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the Earliness-Tardiness No-Wait Flowshop 
Scheduling Problem 

1 
Abstract—In this researcha particle swarm optimization (PSO) 

algorithm is proposedfor no-wait flowshopsequence dependent 
setuptime scheduling problem with weighted earliness-tardiness 
penalties as the criterion (��|���, �	
�| ∑ �

�
 � �
"�
).The 
smallestposition value (SPV) rule is applied to convert the continuous 
value of position vector of particles in PSO to job permutations.A 
timing algorithm is generated to find the optimal schedule and 
calculate the objective function value of a given sequence in PSO 
algorithm. Twodifferent neighborhood structures are applied to 
improve the solution quality of PSO algorithm.The first one is based 
on variable neighborhood search (VNS) and the second one is a 
simple one with invariable structure. In order to compare the 
performance of two neighborhood structures, random test problems 
are generated and solved by both neighborhood 
approaches.Computational results show that the VNS algorithmhas 
better performance than the other one especially for the large sized 
problems. 

 
Keywords—minimization of summation of weighed earliness and 

tardiness, no-waitflowshop scheduling, particle swarm optimization, 
sequence dependent setup times 

I. INTRODUCTION 

N this research, a no-wait flowshop scheduling 

Sriskandarajah[1] mentioned severalapplications of no-
waitscheduling problems in different industries such as steel, 
plastic modeling, silverproduction, chemical, and 
pharmaceuticalindustry. In a NWFSP, it is assumed that n jobs 
areprocessed on a flowshop withm machineswithout 
interruption on a machine or between machines.In other 
words, when the process of a job starts on the first machine,its 
process should not be interrupted until its process on the last 
machine is completed without waiting in the line of any 
machine.  
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It is assumed that the setup time of each job on each 

machine depends on the previous processed job on the 
machine. The goal is to find the best sequence of processing 
jobs on machines in order to minimize the summation of the 
weightedearliness and tardiness. The research problem is 
notedas��|���, �	
�| ∑ �

�
 � �
"�
 based on Pinedo[2]. 
NWFSPwith makespan criterion is proved to be NP-hard by 
Rock[3].Thus, our proposed research problem is NP-hard too 
since it deals with a more complex objective function as well 
as considering sequence dependent setup times for jobs on 
each machine.  

Therefore, heuristic and metaheuristic algorithm sare 
needed to solve industry sized problems. Hall and 
Sriskandarajah[1] provide a review of all research performed 
in no-waitscheduling problems before 1996. They study the 
computational complexity as well as available heuristic 
algorithms for no-wait and blocking scheduling problems. 
Gangadharan and Rajendran [4] and Rajendran [5] developtwo 
heuristic algorithms to solve NWFSP with makespan criterion 
and showthat their heuristicsoutperform than existing heuristic 
algorithms in the literature.Dileepan [6] consider two-machine 
NWFSP with maximum lateness as criterion and present 
several theoretical results for the proposed research problem. 
Wang and Cheng [7] study the two-machine NWFSPwith 
batch setups and develop a heuristic algorithm to minimize 
maximum lateness as criterion. Allahverdi and Aldowaisan 
[8]consider NWFSP with weighted sum of makespan and 
maximum lateness criterion. They propose a hybrid simulated 
annealing algorithm and also a hybrid genetic algorithmfor the 
proposed research problem. They also develop a lower bound 
for the case of the two-machine problem and use that in a 
branch and bound algorithm. Wang et al. [9] apply an 
accelerated tabu search algorithm with three different 
neighborhood strategies to solve NWFSP with maximum 
lateness criterion. Pan et al. [10] present a novel discrete 
differential evolution(DDE) algorithm for solving NWFSP 
with makespan and maximum tardiness criteria. They develop 
a local search algorithm to incorporate into the DDE algorithm 
to balance global and local exploitation.In recent years a 
significant interest has been arisen in applyingparticle swarm 
optimization (PSO) algorithm in scheduling problems. Liu et 
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al. [11] and Pan et al. [12] examine the performance of PSO in 
NWFSP with makespan as objective function.Pan et al. [13] 
propose a discrete PSO algorithm to solve the NWFSP with 
both makespan and total flow time criteriasimultaneously. 
They hybridize discrete PSO with variable neighborhood 
descent (VND) algorithm to improve the solution quality. 
They also propose several speed-up methods for neighborhood 
structures. Pan et al. [14] present a novel multi-objective PSO 
algorithm for solving NWFSP with makespan and maximum 
tardiness criteria at the same time. Tasgetiren et al. [15] 
develop a PSO algorithm for the single machine total weighted 
tardiness scheduling problem. They use the smallest position 
value (SPV) rule, a non-decreasing order mechanism, to 
convert a position vector of a particle to a job permutation. 
With the same approach, Tasgetiren et al. [16] solve the 
permutation flowshop problem with makespan and maximum 
lateness minimization criteria. They hybridize a local search 
algorithm based on variable neighborhood search (VNS) with 
PSO algorithm and show that VNS improves the performance 
of the PSO algorithm for the proposed research problem. To 
the best of our knowledge there is no research in NWFSP with 
minimization of total weighted earliness and tardiness as 
objective function. This is our motivation to apply PSO for no-
wait flowshop scheduling problems with minimization of total 
weighted earliness and tardiness as objective function. 

