
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:12, 2017

1305

Abstract—Software Defined Networking (SDN) is a paradigm

designed to facilitate the way of controlling the network dynamically
and with more agility. Network traffic is a set of flows, each of which
contains a set of packets. In SDN, a matching process is performed
on every packet coming to the network in the SDN switch. Only the
headers of the new packets will be forwarded to the SDN controller.
In terminology, the flow header fields are called tuples. Basically,
these tuples are 5-tuple: the source and destination IP addresses,
source and destination ports, and protocol number. This flow
information is used to provide an overview of the network traffic.
Our module is meant to extract this 5-tuple with the packets and
flows numbers and show them as a list. Therefore, this list can be
used as a first step in the way of detecting the DDoS attack. Thus,
this module can be considered as the beginning stage of any flow-
based DDoS detection method.

Keywords—Matching, OpenFlow tables, POX controller, SDN,
table-miss.

I. INTRODUCTION

N recent years Software Defined Networking has
completely changed our point of view to networking

industry.. Researchers at Stanford are credited with the idea of
bringing the tenets of virtualization to networking and thus
creating the SDN market. Traditional networking uses
integrated software and hardware to direct traffic across a
series of routers and switches. The original use case for SDN
was to virtualize the network by separating the control plane
that manages the network from data plane where network
flows [1].

The OpenFlow switch is one of the SDN components. It
consists of flow table(s) besides other components which
perform packet lookups and forwarding. An OpenFlow switch
has OpenFlow channel(s) to the external controller. Via
OpenFlow switch protocol, the controller manages the switch
and the switch communicates with the controller. Both
reactively and proactively, in response to packets, the
controller can add, update and delete flow entries in the flow
tables using the OpenFlow switch protocol. Within each
OpenFlow switch, there is a flow table(s). This flow table is
used to define what actions should be applied to packets that
enter this particular SDN switch. Readers interested in
extracting these statistics from its counters using POX
controller can refer to our previous work [7]. Matching

Wisam H. Muragaa and Mohd Fadzli Marhusin are with Faculty of Science
and Technology, Universiti Sains Islam Malaysia, Bandar Baru Nilai, 71800,
Nilai, Malaysia (e-mail: phd.wisam@gmail.com, fadzli@usim.edu.my).

Kamaruzzaman Seman is with Faculty of Engineering and Build
Environment, Universiti Sains Islam Malaysia, Bandar Baru Nilai, 71800,
Nilai, Malaysia (e-mail: drkzaman@usim.edu.my).

process is starting at the first flow table and it may continue to
the next flow tables in the switch. In priority order, flow
entries match packets with the first matching entry in each
table being used. The instructions associated with the specific
flow entry will be executed if a matching entry is founded.
The table-miss is configured to forward the packet to the
controller via the OpenFlow channel if no matching is founded
in the flow table. When the matching process is over in the
flow table and the packet is forwarded to the controller,
another matching process is conducting in the table-miss. If no
match is founded in the table-miss, the packet will be dropped
[4].

For all network administrators,, one of the important
security matters is how to protect the network from the
internal and external attacks. In order to achieve the purpose,
many attack detection systems have been proposed.
Traditionally, the approach used to detect the network attack is
to inspect the contents of every packet (payload). However, in
the high-speed networks, traditional approach cannot be easily
performed. Therefore, alternative inspecting approaches have
been suggested such as flow-based detection approach. This
type of detection is based on the headers of the flows instead
of the individual packet contents [2].

In the subsequent sections, we will talk about some
components of flow tables and the table-miss flow entry,
along with the matching process in the flow table.

II. FLOW TABLES

This section provides an overview of the flow tables and the
flow entries inside these tables. Also, this section gives an idea
of how flow tables do matching with incoming packets in the
OpenFlow switch as well as the role of the table-miss flow
entry if no match is founded.

A. Flow Tables and Flow Entries

An OpenFlow switch consists of flow tables and each flow
table consists of flow entries. In OpenFlow switch
terminology, the set of linked flow tables is called Pipeline.
These linked tables provide matching, forwarding and packet
modification.

The flow entry is an element used to match and process the
packets in the flow table. Table I shows what each flow entry
contains as stated in OpenFlow Switch Specification Version
1.5.1 [4].

TABLE I

FLOW ENTRY COMPONENTS

Match fields Priority Counters Instructions Timeouts Cookie Flags

A POX Controller Module to Prepare a List of Flow
Header Information Extracted from SDN Traffic

Wisam H. Muragaa, Kamaruzzaman Seman, Mohd Fadzli Marhusin

I

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:12, 2017

1306

B. Matching

Matching is a process of comparing the match fields of a
flow entry with a set of header fields and pipeline fields.
Match fields are a part of the flow entry that is used against
packets to know which packet is matched. It can match
various packet header fields such as Ethernet, IPv4, and IPv6.
Match fields can also match pipeline fields such as packet
ingress port, the metadata value, and other pipeline fields. It is
important to underline the difference between the packet
header fields and the pipeline fields. The header fields are the
values extracted from the packet header after the packet
header is parsed which are matched against the corresponding
match fields, whereas the pipeline fields are the values
attached to the packet during the pipeline processing.

As shown in Fig. 1, on receipt of a packet, the OpenFlow
Switch begins performing a table lookup in the first flow table
(table 0) using packet header fields. When packets are
matched by some or all flow entries in the flow table, counters
will update and a set of instructions will execute. Otherwise,
the table-miss flow entry specifies how to process these
packets. The table-miss flow entry may send these packets to
the controller or may drop them [4].

