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Abstract—The demand for higher performance graphics 

continues to grow because of the incessant desire towards realism. 
And, rapid advances in fabrication technology have enabled us to 
build several processor cores on a single die. Hence, it is important to 
develop single chip parallel architectures for such data-intensive 
applications. In this paper, we propose an efficient PIM architectures 
tailored for computer graphics which requires a large number of 
memory accesses. We then address the two important tasks necessary 
for maximally exploiting the parallelism provided by the architecture, 
namely, partitioning and placement of graphic data, which affect 
respectively load balances and communication costs. Under the 
constraints of uniform partitioning, we develop approaches for optimal 
partitioning and placement, which significantly reduce search space. 
We also present heuristics for identifying near-optimal placement, 
since the search space for placement is impractically large despite our 
optimization. We then demonstrate the effectiveness of our partitioning 
and placement approaches via analysis of example scenes; simulation 
results show considerable search space reductions, and our heuristics 
for placement performs close to optimal – the average ratio of 
communication overheads between our heuristics and the optimal was 
1.05. Our uniform partitioning showed average load-balance ratio of 
1.47 for geometry processing and 1.44 for rasterization, which is 
reasonable. 
 

Keywords—Data Partitioning and Placement, Graphics, PIM, 
Search Space Reduction.  

I. INTRODUCTION 

VEN though advances in VLSI technology have provided 
higher computational capabilities and larger memories [1], 

most classical architectures fail to sufficiently exploit these 
advancements for efficient parallel computations due to 
processor-memory bottlenecks [35]. Hence, PIM architectures, 
which integrate processors and memory on the same chip, have 
been proposed for many applications. Such integration enables 
efficient parallel computation and communication along with 
low power consumption. Other similar types of architectures 
have been proposed to exploit VLSI scaling [4][5][6][7][8]. 

Today’s sophisticated 3D animation films have work-loads 
that are too large to process in real time. Therefore, they are 
rendered in a non-real-time (off-line) manner [32] – i.e., each 
scene is created separately, and such digital scenes are 
converted to analog films, which are played in theatres. 
However, with advances in VLSI technologies, graphics 
processors will be able to support real-time animations in the  
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future if the bottlenecks can be eliminated. Based on this 
perspective, we explore a PIM architecture tailored for parallel 
graphics processing. 

To achieve maximum performance, the workload must be 
evenly divided among processors, and data placement and task 
assignment must minimize the communication overhead 
between processors. We propose partitioning and placement 
methodologies that require low hardware complexities, but 
provide good performance. 

The rest of paper is organized as follows. Section II briefly 
describes the proposed architecture. Section III explains some 
of the important computer graphics concepts for better 
understanding of the partitioning and placement. Section IV 
describes how we obtain the information required to identify 
efficient partitioning and placement. Section V explains our 
efficient partitioning and placement schemes. Section VI 
presents the performance results on the load balancing and 
communication overheads. Section VII summarizes our results 
and proposes future work. 

II. PROPOSED ARCHITECTURE 
We envision that the overall system is organized to include 

GPP (general purpose processor), a CIMM (computation-in- 
memory-modules), co-processor(s), memory, and I/O devices 
as shown in Fig. 1(a). CIMM consists of ECME (embedded 
computing memory element) modules, DDDR (decoder/data- 
distributor + router), and controller as shown in Fig. 1(b). Fig. 
1(b)(i) shows a classical decoder tree that connects memory 
modules to external port, whereas Fig. 1(b)(ii) shows how we 
modify the organization of a classical memory to obtain the 
CIMM.  

DDDR – decoder, data-distributor, and router – in the ECME 
memory decoder tree enables efficient communications to/from 
the external port as well as between memory blocks. When the 
memory is used in the normal mode, each DDDR operates as a 
classical decoder, i.e., when activated, each decoder selects and 
activates its left or right child, depending on whether the 
corresponding address symbol is a ‘0’ or a ‘1’. However, a 
DDDR can also work in one of many new data-distribution 
modes. For example, during a write operation, if a DDDR is 
activated with an address symbol ‘*’, it selects and activates 
both its children, resulting in a two-way broadcast of the data to 
be written. This mode facilitates data replication, which is used 
to duplicate graphic primitives that cross boundaries in 
partitioned scenes without incurring performance overheads. 
DDDR can be also activated with an address symbol ‘lr’ to 
select and activate its left child in the read mode and its right 
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child in the write mode. In this mode, the data forwarded to the 
DDDR by its left child is forwarded to its right child for 
writing. Such operations can be processed in parallel at 
multiple DDDR nodes in the decoder tree, which expedites 
inter-memory transfer of graphics primitives.  

