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A Projection Method Based on Extended Krylov
Subspaces for Solving Sylvester Equations

Yiqin Lin, Liang Bao, and Yimin Wei

Abstract—In this paper we study numerical methods for solving
Sylvester matrix equations of the form AX + XBT + CDT = 0. A
new projection method is proposed. The union of Krylov subspaces in
A and its inverse and the union of Krylov subspaces in B and its in-
verse are used as the right and left projection subspaces, respectively.
The Arnoldi-like process for constructing the orthonormal basis of
the projection subspaces is outlined. We show that the approximate
solution is an exact solution of a perturbed Sylvester matrix equation.
Moreover, exact expression for the norm of residual is derived and
results on finite termination and convergence are presented. Some
numerical examples are presented to illustrate the effectiveness of
the proposed method.
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I. INTRODUCTION

IN this paper we will consider the numerical solution of
large-scale Sylvester matrix equations of the form

AX +XBT = −CDT , (1)

where the matrices A ∈ RN×N , B ∈ RM×M , C ∈ RN×s,
D ∈ RM×s with s � min{N, M}, and X ∈ RN×M is the
solution matrix sought. We assume that the coefficient matrices
A and B are large and sparse, and the matrices C and D are
of full column rank. If B = A and D = C, the Lyapunov
matrix equations result.

Let X = [x1, x2, · · · , xM ], where xi is the i-th column of
X . Define a linear operator vec : RN×M → RMN by

vec(X) = [xT
1 , x

T
2 , · · · , xT

M ]T .

Then, the Sylvester equation (1) can be written as a system of
linear equations

Avec(X) = −vec(CDT ),

where the coefficient matrix A = IM ⊗ A + B ⊗ IN ∈
RMN×MN . Here and in the following, ⊗ denotes the Kro-
necker product, see, for example, [12] for its definition and
properties. Let Λ(A) and Λ(B) be the spectrum of A and B,
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respectively. Then, the spectrum of the matrix A is

Λ(A) = {λi + μj : λi ∈ Λ(A), μj ∈ Λ(B),
i = 1, 2, · · · , N, j = 1, 2, · · · ,M},

which shows that the Sylvester equation (1) has a unique solu-
tion if and only if λi+μj �= 0 for any λi ∈ Λ(A), μj ∈ Λ(B),
i = 1, 2, · · · , N, j = 1, 2, · · · ,M , see [29].

For simplicity, we assume in this paper that A and B are
dissipative, that is, xT (A+AT )x < 0 and yT (B+BT )y < 0
for all the nonzero real vectors x ∈ RN and y ∈ RM . Under
this assumption, the matrices A and B are stable, i.e., their
spectrum are contained in the open left half of the complex
plane, and therefore the Sylvester equation (1) has a unique
solution.

Sylvester equations and Lyapunov equations play an impor-
tant role in a number of applications such as control theory
[11], model reduction of linear time invariant systems [1],
[28], [42], image restoration [10], and block-diagonalization
of matrices [18], [22], [28]. For some important theoretical
results, the interested reader is referred to the survey paper
[9] and references therein. The analytical solution of Sylvester
equations has been considered by some authors, see, for
example, [14], [21].