C. Table-Miss

A table-miss flow entry must be supported by every flow
table. In most ways, the table-miss flow entry behaves like any
other flow entry in the flow table. By default, the table-miss
flow entry does not exist in the flow table; it may be added or
removed by the controller at any time. By its match and its
priority, the table-miss flow entry is identified. Among other
flow entries, the table-miss flow entry must have the lowest
priority which is zero. If the table-miss flow entry exists in the
flow table and it matches the unmatched packets by other flow
entries, packets will be sent directly to the controller using the
CONTROLLER reserved port; otherwise these packets will be
dropped (discarded) [4].

Fig. 1 Matching and table-miss flow entry. This flowchart has taken
from the OpenFlow Switch Specification version 1.5.1 file

III. DESIGN

Due to the design of switch flow tables, packets will be
forwarded to the controller if a table-miss flow entry matched
the unmatched packets by other flow entries in the flow table.
When we say packets we mean the headers of these packets
only, not the packet's payload. In this paper, a Python module
is designed to produce a list of flow headers contents as well
as the number of packets and flows. This work is aimed to
extract this information from the SDN traffic using POX
controller.

In order to achieve the proposed design, Python language is
used. This module is provided with a flow information
extractor function to prepare the list and display its contents
periodically. Our module is implemented on the OpenFlow
controller "POX".

IV. EXPERIMENT AND RESULTS

Creation of a realistic virtual network and running end-
hosts, switches, routers and application codes on a single
Linux kernel is allowed by Mininet network emulation
software [6]. Mininet can create capable network topologies in
SDN. In Mininet Virtual Machine or Mininet VM, a single
command can be used to launch all controllers, switches, and
hosts.

Mininet Command Line Interface (CLI) is used to create the
topology in the SDN environment. Our topology in this
experiment is containing one OpenFlow controller, one
OpenFlow switch and four end-hosts as presented in Fig. 1.

POX is one of the SDN controllers and it is originated from
NOX where NOX is the original OpenFlow controller. The
POX repository has multiple branches. For this experiment,
we use POX (eel) branch which is the current active branch
[3]. When POX controller works, the OpenFlow switch is
connected to the network to be ready to receive the
instructions or the modification messages as shown in Fig. 2.

Our module (flow_info_extractor.py) is run along with the
forwarding.l2_learing component.

Fig. 2 Topology used in the experiment

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:12, 2017

1307

Fig. 3 Switch connected and ready to receive instructions

On the terminal appeared in Fig. 2, the topology consists of
four hosts, one switch and one controller. Once the switch is
connected, the hosts begin the traffic generation.

As presented in Fig. 4, once the traffic starts generating
between hosts our POX controller module begins displaying
the contents of the list. As it is appeared, the list contents are:

- Source and Destination IP addresses
- Source and Destination port numbers
- Number of packets
- Number of flows

Based on [5], the numbers of protocols that appeared in Fig.
4 are belonging to TCP, ICMP and IGMP protocols. The
protocol number (6) refers to TCP protocol and the numbers
(1) and (2) refer to ICMP and IGMP protocols. We are
grouping ICMP and IGMP protocols together and separate
TCP protocol from them because TCP is one of the main
protocols in the internet protocol suite, while ICMP and IGMP
are a part of internet protocol itself. ICMP and IGMP are both
protocols that operate within the sphere of IP. Technically,
ICMP and IGMP are layer 3 protocols but they have not the
same functionalities. TCP is used to provide host-to-host
connectivity but ICMP and IGMP are used to send error
messages and operational information and facilitate
management of multicast groups between cooperating routers
and switches. For clarification, protocol (6), which is the TCP
protocol, has a source and destination port numbers while
protocols (1) and (2) have not as manifested in Fig. 4.

Fig. 4 Flow header information obtained by the POX controller module

V. CONCLUSION

This paper is aimed to produce a complete method to
extract the information of the flow headers from the SDN
traffic. This module is an attempt to provide the researchers
who concern about developing and enhancing the Network
Intrusion Detection Systems (NIDS) with a clear list of flow
header information. In particular, this list can be used for the
detection of DDoS attacks that uses flow-based methods.

REFERENCES
[1] Open Networking Foundation “Software Defined Networks: The new

Norm of Networks” White paper 2012 Available at:
https://www.opennetworking.org/images/stories/downloads/sdn-
resources/white-papers/wp-sdn-newnorm.pdf. Accessed on: 22/9/2017.

[2] Sperotto, A., Schaffrath, G., Sadre, R., Morariu, C., Pras, A., & Stiller,
B. (2010). An overview of ip flow-based intrusion detection. IEEE
Communications Surveys and Tutorials, 12(3), 343-356.

[3] POX controller. Available: http://www.noxrepo.org/pox/about-pox/

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:12, 2017

1308

Accessed at: 13/9/2017.
[4] OpenFlow Switch Specification Version 1.5.1. Available online:

https://www.opennetworking.org/wp
content/uploads/2014/10/openflow-switch-v1.5.1.pdf. Accessed on:

[5] Assigned Internet Protocol Numbers. Available at:
https://www.iana.org/assignments/protocol-numbers/protocol-
numbers.xhtml. Accessed on: 10/10/2017.

[6] Mininet. Available: http://mininet.org/ Accessed on: 3/9/2017.
[7] Muragaa, W. H., Seman, K., & Marhusin, M. F. A POX Controller

Module to Collect Web Traffic Statistics in SDN Environment. World
Academy of Science, Engineering and Technology, International Journal
of Computer, Electrical, Automation, Control and Information
Engineering, 10(12), 2051-2056.