Fig. 1(c) shows structure of the ECME – each ECME 
consists of a processor that can act either as a GP (geometry 
processor) or a RAS (rasterization processor), a DRAM 
(memory block) and a controller. The details of internal and 
external data flows in ECME are explained in Fig. 2.  By 
designing ECME’s with suitably parameterized controls, much 
of the control logic can be migrated from individual ECME’s to 
controllers at higher levels of the decoder tree due to 
commonality in their control logic. The controller shown at the 
input part in Fig. 1(b) embodies such control logic.  

 

 
(a) Overall Configurations 

 
 

(b) Internal Organization of CIMM 

      
 

       (c) Inside of ECME                    (d) CIMM Execution Flow 
 

Fig. 1 Data intensive computing Architecture 
 

 
 

Fig. 2 Internal/external data flows in ECME  

Fig. 1(d) depicts the flow of execution for kernels – the host 
processor sends all the vertex data of a scene to memory 
modules within the CIMM. The host processor then commands 
the CIMM to start the kernel operations. Each ECME begins to 
execute the given operations once it receives signal from 
CIMM controller. Each ECME notifies the CIMM when it 
completes its job. CIMM then notifies the host processor that 
all the jobs are finished and that the contents of frame buffers 
are ready to be rendered in the display device.  

In our architecture, instead of incorporating separate GP and 
RAS processors, we use a unified processor, which can be used 
for either GP or RAS [36][37]. In many recent graphic 
processing units with non-unified architectures, i.e., 
architectures that use distinct processors for GP and RAS, the 
ratio of the number of vertex shaders in GP stage and that of 
pixel shaders in RAS stage are 1:3 approximately [38]. This is 
because, in many cases, computational needs for RAS stage are 
higher than those for GP in about this proportion. Therefore, if 
vertex shaders are overloaded for some scenes, performance 
will drop regardless of the number of available pixel shaders. In 
contrast, a unified architecture can alleviate such bottlenecks 
by allocating all the shader resources for vertex shading as well 
as pixel shading as necessary. 

Graphic processing requires intensive processor-memory 
communication for data transfers, texturing, and buffering. 
Thus, a PIM architecture with low memory access time can 
boost system’s performance.  

III. BACKGROUND ON COMPUTER GRAPHICS 
Most objects are represented using polygons, typically 

triangles. In order to add realism to the objects, each polygon is 
filled up with colors and textures as well as effects like shadows 
and light. From a mathematical point of view, processing 
involves floating point and integer arithmetic operations as well 
as matrix operations, such as translation, rotation, scaling, 
shearing, tapering, twisting, and bending [23]. When scenes 
have extremely high complexities, a single processor cannot 
meet the computational needs, especially in the presence of 
real- time deadlines [26]. In parallel architectures, the 
performance is influenced significantly by how scenes are 
partitioned and assigned to processors. 

Originally, an object is defined with respect to object- 
coordinate, which is attached at each body of object. 
Subsequently, the representation is transformed into world- 
coordinate, where every object is defined relative to a common 
origin. Finally, it is transformed to the viewer-coordinate as 
defined by the user’s perspective [24]. Such transformations 
are carried out by applying various matrix operations to each 
vertex during GP stage. 

Once GP stage completes its operations on vertices, the RAS 
stage takes those transformed vertices and shades polygons by 
filling in the interiors of polygons with the colors and textures 
and converts such primitives into pixel values that are stored in 
the frame buffer for display. The coordinates for GP processing 
are called object space, whereas those for RAS processing are 
called image-space [23].  