During the past four decades, a number of numerical solu-
tion methods have been proposed for Lyapunov and Sylvester
equations. The classical direct methods are the Bartels-Stewart
method [4], [43], the Hessenberg-Schur method [17], and the
Hammarling method [20], [27]. These methods first compute
the real Schur forms of the coefficient matrices by means
of the QR algorithm [18], and then the original equation is
transformed into a form that is easy to be solved by a forward
substitution. The QR algorithm requires O(N3) operations and
O(N2) memory. Therefore, direct methods are only practica-
ble for problems of relatively small size. Besides direct meth-
ods, we mention, among several iterative methods, the Smith
method [41], the alternating direction implicit iteration (ADI)
method [44], [31], the Smith(l) method [33], the modified
low-rank Smith method [19], the Cholesky factor-alternating
direction implicit (CF-ADI) method [30], and the matrix sign
function method [5], [7]. The matrix sign function method are
appropriate for problems with the coefficient matrices dense
and stable. For large-scale Lyapunov and Sylvester equations
with sparse coefficient matrices, Krylov subspace methods [3],
[16], [23], [24], [25], [26], [34] and ADI-type methods are
commonly popular. In Krylov subspace methods, the original
matrix equation is first projected onto some Krylov subspace
to produce a low-dimensional Lyapunov or Sylvester equation,
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and then the solution is obtained via solving the reduced matrix
equation by direct methods. Krylov subspace based methods
have advantages over ADI-type methods in that no knowledge
about the spectra of the coefficient matrices are needed.
However, ADI-type methods often have better performance
if good parameters are used and linear systems with shifted
coefficient matrices are solved effectively at low cost; see, for
example, [33] for some numerical experiments. Recently, a
new projection method that does not require any estimation
of parameters is proposed for solving large-scale Lyapunov
equations in [38] by Simoncini. The projection subspace is a
combination of Krylov subspaces in A and A−1. Numerical
results reported in that paper show that in general, the new
method outperforms ADI-type methods for some benchmark
problems.

The new iterative method presented in this paper for solving
the large-scale Sylvester equation (1) is an extension of the
work in [38]. The algorithm is developed also under the frame-
work of projection. We use the union of Krylov subspaces
in A and A−1 and the union of Krylov subspaces in B and
B−1 as the right and left projection subspaces, respectively.
The resulting low-dimensional Sylvester equation is solved
by direct methods. The performance of the new method is
compared with that of the ADI methd [8] and the projection
method based on a global Arnoldi process in [3].

Throughout this paper, the following notation is used. The
l×l identity matrix is denoted by Il and the zero vector or zero
matrix by 0. If the dimension of Il is apparent from the con-
text, we drop the index and simply use I . The actual dimension
of 0 will always be apparent from the context. ‖ · ‖ indicates
the 2-norm for vectors and the induced norm for matrices,
while ‖ · ‖F denotes the Frobenius norm. The superscript T
denotes the transpose of a vector or a matrix. e(n)

i denotes the
i-th coordinate vector of Rn. The notation span{V } denotes
the space spanned by the column vectors of the matrix V and
span{V1, V2, · · · , Vn} denotes the space spanned by the ma-
trix sequence V1, V2, · · · , Vn. For a given square matrix F and
a given rectangle matrix r0, the Krylov subspace Kn(F, r0) is
defined by Kn(F, r0) = span{r0, F r0, · · · , Fn−1r0}. Finally,
Matlab [32] notation is used whenever possible.

The remainder of the paper is organized as follows. In
Section 2, we give a brief description of the extended Krylov
subspace and the Arnoldi-like process for generating an or-
thonormal basis of the subspace. Section 3 gives low-rank
solutions and residual error expressions for the Sylvester
matrix equation. Section 4 is devoted to some numerical tests.
Finally, some concluding remarks are given in Section 5.

II. EXTENDED KRYLOV SUBSPACE

In this section, we introduce a class of extended Krylov
subspaces, which will be employed to construct the projecting
subspaces for solving the Sylvester equation (1).

Suppose that the matrix F ∈ RN×N is invertible and r0 ∈
RN×1. The extended Krylov subspace Kn(F, r0) is defined
by

Kn(F, r0) = span{r0, F−1r0, F r0,

F−2r0, · · · , Fn−1r0, F
−nr0}.

Note that the extended subspace Kn(F, r0) contain infor-
mation on both A and A−1. This class of subspaces has
been used by Simoncini [38] for solving Lyapunov equa-
tions and by Druskin and Knizhnerman [13] for approximat-
ing matrix functions. Clearly, the extended Krylov subspace
Kn(F, r0) is the union of the Krylov subspace Kn(F, r0) and
Kn(F−1, F−1r0), that is,

Kn(F, r0) = Kn(F, r0) ∪ Kn(F−1, F−1r0).