In this research we apply SPV method to convert 
continuous PSO to discrete PSO. We also develop a VNS 
algorithm based on Tasgetiren et al. [16] to improve the results 
of PSO algorithm for the proposed research problem.The 
notationsused in this research are as the followings: 
n: the number of jobs should be processed 
m: the number of machines in the flowshop cell �	
: the process time of jobj on machine i �	
�: the setuptimeof job � onmachine�ifjob � is the 
immediatelyprecedingjob(sequencedependentsetuptime) �
: the due date of job j �

: the earliness penalty of job j for each time unit of earliness �
": the tardiness penaltyof job j for each time unit of tardiness 

The goal is to determine the best sequence of processing the 
jobs on machinesto minimize theweighted earliness-tardiness 
penalties. 

II. PARTICLE SWARM OPTIMIZATION 

PSO is a population based optimization algorithmwhich is 
based on metaphor of social interaction and communication 
such as bird flocking and fish schooling (Pan et al. [12]). 
Eberhart and Keneddy[17] introduce 
thismetaheuristicalgorithm for the first time to optimize 
various continuousnonlinear functions.We apply this 
metaheuristic algorithm to solve the proposed research 
problem. 

PSO is an iterative algorithm starts with a number of initial 
solutions, known as particles. The number of initial particles is 
called p-size. Each particle is presented by two n dimensional 
factors as:position and velocity. Let �	� � ��	�� , �	�� , … �	��   
denotes the position of the ithparticle in 

thetthiterationwhere�	
� represents the jthdimension of the n-

dimensional position vector and!	� � �"	�� , "	�� , … "	��   
denotesthe velocity of the ithparticle at the 
tthiterationwhere"	
� represent the jth dimension of the n-
dimensionalvelocityvector.In this research, the dimension of 
search space i.e., n, is the number of jobs. Allparticles move 
through the n-dimensional searching space by learning from 
themovement of swarm population. For this reason, particles 
move toward areas with better objective function values.The 
position with the best objective function value observed ever 
by each particle is presented by p-best. The best position 
observed ever by all particles is called g-best. For the 
ithparticle in the tthiteration, these parameters are presented by �	� � �#	�� ,  #	�� , … #	��  and %� � �&	� , &	� , … &	� , respectively. 
Since particles move toward better positions during searching 
process, the velocity of each particle changes based on the 
values of p-best and g-best vectors in each iteration. The range 
of variation of the velocity vector members should be in a 
predefined range which is determined with a parameter 
calledVmax. In this research based on extensive experiments 
Vmax is chosen equal to 4 and thus, the range of the velocity 
vector membersshould be in �'4, 4  interval. The velocity of 
theith particle in the t+1th iterationis updated using the previous 
velocity (!	�) and the previous position (�	�) as following: !	�)� � � * !	� � +� * ,� * -�	� ' �	�. � +� * ,� * -%� ' �	�.-1. 

Where � is the inertia weight which controls the impact of 
the velocity in the tth iteration in calculating the velocity in the 
(t+1)th iteration for the ith particle. Moreover  +� and +� are 
constants called acceleration coefficients. ,�and,� are random 
numbers generated uniformly between �0,1 .The position of 
the ith particle at the (t+1)th iteration is updated based on (2). �	�)� � �	� � !	�)�                                                                          -2. 