Initial inputs to GP processors contain vertex information for 
each polygon, such as the position of the vertex, the color of the 
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vertex, the normal vector of each polygon, and the texture 
mapping information [23]. The normal vector is used for the 
lighting calculation by considering two vectors, namely, the 
light direction and the normal vector of surface. The vertices 
from the same polygon are assigned the same ID to keep track 
of the vertices that belong to a polygon [24].  

The size of a polygon doesn’t affect the computational 
complexity of GP, since the complexity of GP is only related to 
the number of vertices. However, the complexity of RAS 
depends on the size of a polygon, since the complexity of 
shading (and other operations if carried out) is a function of the 
polygon’s size [33]. As smaller primitives (polygons) provide 
higher quality images, the computational needs for graphics 
will continue to increase for the foreseeable future. 

Polygons undergo numerous spatial transformations, so that 
they need to be rearranged somewhere within the pipeline in a 
parallel architecture. According to the location of data 
rearrange- ment, three types of schemes exist – sort first (before 
geometry processing), sort middle (between geometry and 
rasterization processing), sort last (after rasterization) [11]. 
Among three sorting strategies, sort-middle has thus far 
resulted in many practical implementations [18][19][20][21] 
[22]. Therefore, we use sort-middle in our architecture. 

As for a relative time-complexity of GP and RAS 
processing, when 3D scenes are delineated by coarse polygons, 
RAS process will dominate the overall time, since RAS 
processors will spend the substantial amount of time for 
shading large polygons whereas the number of vertices in the 
scenes becomes relatively small. In such a case, we can say that 
the system is rasterization dominant. In contrast, if system is 
required to draw very fine and detailed objects with very small 
polygons for producing extremely high quality scenes, the 
workload for shading a single polygon is very small. In this 
case, the time complexity of GP processing can be comparable 
to that of RAS processing.  

IV. PRE-PARTITIONING AND PLACEMENT PHASE – 
CONSTRUCTION OF REFERENCE 

Parallel processing is capable of providing significant 
performance gains in data intensive applications. However, the 
efficiency of parallel processing is most frequently dependent 
on partitioning and placement of the data. In section V, we will 
discuss efficient partitioning and placement methodologies. In 
this section, we describe how we gather information that will be 
used for partitioning and placement.  

As temporally adjacent frames tend to be similar to each 
other, we use the information from the previous frame as a 
reference for partitioning and placement of the current frame 
[34]. Such an approach will be effective except when an abrupt 
change of scene occurs.  

We construct a 3D polygon distribution map when the 3D 
space is partitioned into small cubes (Fig. 3). This distribution 
map contains (a) the number of polygons in each fraction of the 
space (cube) for geometry and rasterization processors, and (b) 
the mapping which captures the number of polygons that are 
transferred from cube i during geometry processing to cube j 
during rasterization. To construct this map, 3D scenes in the 
object-space and the image-space are partitioned into small 

cubes, based on the desired resolution and hardware 
availability. The mapping information between cubes from the 
object-space and those from the image-space are stored in a 
look-up table (LUT) as depicted in Fig. 3. The table contains the 
number of polygons and the sum of areas of polygons. The 
numbers of polygons are used for partitioning frames for GP 
processing whereas the area sums of polygons are used for 
partitioning for RAS processing. Once we decide the 
partitionings for GP and RAS, we identify placements with 
minimal communication costs.  

 

 

Fig. 3 Look-up table (LUT) construction that contains 3D mapping 
relations between object space and image space. – Vertex counts are 

used for determining the workload division on GPs whereas area sums 
are used for determining the workload division on RASs 

 
In a three dimensional space, the area of a triangle can be 

obtained by using pythagorean sum of the respective projection 
on the three principal planes. This computation takes 17 
additions /subtractions, 10 multiplications, and 1 square root 
operation. Assuming that the total number of polygons in a 
scene is np, the time complexity for computing the area sum 
stored in the cubes is simply O(np). This amount of workload is 
insignificant compared to the complexities of GP and RAS 
procedures. The memory complexity of LUT is O((nc)2) 
assuming that the number of cubes is nc. The hardware 
complexity is (nc)2

 counters for vertex counts, (nc)2
 adders for 

area sum, 6·nc comparators for deciding the location of 
polygons in cubes, and one pipelined computational unit used 
for the area calculation. 