An Arnoldi-like process for establishing an orthonormal
basis of the subspace Kn(F, r0) has been proposed in [38].
The algorithm is described as follows.

Algorithm 2.1: Arnoldi-like process

1. Compute V1 by QR decomposition: [r0, F−1r0] = V1R.
2. For j = 1, 2, · · · , n
3. Set V (1)

j : first column of Vj ;

4. Set V (2)
j : second column of Vj ;

5. Ṽj+1 = [FV (1)
j , F−1V

(2)
j ];

6. For i = 1, 2, · · · , j
7. Hij = V T

i Ṽj+1;
8. Ṽj+1 = Ṽj+1 − ViHi,j ;
9. End For

10. Ṽj+1 = Vj+1Hj+1,j (QR decomposition);
11. End For

The columns of the matrix Vn = [V1, V2, · · · , Vn] with Vi ∈
RN×2 are an orthonormal basis of the subspace Kn(F, r0).
The Matlab codes for the implementation of the Arnoldi-like
process has been given in [38].

Algorithm 2.1 is known as an implementation of the
Arnoldi-like process in the modified Gram-Schmidt orthogo-
nalization form [12] for generating an orthonormal basis of
Kn(F, r0). It is well known that in the presence of finite
precision arithmetic, a loss of orthogonality can occur when
the orthogonalization algorithm progresses, see [12], [18],
[35]. A remedy is the so-called reorthogonalization where the
current vectors have to be orthogonalized against previously
created vectors. One can choose between a selective reorthog-
onalization or a full reorthogonalization.

The product of F−1 with some matrix should be imple-
mented by solving the linear systems of equations with the
coefficient matrix F . To do it, the LU factorization [18] of
F is employed for medium-size matrices, and the Cholesky
factorization of −F should be used for −F symmetric definite.
For large-scale matrices, a preconditioning iterative method
could be employed to solve systems with F , where the pre-
conditioner could be generated once for all. Iterative methods
that are used nowadays are Krylov subspace methods such as
GMRES [36]. There is possible stagnation for one or more
iterations of GMRES in some instances. However, stagnation
never happens if the coefficient matrix is dissipative; see [15],
[40] for some conditions for non-stagnation of GMRES. For
a comprehensive introduction of iterative methods for linear
systems of equations, the interested reader is referred to [37].

Define the block upper Hessenberg matrix Hn ∈ R2n×2n
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with blocks 2 by 2 as

Hn =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

H11 H12 · · · · · · H1n

H21 H22 · · · · · · ...

0 H32 H33 · · · ...
...

. . . . . . . . .
...

0 · · · 0 Hn,n−1 Hnn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

It is easy to verify that

Vn+1Hn+1,n = [AV (1)
n , A−1V (2)

n ] − VnHnE
T
n , (2)

where ET
n = [0, 0, · · · , I] ∈ R2×2n.

When the inexact iterative solvers are used for the linear
systems of equations with the coefficient matrix F , the sub-
space span{Vn} generated by Algorithm 2.1 is no longer
the extended Krylov subspace Kn(F, r0). In this case, the
recursive relation (2) does not hold generally. We mention that
the effect of inexact matrix-vector products on the solution of
systems of linear equations has been studied by Simoncini and
Szyld [39]. They have shown that the norm of the matrix-
product perturbation can grow as the iteration progresses.
However, we do not address the issue in the present paper.

The following proposition shows the relation between
the subspace Kn(F, r0) and the standard Krylov subspace
K2n(F, F−nr0).

Proposition 2.1: [38] For any n ≥ 1, the space Kn(F, r0)
satisfies Kn(F, r0) = K2n(F, F−nr0). In particular, it follows
that

FKn(F, r0) ⊆ Kn+1(F, r0).

Define T̄n := VT
n+1AVn and let Tn be the 2n × 2n matrix

obtained from T̄n by deleting the last 2 rows. We observe that
the results of Proposition 2.1 ensure that T̄n is block upper
Hessenberg, since V T

i FVj = 0 for i > j + 1, j = 1, 2, · · · .
We obtain the following relation:

FVn = VnTn + Vn+1Tn+1,nE
T
n .