A. Initial population 

The number of initial population is presented by p-
size.Several efficient rules to generate the initial population in 
PSO algorithm are applied in this research.The first two 
particles are generated based on earliest due date (EDD) and 
Longest Tardiness/Earliness Rate (LTER) rules. According to 
EDD rule, the jobs are ordered in increasing order of �
 and 
according to LTER rule, the jobs are ordered in decreasing 
order of �
" �

2 . 2+0.1*p-sizeparticles are generated by 
assigning jobs with higher tardiness/earliness ratesto the first 
slots and the jobs with lower rates to the last slots. The rest of 
initial particles are generated randomly. 

B. Conversion continuous positions to a sequence of jobs 

The SPV rule is appliedto find the sequence of jobs ofa 
particle at each iteration. The position vector of each particle 
is an n dimensional vector.Each element of the vector is 
related to a job.To determine this relation based on SPV rule, 
all members of the position vector are sorted from the smallest 
to the largest value. For instance, assume that in the tth 
iteration the position vector of the ith particle is Xi

t = [0.25, 
0.08, 0.92, 0.53, 0.32]. In this case the sequence of processing 
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jobs isJ2-J1-J5-J4-J3for this particle by sorting the jobs based 
on their position values. 

C. Timing algorithm 

The objective function value of each particle at each 
iteration is used to update the values of p-best and g-best. 
Since the objective function of the research is not a regular 
one, finding the optimal schedule of processing the jobs even 
for a given sequence is not an easy task. Thus, a timing 
algorithmis proposed to find the optimal schedule as well as 
the objective function value of each sequence generated at 
each iteration. The idea is based on Szwarc and 
Mukhopadhyay [18]. They propose an exact algorithm to 
schedule all jobs in a given sequence for a single machine 
scheduling problem to minimize total weighted earliness and 
tardiness penalties. We generalize this algorithm to our 
proposed research problem. Assume that a sequence of jobs 
{1, 2, …,n} is given. As the first step,the jobs are scheduled 
with no delay from the beginning of the planning horizon with 
respect to no-wait property. This schedule is called as the 
initial schedule. It is clearthat this schedule provides the 
earliest time that a job can be processed in the given sequence. 
In theinitial schedule, there might exist idle timesbetween 
processing two adjacent jobs on machines because of the no-
wait property. As the second step, the jobs are grouped as 
clusters. The clustering of jobs is based on a rule guarantees 
that in the optimal solution among the process time of jobs 
belong to a cluster, it does not exist any idle time, except the 
idle times needed to satisfy the no-wait property.Then, the 
start time of processing of these clusters is shifted forward in 
several iterations in order to improve the objective function 
value of the sequence. At each iteration, a number of clusters 
are selected to shift forward. This shift makes all jobs in these 
clusters to be processedlater than the initial schedule. This 
shift causesadditional idle timeson all machines. These 
imposed idle timesare called extra idle times. Assume that 3
4 
is the completion time of the jth job in the initial schedule. The 
following lemma which is a generalization of a lemma 
proposed by Szwarc and Mukhopadhyay [18] is usedto 
describe the timing algorithm. 

Lemma (1): If �
)� ' �
 5 3
)�4 ' 3
4, then there is no extra 
idle time between processing jobs j and j + 1 on all machines 
in the optimal schedule. In other words, job j+1 is processed at 
the earliest possible time after job j by considering no-wait 
constrainton all machines. 

Proof: The right hand side of the inequality, i.e., 3
)�4 '3
4 is theminimum possible difference between the completion 
time of two adjacent jobs j and j+1 at the optimal schedule. 
We show that in all possible cases, this minimum difference is 
kept at the optimal schedule for each two adjacent jobs that the 
inequality stated in lemma (1) holds. The validity of the 
lemma is discussed in all possible cases. Assume that 3
 
denotes the completion time of the jth job in the optimal 
schedule. 

Case 1: job j is completed early (�
 6 3
). Assume that  job 
j+1 is early too i.e., �
)� 6 3
)�. In this case if job j+1 is 

shifted forward to make an extra idle time between processing 
the jobs, the objective function is reduced by shifting job j to 
the right and eliminate the idle time between processing two 
jobs. Assume that job j+1 is tardy i.e., �
)� 8 3
)�, then 
shifting either job j or job j+1 backward or forward to make an 
extra idle time, increases the objective function value. If �
)� � 3
)�, then shifting job j backward or job j+1 forward 
to make an extra idle time increasesthe objective function 
value. 