V. PARTITIONING AND PLACEMENT PHASE 
We determine the partitioning of the object-space and that of 

image-space independently each other to achieve workload 
balancing and then determine the placement that minimizes the 
communication cost between GP and RAS. Such a decision 
making process – determine the partitioning first and then 
determine the placement – may not produce globally optimal 
results. However, this allows us to find good solutions 
efficiently and quickly at relatively low complexity by reducing 
the search space.   

A. Partitioning Methodology 
The partitioning procedure can be static or adaptive [31]. 

The static method is to divide the scene in a deterministic way, 
whereas adaptive method decides its partitioning dynamically 
[13][27][28][29][30]. In this study, we present a hybrid 
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partitioning methodology – only x-, y-, z-directional cuts are 
allowed (static), while the directions of cuts are determined 
dynamically according to the scene’s characteristics (adaptive) 
– subject to the following partitioning rules.  

1. Each cut produces spatially equal-sized bi-partitions 
(equi-partitioning).  

2. Each bi-partitioning cut is applied to all the existing 
partitions. 

The size of search space for all the possible partitioning 
methods increases exponentially with the number of processing 
elements. Thus, we present an approach to reduce search space. 
This approach consists of two parts, namely, a scene 
independent scheme and a scene dependent bounding. 

A bi-partitioning tree can be drawn for generating recursive 
cuts (Fig. 4(a)) for our hybrid method. Assuming that n is the 
number of processing units, the depth of tree is log2(n), since 
each recursive bi-partitioning is carried out to all the equi- 
partitions generated so far. The number of possible cuts in a 
complete partitioning tree can be computed as            . However, 
we observe that the sequence of cuts doesn’t matter, since 
bi-partitioning in each dimension is independent and bi- 
partitioning at each step is applied to all the existing partitions. 
For example, the sequence of cuts x-x-y produces exactly the 
same result as x-y-x or y-x-x. A systematic way to produce such 
distinct bi-partitioning cuts is: Branch x has 3 children 
branches, namely x, y, z. Branch y is allowed to have two 
branches, y, z. Lastly, branch z can produce only one child 
branch, z. We can hence limit ourselves to non-replicated 
partition tree shown in Fig. 4(a).  
 

 

                       (a)                                                 (b) 
Fig. 4 partitioning tree – (a) Scene-independent non-replicated tree 

generation  (b) Scene dependent searching paths (Example) 
 

The total number of distinct leaves at the bottom of the 
non-replicated tree is ½( log2(n)+1)· (log2(n)+2). This can be 
derived by using the formula, nx+ny+nz= log2(n), where n is the 
total number of ECME’s and nx, ny, and nz are the numbers of 
cuts in x-, y-, and z-directions, respectively. Assuming that we 
conduct k bi-partitionings, the recursive cuts produce 2k 
partitions. By equating 2k and n, we obtain k= log2(n) that 
corresponds to the term on the right-hand side of the above 
equation. The number of distinct sets of {nx, ny, nz} is then 
computed as ½( log2(n)+1)·( log2(n)+2). The number of leaves 
for the non-replicated tree increases logarithmically with the 
number of processing elements while that for the replicated tree 
grows exponentially. Therefore, our approach has resulted in a 
significant improvement. This approach does not depend on the 
characteristics of the scene, so we refer to it as scene-independent. 

