusion or find
evidence may be omitted in a paper and be only available
in more complete works such as theses and dissertations.

It is important to point that whether the question to be
proven in the MS would focus on identifying the
institutionalization of software security VVT actions in an
iterative and incremental development cycle, contextualizing
process improvement, there would be no paper attending this
scenario.

Note that security verification, validation, and test represent
just one important piece in the complex software security
mechanism. One should persevere to institutionalize and
integrate information security actions in all stages of the
development process, beginning at initiation, and, specially,
keeping objectives and requirements of the project aligned. In
this context, practices of security VVT would also be applied
from the beginning of the life cycle and act as a validation tool
of security and quality of software products.

Due to time constraints further analysis of the results would
be expected as a future work, such as interpreting and
detailing in which way static and dynamic analysis influence
or contribute with the results of the research project.
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