Here and in the following, Ti,j is the (i, j)-th block of T̄n.
It seems that the computation of T̄n requires additional

matrix-vector products with F and extra inner products of
long vectors, but the following proposition shows that this
additional cost can be avoided.

Proposition 2.2: [38] Consider the QR decomposition
Ṽk+1 = Vk+1Hk+1,k in Algorithm 2.1. Let l(k) = (lij) be
the 2 × 2 matrix such that Vk+1 = Ṽk+1l

(k), k = 1, 2, · · · , n.
Let

T̄n = (tij)i=1,··· ,2n+2,j=1,··· ,2n,

Hn = (hij)i=1,··· ,2n,j=1,··· ,2n.

Then (odd columns)

t:,2k−1 = h:,2k−1, k = 1, · · · , n,

while (even columns)

(k = 1) t:,2 =
1

l
(1)
11

(h:,1l
(1)
12 + e1l

(1)
22 ),

t:,4 = (e2 − T̄1h1:2,2)l
(2)
22 ,

ρ(2) =
l
(2)
12

l
(2)
11

,

(1 < k ≤ n) t:,2k = t:,2k + t:,2k−1ρ
(k),

t:,2k+2 = (e2k − T̄kh1:2k,2k)l(k+1)
22 ,

ρ(k+1) =
l
(k+1)
12

l
(k+1)
11

.

III. PROJECTION METHOD BASED ON EXTENDED KRYLOV
SUBSPACE

In this section, we will use the framework of a projection
technique to derive a method for solving the Sylvester equation
(1). To simply the presentation, we assume that the rank of C
is 1. However, the generalization to larger rank is immediate.

By using the Arnoldi-like algorithm, we generate an or-
thonormal basis Vn of Kn(A,C) and an orthonormal basis
Wm of Km(B,D), respectively. With H(A)

n and H(B)
m defined

by the block Arnoldi-like Algorithm, we can compute T̄ (A)
n

and T̄ (B)
m according to the Proposition 2.2. Then, the following

relations are satisfied:{
AVn = VnT (A)

n + Vn+1T
(A)
n+1,nE

T
n ,

BWm = WmT (B)
m +Wm+1T

(B)
m+1,mE

T
m.

(3)

The approximate solution to X is constructed as

Xn,m = VnYn,mWT
m.

Let Cn := VT
n C and Dm := WT

mD. Since both C and D are
vectors, we have Cn = ‖C‖e(2n)

1 and Dm = ‖D‖e(2m)
1 . The

residual matrix is then given by

Rn,m := A(VnYn,mWT
m)

+ (VnYn,mWT
m)BT + VnCnD

T
mWT

m. (4)

Substituting (3) into (4) gives (5), where

T (A)
n = VT

nAVn, T (B)
m = WT

nAWn. (8)

According to the Galerkin condition, we want to find
an approximate solution Xn,m = VnYn,mWT

m that satisfies
VT

nRn,mWm = 0.
The following theorem is one main result of this section.
Theorem 3.1: Suppose that n steps of the Arnoldi-like

process have been taken for Kn(A,C) and m steps of the
Arnoldi-like process have been taken for Km(B,D). Let the
residual Rn,m be defined by (4). Then,

(a) VT
nRn,mWm = 0 if and only if Yn,m = Y , where Y

satisfies

T (A)
n Y + Y (T (B)

m )T + CnD
T
m = 0; (9)
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Rn,m = Vn+1

[
T (A)

n Yn,m + Yn,m(T (B)
m )T + CnD

T
m Yn,mEm(T (B)

m+1,m)T

T
(A)
n+1,nE

T
n Yn,m 0

]
WT

m+1 (5)

VT
nRn,mWm = VT

n Vn+1

[
T (A)

n Yn,m + Yn,m(T (B)
m )T +BnD

T
m Yn,mEm(T (B)

m+1,m)T

T
(A)
n+1,nE

T
n Yn,m 0

]
WT

m+1Wm

= [I 0]