We can further reduce the number of paths searched in a tree 
by considering the worst case and the best case scenarios. Let 
us illustrate using a simple example (Fig. 4(b)). Suppose that a 
scene has 1000 vertices, and we have 8 ECME’s. Assume that 
an x-directional cut at the top of tree divides the polygons into 
(100, 900), a y-directional cut (500,500), and a z-directional cut 
(150, 850). Since x and z cuts are heavily unbalanced, we 
explore y-directional cut first with a higher priority over other 
cuts. In the next step, suppose that z-directional cut after the 
first y-directional cut (i.e., y-z cut) produces (250, 250, 230, 
270), while a y-directional cut after the y-directional cut (i.e., 
y-y cut) results in (200, 300, 100, 400). Since the maximum 
value in (250, 250, 230, 270) is 270 whereas that in (200,300, 
100, 400) is 400, we choose z-directional cut as a next 
exploration. Here, we used the maximum value, and not the 
minimum value, since the computational time depends on the 
processor with the highest load. Then, in the last step, another 
z-directional cut is applied (i.e., y-z-z cuts), since z node can 
produce only z-directional branch as a child. Assume that (130, 
120, 150, 100, 110,120, 130,140) was obtained finally. We can 
now determine that we don’t need to traverse the unexplored 
x-directional cut and z-directional cut at the top of the tree. The 
reasoning is as follows. The best scenario after the first 
x-directional cut at the top of the tree is that the rest of the 
subsequent slicing operations result in an equal load 
partitioning, i.e., (100, 900)  (100/2, 100/2, 900/2, 900/2)  
(100/4, 100/4, 100/4, 100/4, 900/4, 900/4, 900/4, 900/4) = (25, 
25, 25, 25, 225, 225, 225, 255), producing a maximum value of 
225, which is still larger than the maximum of (130, 120, 150, 
100, 110,120, 130, 140) that was obtained by a y-z-z traversal.  

In general, we use the following inequality to reduce search 
space; 
 

1/2remaining number of cuts  The max load value in the non-leaf node 
currently being explored > The max load value at an 
alternative non-leaf node 
 

The term on the left side represents the best case for the 
non-leaf node currently being explored. The best case scenario 
of the node is obtained by assuming that further partitioning 
could divide the number of vertices equally. The term on the 
right side represents the worst case of an alternative non-leaf 
node to be explored. If the above inequality holds, then, we 
don’t need to traverse the non-leaf node that we are currently 
exploring, since the best case scenario for that node will give 
worse result than the worst case scenario of an alternative node. 
If the above inequality doesn’t hold, we continue to search the 
path. A similar comparison can be also made between the 
current node and the best leaf-node identified so far. This 
reduction technique is scene-dependent, since it may or may 
not help reduce the search space depending on the scene’s 
characteristics. By combining the scene-independent and the 
scene-dependent techniques we proposed, the optimal 
partitioning method can be found in a logarithmic time. 

B. Placement Methodology 
Suppose that we have identified the optimal partitioning in 

object space (GP) as well as image space (RAS) using the 
above reduction schemes. We then determine the placement of 

)(log23 n
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the partitioned jobs (and associated polygons) in the memory 
modules for GP and RAS that minimizes the communication 
cost between them. Placements are critical for optimizing the 
communication cost, since the balancing as well as concurrency 
of inter module communications depends on the locations of 
source and destination nodes. 

As mentioned earlier, we use sort-middle technique in our 
architecture. Given n ECME’s at CIMM, the number of 
possible placements at the geometry processors is n factorial. 
Likewise, those at rasterization processor are n factorial. 
Therefore, in total, there are (n!)2

 possible placements. While 
this is an extremely large number, we can reduce the search 
space by discarding the equivalent placement pairs.  

We present a concept called branch alternation that is 
defined as a swapping with respect to a branching point. For 
example, as shown in Fig. 5, data swapping between node 1 and 
node 2 causes no change in communication cost so long as both 
geometry and rasterization processors swap their data in their 
memory blocks (along with corresponding jobs). The same 
phenomenon occurs for the swapping of data in node 3 and 
node 4. For the same reason, swapping between the set {node 1, 
node 2} and the set {node 3, node 4} causes no change if the 
data at both geometry and rasterization processors are swapped 
concurrently. However, data swapping between node 1 and 
node 3 changes the communication cost, regardless of whether 
both GP and RAS are swapped or not. 
 

 
3 
 

Fig. 5 Types of branch alternation for 4 ECME’s 
 

In the above example, 3 types of branch alternations are 
possible, which produce equivalent pairs. Therefore, 
2 2 2=8 pairs of placements will have exactly the same 
communication cost. We then reduce the search space from (4!) 

2 to (4!) 2/8. In general, since the number of splitting branches in 
our PIM architecture with n leaf nodes is n-1, the total distinct 
placement pairs of geometry processor and rasterization 
processor will be (n!)2/2n-1. 

We can now decompose n!2/2n-1 into two ways, namely, 
n! n!/2n-1 or n!/2n-1 n!. By the former we mean that the 
placements for geometry processor are just naïve permutations 
of n nodes whereas those of rasterization processor are distinct 
permutations with equivalent placements eliminated. The latter 
one means that the placements of rasterization processor are 
just naïve permutations of n nodes whereas those of geometry 
processor are distinct permutations with equivalent terms 
eliminated. As an example for the former case, the set 
{1,2,3,4,5,6,7,8} and the set {2,1,3,4,5,6,7,8} are different 
from each other in geometry processor (naïve permutation) 
whereas the two are considered identical in rasterization 
processor, since we can match the two placements through a 
branch alternation. We have developed an approach to search 
for placements that takes full advantage of branch alternations 

and enumerates exactly (n!)2/2n-1 candidates. The details of the 
algorithm and the proof of its correctness can be found in our 
technical report [17]. 

Our algorithm for producing non-equivalent permutations 
significantly reduces the searching space, i.e., from (n!)2 to 
(n!)2/2n-1. However, the reduced search space is still considerable. 
Therefore, we propose an approximate algorithm (heuristics) 
for generating the more promising pairs early in this search 
process. We will describe the approximate method and 
compare the solution identified by this approximate method 
with the optimal solution through exemplary simulation results. 

C. Heuristics for Placement 
Enumerating all possible placements is extremely time 

consuming. For example, suppose that we have 32 ECME’s in 
CIMM. Then, the total number of possible non-equivalent 
placement pairs is 3.224 1061. Therefore, we developed an 
approximate method called top-down heuristic for finding 
satisfactory placement pairs at low complexity, as an 
alternative to exhaustive search. Basically, we conduct swaps, 
starting from the highest level, all the way down to the lowest 
level according to the cost function (more ahead). The highest 
level swap is between blocks with the longest distance from 
each other. As an example, see Fig. 6. The distance between A1 
and A7 is one of the longest ones in the decoder tree. The 
distance between A4 and A7 is also identical. The 
communication distance between A3 and A4 is one of the 
shortest. As excessive data communication at the highest level 
severely limits the parallelism of inter-block transfers and 
increases its delay, we try to minimize such communications by 
using our heuristics.  
 

 
 

Fig. 6 Illustration of the different communication distances 
 

When we apply this approximate method, the placement 
assignment of geometry processor is fixed, and the placement 
of rasterization processor is updated according to the cost 
function. Suppose that we want to calculate the cost function of 
level k with respect to the node i. First, we need to identify 
which nodes are at the distance of the level k from the 
perspective of the node i and which nodes are at the distance 
less than the level k from the point of the node i. Second, we 
compute the number of polygons to be transferred from the 
node i to the nodes that are at the distance of the level k. 
Likewise, compute the number of polygons to be moved from 
node i to the nodes that are at the distance less than the level k. 
Third, we compute the difference between the two quantities, 
which is defined as the cost function as follows;  
 
 

 
where, Di,j is defined as the number of polygons that are at node 
i ( for GP) and then are transferred to node j (for RAS). Also, S1 
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= { node IDs at the distance of the level k in the view of node i } 
and S2 = { node IDs at the distance that is less than the level k in 
the view of node i } 

The purpose of our cost function is to identify an element 
that has fewer communications with its current neighbors in 
decoder tree but has more communications with distant nodes. 
The first term on the right side at the above cost function sums 
up the communications with distant nodes, whereas the second 
term sums up the communications with current neighbors. 
Therefore, the more positive the cost function, the more inferior 
is the current assignment. 

Our heuristics use this cost function to progressively update 
the placements of the blocks one by one, starting from the 
highest level down to the lowest level. For clarification, we see 
the case of 8 ECME’s. We compute the cost values of the 
highest level for each element in the set {1, 2, 3, 4} and the set 
{5, 6, 7, 8}, respectively; as an instance, the cost value of node 
1 with the highest level (level 3) is D51+D61+D71+D81-D11-D21- 
D31-D41 (see Fig. 7). Likewise, that of node 7 is D17+D27+D37+ 
D47-D57-D67-D77-D87. Compute the cost values of all other 
nodes in the same manner. Then, choose the two largest ones, 
one from {1, 2, 3, 4} and one from {5, 6, 7, 8}. If the sum of the 
two is positive, swap the two elements, since the current 
assignment is unstable. Next, pick the second largest one from 
{1, 2, 3, 4} and the second largest one from {5, 6, 7, 8}. If the 
sum of the two is positive, swap them. Continue until the sum 
becomes negative. Then, go down to the next lower level, which 
is level 2, where we compute the cost values of each element in 
{1,2} and {3,4}. We determine which node elements will be 
exchanged between the set {1,2} and the set {3,4}. Same 
procedure is applied for {5,6} and {7,8}. Once we arrive at the 
lowest level, we are finished. This top-down approach was 
evaluated empirically through example scenes and shown to 
produce good results (Section VI) 