[
T (A)

n Yn,m + Yn,m(T (B)
m )T +BnD

T
m Yn,mEm(T (B)

m+1,m)T

T
(A)
n+1,nE

T
n Yn,m 0

] [
I
0

]

= T (A)
n Yn,m + Yn,m(T (B)

m )T +BnD
T
m (6)

A(VnYn,mWT
m) + (VnYn,mWT

m)BT + VnCnD
T
mWT

m = Vn+1

[
0 Yn,mEm(T (B)

m+1,m)T

T
(A)
n+1,nE

T
n Yn,m 0

]
WT

m+1 (7)

= Vn+1T
(A)
n+1,nE

T
n Yn,mWT

m + VnYn,mEm(T (B)
m+1,m)TWT

m+1

(b) If the conditions of (a) are met, then the residual norm is
given by

‖Rn,m‖F

=
√

‖T (A)
n+1,nE

T
n Yn,m‖2

F + ‖Yn,mEm(T (B)
m+1,m)T ‖2

F .

(10)

Proof: Since Vn+1 = [Vn, Vn+1] and Wm+1 =
[Wm,Wm+1] are orthonormal matrices, pre- and post-
multiplying (5) by VT

n and Wm, respectively, gives (6).
The result follows immediately, establishing the proof of

part (a). Substituting (9) into the (1,1) block of (5) gives

Rn,m :=

Vn+1

[
0 Yn,mEm(T (B)

m+1,m)T

T
(A)
n+1,nE

T
n Yn,m 0

]
WT

m+1.

Since Vn+1 and Wm+1 are orthonormal matrices, it is not
difficult to verity that

‖Rn,m‖2
F = ‖T (A)

n+1,nE
T
n Yn,m‖2

F + ‖Yn,mEm(T (B)
m+1,m)T ‖2

F .

Since the matrices A and B are dissipative, T (A)
n and

T (B)
m defined by (8) are stable. This ensures that the reduced

Sylvester equation (9) admits a unique solution. The expres-
sion for the norm of residual Rn,m given by (10) can be used
to stop the iterations in the extended Krylov subspace based
algorithm. The approximate solution Xn,m is computed only
when convergence is achieved and this reduces the cost of the
method.

The extended Krylov subspace based method for solving
Sylvester matrix equation (1) is summarized as follows.

Algorithm 3.1: Extended Krylov subspace based method
1. Choose a tolerance ε > 0, set two integer parameters k1, l1

and set k = 0, l = 0, n = k1, m = l1.
2. For j = k+1, k+2, · · · , k+k1, construct the orthonormal

basis Vk+1, · · · , Vk+k1 of the subspace K(A,C) and the
matrix H(A) by Algorithm 2.1.

3. For j = l + 1, l + 2, · · · , l + l1, construct the orthonormal
basis Wl+1, · · · ,Wl+l1 of the subspace K(B,D) and the
matrix H(B) by Algorithm 2.1.

4. Compute T̄ (A) and T̄ (B) according to Proposition 2.2.
5. Solve the low-dimensional problem: T (A)

n Yn,m +
Yn,m(T (B)

m )T + CnD
T
m = 0 using direct methods.

6. Compute the residual norm:

‖Rn,m‖F =√
‖T (A)

n+1,nE
T
n Yn,m‖2

F + ‖Yn,mEm(T (B)
m+1,m)T ‖2

F .

7. If ‖Rn,m‖F > ε, set k := k + k1, n = k + k1, l := l + l1,
m = l + l1 and go to step 2.

8. Form the approximate solution: Xn,m = VnYn,mWT
m.

We remark that the iterative method proposed here for
solving the Sylvester equation (1) is different from the one in
[3] in that the projection subspaces used in these two methods
are different. The projection subspaces used in [3] are global
Krylov subspaces while the subspaces used in this paper are
extended Krylov subspaces.

The following result shows that Xn,m is an exact solution
of a perturbed Sylvester matrix equation.