 

 
Fig. 7 A table that shows data-transfers between GP and RAS 

partitions. Used for finding near-optimal placement through top-down 
approximation – Fixed placement for geometry processor (a) and 
progressively updated placement for rasterization processor (b) 

VI. EXPERIMENTAL RESULTS 
We evaluated our entire methodology using the three 

example objects shown in Appendix A using a detailed c++ 
simulation of our PIM architecture. A PIM architecture with 
eight ECME’s is studied. Since the scene is static, the 
preciseness of 3D distribution statistics along with their 
mapping relations between GP and RAS are not at issue (Fig. 3). 

Table I shows the results of search space reduction ratio 
when the proposed scene independent and dependent 
techniques are applied. The scene independent technique 
reduces the search space in a manner that can be computed 

analytically, whereas the scene dependent bounding condition 
performs differently depending on the scene’s characteristics. 
In the example cases, the overall search time was reduced by 
71.2% for GP and 62.5% for RAS on average compared to the 
naïve searching scheme when the two reduction schemes were 
applied. 

 
TABLE I 

SEARCH SPACE REDUCTION RATIO FOR PARTITIONING 

 
 

Based on the search results, we conclude that the 
recommended partitionings for GP are z-z-z (object 1), z-z-z 
(object 2), and x-x-z (object 3). For RAS, x-x-x, x-x-y, and 
y-z-z are the recommended partitionings for the object 1, object 
2, and object 3, respectively. 

After determining the partitioning of both GP and RAS, 
mapping tables are constructed, representing the polygon 
mapping relations between z-z-z partitioning for GP and x-x-x 
partitioning for RAS (object 1, Table II(a)), z-z-z partitioning 
for GP and x-x-y partitioning for RAS (object 2, Table II(b)), 
and x-x-z partitioning for GP and y-z-z partitioning for RAS 
(object 3, Table II(c)). Based on the mapping information, we 
apply our top-down heuristics to find near-optimal placements 
for each partitioned scene. We also apply exhaustive search to 
identify globally optimal placements (Table III). The detailed 
procedures for obtaining the top-down placement are explained 
in our technical report [17].  

The communication costs incurred by data rearrangements 
between GP and RAS for placements obtained by top-down 
heuristics are normalized by communication overheads for 
globally optimal placements obtained via exhaustive searches. 
Table III data shows such relative communication costs. This 
shows that our heuristics provide communication overheads 
that are within 7% of the optimal. 

Partitioning methods that we have developed are limited to 
uniform partitioning, i.e., they do not consider arbitrary 
partitions. To ensure that this does not result in significant 
sub-optimality, we checked the performance of such constrained 
partitioning methods by using the load balance [31], which is 
defined as the ratio of the maximum processor’s load over the 
average load. In [31], the author considers a load-balance 
reasonable if the maximum/average load ratio is 1.5 or less. The 
load-balances for the partitioning obtained by our approach of 
the three objects are in the reasonable range, as shown in Table 
IV, and comparable to the results of complicated adaptive 
load-balancing schemes presented in [31], which are much 
more costly and not suitable for real-time systems.  