Theorem 3.2: Suppose that n steps of the Arnoldi-like
process have been taken for Kn(A,C) and m steps of the
Arnoldi-like process have been taken for Km(B,D). Let
Xn,m = VnYn,mWT

m be the low-rank approximate solution
of (1), where Yn,m satisfies (9). Then

(A− Δn)Xn,m +Xn,m(B − Δm)T + CDT = 0, (11)

where Δn = Vn+1T
(A)
n+1,nV

T
n , Δm = Wm+1T

(B)
m+1,mW

T
m and

‖Δn‖F = ‖T (A)
n+1,n‖F , ‖Δm‖F = ‖T (B)

m+1,m‖F .
Proof: We have (7). Equation (11) follows by rearranging

(7) and noting that ET
n = V T

n Vn and ET
m = WT

mWm. The
expression for ‖Δn‖F and ‖Δm‖F follows from the fact that
Vn+1 and Wm+1 are orthonormal matrices. Finally, observe
that both Δn and Δm are at most a rank 2 perturbation.

In exact arithmetic, the procedure just described has finite
termination, since for n and m such that 2n ≥ N and 2m ≥
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M the generated vectors span the whole space. However, since
two vectors at the time are added to the current basis, loss of
rank may occur during the orthogonalization with respect to
the old basis vectors, so that the next basis pair using Vn+1

or Wm+1 cannot be built. In the remainder of this section, we
will show that this implies convergence. Before presenting the
main results, we need the following lemma, which is given in
[38].

Lemma 3.3: Suppose that n − 1 steps of the Arnoldi-like
process have been taken for K(A,C). At the nth step, assume
that Ṽn+1 has rank less than two. Then Vn ∪ {Ṽn+1} is an
invariant subspace of A respect to C. That means

AVn = VnTn,

or
A[Vn, V

(1)
n ] = [Vn, V

(1)
n ]T̂n,

where T̂n is the restriction of Tn+1 to the first (2n+1) columns
and rows.

The following theorem provides some results concerning
the convergence of Algorithm 3.1 for solving the Sylvester
equation (1).

Theorem 3.4: Suppose that n− 1 steps of the Arnoldi-like
process have been taken for Kn(A,C) and m − 1 steps of
the Arnoldi-like process have been taken for Km(B,D). At
the nth and mth step, assume that both Ṽn+1 and W̄m+1 have
rank less than two. Then we can find the exact solution of (1).

Proof: From Lemma 3.3, we have

AṼ = ṼT̃ (A) and BW̃ = W̃T̃ (B),

where Ṽ and W̃ are orthonormal matrices. Let

X̃ = ṼỸ W̃T ,

where Ỹ satisfies T̃ (A)Y +Y (T̃ (B))T +C̃D̃T = 0. We obtain

AX +XBT + CDT

= Ṽ(T̃ (A)Y + Y (T̃ (B))T + C̃D̃T )W̃T = 0,

where C̃ = ṼTC and D̃ = W̃TD. This completes the proof.

IV. NUMERICAL EXPERIMENTS

In this section, we use two examples to illustrate the
numerical effectiveness of the extended Krylov subspace based
method (Algorithm 3.1) for the Sylvester equation (1). Algo-
rithm 3.1 with k1 = l1 = 1 is denoted by EKS-SYL. Hence,
n = m in EKS-SYL. For the purpose of comparison, we also
present the test results obtained by the Sylvester global Arnoldi
method (denoted by G-Arnoldi) proposed in [3] and the low-
rank alternating direction implicit method (denoted by LR-
ADI) proposed in [8]. In the following examples, we compare
the numerical behavior of these methods with respect to the
number of iterations (ITs), the CPU time (in seconds) and the
relative residuals (RES). Here the relative residuals are defined
by

RES =
‖AXn +XnB

T + CDT ‖F

‖CDT ‖F
,

TABLE I
COMPUTATIONAL RESULTS FOR EXAMPLE 1

Method ITs CPU RES
EKS-SYL 28 4.7031 3.5639e-011
G-Arnoldi 100 40.6875 0.1792
LR-ADI 59 27.3750 5.8921e-011

where Xn denotes the nth iterate of EKS-SYL, G-Arnoldi,
or LR-ADI. The entries of the matrices C and D in all the
examples are random values uniformly distributed on [0, 1]
with s = 2.

The stopping criterion for three methods is

RES < 10−10.

The relative residuals for EKS-SYL can be obtained by using
the computationally inexpensive relation (10). However, since
such a similar relation does not exist for G-Arnoldi or LR-
ADI, these two methods need more cost to calculate the
relative residuals. Hence, for the sake of fairness, this cost
for computing the relative residuals will not be included in
the total CPU time of these methods.

All numerical experiments were run on an Intel Pentiem
Dual E2160 with CPU 1.8GHz and RAM 1GB under the
Window XP operating system using Matlab 7.1 with the
machine precision 2.22 × 10−16.

A. Example 1

For the first experiment, we use the test matrix obtained
from the finite difference discretization of the following two-
dimensional partial differential operator

Lu = − ∂

∂x
(e−xy ∂u

∂x
) − ∂

∂y
(exy ∂u

∂y
)

+ β(x+ y)
∂u

∂x
+ β

∂

∂x
((x+ y)u)

+ γ(x+ y)
∂u

∂y
+ γ

∂

∂y
((x+ y)u) +

1
1 + x+ y

u

on the unit square (0, 1) × (0, 1) with Dirichlet boundary
conditions, where β, γ are parameters used to control the
degree of nonormality of the matrices generated. We discretize
the operator using central differences to obtain an 2961×2961
nonsymmetric matrix PDE2961 of NEP Collection [2].

Let A be negative PDE2961 of Set NEP and set BT = A.
Note that since A is nonsymmetric at this moment, (1) is not
a Lyapunov equation.

Table I indicates that EKS-SYL and LR-ADI can converge
to the solution of Example 1 while G-Arnoldi does not
converge after 100 iteration steps. According to the number
of iterations and the CPU time, EKS-SYL works better than
LR-ADI for this example. For a plot of the convergence, see
Figure 1.

B. Example 2

For the second experiment, we consider a model of heat
flow with convection in the domain Ω = (0, 1)2 [33]. The
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Fig. 1. Comparison for Example 1.

TABLE II
COMPUTATIONAL RESULTS FOR EXAMPLE 2

Method ITs CPU RES
EKS-SYL 60 20.3594 6.2680e-011
G-Arnoldi 160 83.3594 9.6014e-004
LR-ADI 123 53.5625 9.2183e-011

associated parabolic equation is given by

ẋ = Δx − f1(ξ)
∂x

∂ξ1
− f2(ξ)

∂x

∂ξ2
+ b(ξ)u(τ)

with x = x(ξ, τ), ξ = [ξ1 ξ2]T ∈ Ω, τ ∈ [0, ∞]. The
coefficient functions in the convection term are defined as
f1(ξ) = 10ξ1 and f2(ξ) = 1000ξ1. The differential equation is
discretized by centered finite difference discretization using
a grid with equidistant spacing and 50 × 50 grid points.
The resulting stiffness matrix A ∈ R2500×2500 is sparse and
stable and we let B = AT . Such Sylvester equations arise
in the problem of balanced reduced order systems based on
the computation and approximation of the cross gramian. The
cross gramian is the solution of such Sylvester equations [6],
[42].

The computational results were reported in Table II. We
note that the CPU time of the EKS-SYL method is 20.3594
while the CPU time of the LR-ADI method is 53.5625. The
G-Arnoldi method does not converge after 160 iterations. It is
clearly seen that the performance of EKS-SYL is much better
than the other methods for this example. The convergence
curves are depicted in Figure 2.

V. CONCLUSIONS

We propose a new method for solving the Sylvester matrix
equations. This method is based on modified Arnoldi algo-
rithm. We derive some results, such as the norm of the residual
and perturbation results. The numerical tests presented in this
paper show the effectiveness of the proposed method.
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Fig. 2. Comparison for Example 2.
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