For your reference, we added plots on load-balances for each 
possible type of partitioning in Appendix. This illustrates the 
importance of determining appropriate partitioning types. 
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TABLE II 

MAPPING RELATION FOR THE CHOSEN GP AND RAS PARTITIONING FOR EACH OBJECT  
 

 

 
 

 

 1 2 3 4 5 6 7 8 
1 8 60 1 0 0 0 0 0 
2 40 43 28 5 55 10 0 0 
3 11 14 37 12 103 73 0 0 
4 20 6 25 20 1490 152 5 9 
5 20 7 35 20 38 141 6 6 
6 12 28 64 19 85 39 0 0 
7 61 22 20 21 55 0 0 0 
8 64 0 0 4 1 0 0 0 

 

 1 2 3 4 5 6 7 8 
1 17 144 31 0 0 0 0 0 
2 53 319 122 81 240 1 0 0 
3 17 38 190 262 143 0 126 0 
4 51 19 148 315 12 128 232 0 
5 127 32 192 358 34 152 203 23 
6 78 21 120 517 61 101 256 0 
7 14 12 6 468 20 0 313 1 
8 8 37 0 235 18 0 276 0 

 

 1 2 3 4 5 6 7 8 
1 336 80 0 0 0 0 0 0 
2 203 0 6 1 125 83 0 0 
3 0 0 147 0 72 0 105 0 
4 176 0 8 0 138 77 0 0 
5 0 0 122 0 61 0 168 0 
6 13 0 0 0 405 0 0 0 
7 0 0 0 0 0 0 0 0 
8 0 0 0 0 0 0 0 0 

 
TABLE III 

PLACEMENTS RESULTS OF TOP-DOWN HEURISTIC AND EXHAUSTIVE SEARCH 

 Top-down heuristic Optimal placement 

ECME node ID 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 

† GP (fixed) 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 

†† Relative 
communication 

cost 

Object 1 2 8 6 5 4 3 7 1 8 2 6 7 4 5 1 3 1.06 

Object 2 2 5 3 8 6 1 4 7 7 2 3 6 4 5 8 1 1.07 

P
la

ce
m

en
ts

 

RAS 

Object 3 1 2 3 6 7 5 4 8 1 2 3 7 6 4 5 8 1.01 
                                  

† The placements in GP are fixed, while those in RAS are varied. 
†† Relative communication cost is defined as the ratio between the communication cost for globally optimal placement and that for top-down 

heuristics. 

 
 

TABLE IV 
PERFORMANCE DATA FOR THE CHOSEN PARTITIONING METHODS 

 

VII.  SUMMARY AND FUTURE WORKS 
In this paper, we proposed an efficient PIM architecture 

intended for computer graphics and explored methods for 
efficient partitioning and placement under the uniform 
partitioning constraints. Sophisticated 3D graphics requires 
intensive memory accesses and many current architectures 
suffer processor-memory bottlenecks. Therefore, PIM 
architecture that reduces memory access latency can alleviate 
such bottlenecks and thus can be an ideal candidate for high 
quality computer graphics. We used a hybrid-partitioning 
method and proposed search space reduction algorithms – one 
scene-dependent and one scene-independent. Scene independent 
reduction scheme reduces computational complexity in an 
analytically quantifiable manner, while scene dependent 
bounding condition reduces search space depending on the 
characteristics of the scene. From the simulation results for 
example objects, the average of the reduction ratio was 71.2% 
for GP and 62.5% for RAS when the two schemes were applied. 
As for placement, we reduced the search space by using our 

branch alternation approach, which reduces search space by 
exponential number. However, since the search space for 
placement is intrinsically large, we also developed a top-down 
heuristic to identify near-optimal placements efficiently. 
According to the simulation results, our top-down heuristic 
performed close-to-optimal – the ratio of communication-cost 
between our heuristic and the optimal placement was less than 
1.07. We also performed simulations on the load-balance 
among processors under uniform partitioning, and it showed 
reasonable performances within or close to 1.5.  
    We are currently developing realistic analytical models for 
general types of graphics architectures and PIM architecture for 
two distinct cases, namely, unified processors and non-unified 
processors. By doing so, we will be able to identify which parts 
in the given architecture are bottlenecks, and resolve the 
problems appropriately. Also, for the given hardware constraints, 
we will be able to predict and compare the performances of 
various architectures using higher level models. 
 
 
 

 

 

RAS RAS RAS 

   (a) Object 1                                                                          (b) Object 2                                                                         (c) Object 3 

GP GP 

∗The row and column numbers (1~8) are IDs of blocks that are generated by partitioning, not the actual placement in the CIMM. 
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