Case 2: job j is completed at its due date (�
 � 3
). If �
)� 6 3
)�, the inequality of lemma (1) does not satisfy. 
Thus, the only situation that lemma (1) can be used is the case 
in which job j+1 is late or on time i.e.,  �
)� 5 3
)�. If job j+1 
is shifted to the right or job j is shifted to the left and make an 
extra idle time between processing the two jobs,in both cases 
the objective function value is increased.  

Case 3: job j is completed after its due date (�
 8 3
). If job 
j+1 is early or on time (�
)� 9 3
)�), the inequality of lemma 
(1)is not satisfied. The inequality of lemma (1) can be valid 
ifjob j+1 is tardy i.e., �
)� 8 3
)�. If job j+1 is shifted to the 
right, the objective function is increased by increasing 
tardiness of job j+1. If job j is shifted to the left and make an 
extra idle time between processing the two jobs, job j+1 can 
be shifted to the left to reduce the objective function value. 

A sequence of jobs such asu,…,v is called a jobcluster if for 
each pair of adjacent jobs j and j+1, lemma (1) holds and for 
job j=u-1 and job j=vthe lemma (1) does not hold. Therefore, 
according to lemma (1) all jobs in a cluster should be 
processed without any extra idle time. 

The relation between the earliness of two early jobs orthe 
tardiness of two tardy jobs in a cluster isdefined based on a 
lemma from Szwarc and Mukhopadhyay [18] as the 
following: 

Lemma (2):In a job cluster, the early jobs precede the tardy 
jobs. Moreover, if jobs j and j+1 both are early �
 9 �
)� and 
if both are tardy �
 5 �
)�. 

Each sequence of processing jobs can be decomposed into a 
set of l clusters such as ,�, ,�, … , ,:. It is clear that the 
completion time of all jobs in a cluster increase by shifting the 
process of the cluster to the right. The goal is to determine the 
length of time that each cluster should be shifted to the right 
(compared to the schedule provided in the initial schedule)in 
order to find the optimal schedule for a given sequence. 
Consider a cluster that consists of a couple of jobs.The jobs 
inthe cluster may be early, on time, or tardy. According to 
lemma (2), the early jobs precede the tardy jobs.Assume 
that�;is the last job that is early in the clusteri.e., the job with 
the smallest earliness in the cluster. Thus, all jobs before job �;, if there exist any, are early and the earliness of those 
jobsare more than the earliness of job �;; and all jobs after job �;, if there exist any, are on time or tardy. Consider a cluster 
that consists of jobs k,…,h. Following notations are needed in 
the proposed method:  
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∆
� = �:




:>�
' = �:"  � � �, … , ?                                            -3.A

:>
)�
 

Where ∆
 is calculated for every job belonging to a cluster. 
It is clear that the value of ∆
 is fixed for each job during all 
iterations. According to timing algorithm, at each iteration, a 
set of clusters are determined to shift forward. A set of 
consecutive clusters such as ,B, ,B)�, … , ,: are called a block if 
they are chosen to be shifted to the right with each other inan 
iteration. Let: �-C. � �
D � �
D ' 3
D                                                                 -4. 

∆-C. � ∆
D� EF��G
G
D∆
                                                           -5. �-C.presentsthe earliness of the last early job in the 
fthcluster. Itrepresents the maximum acceptable shifting unit of 
time for the fthcluster belonging toa block that guarantees the 
improvement of objective function value.Based on this 
definitionE��I�-J., . . . , �-K.L represents the appropriate 
shifting unit of time for all clusters of the block since it is 
promising for all clusters.∆-C.presents the maximum value of ∆
among the early jobs.∆-C.is used to calculate the value of 
decreasing objective function at an iteration. If none of the 
jobs in the fth cluster is early then �-C. and ∆-C.are replaced 
by ∞ and ' ∑ �:"A:>� ,  respectively. If at least one early job 
exists at each cluster of a block, then a shift of the entire block 
by one time unit reduces the total cost by ∑ ∆;.:;>B  

The timing algorithm proposed for the research problem is 
an iterative algorithm which identifies a block of clusters at 
each iteration to be shifted. This block is shifted with the 
length of the smallest �-C. of all clusters in the block. The 
algorithm is stopped if no such block is found. 

The timing algorithm can be summarized as follows: 
Step 1. 

Schedule all jobs in the earliest possible time. Call this 
schedule as the initial schedule. Let 3
4 be the completion time 

of job jin the initial schedule. Set 3
 � 3
4 for all jobs. Create 
the clusters based on lemma (1) and compute M-C. for each 
cluster. 
Step 2. 
Find the smallest s such that ∑ ∆-C. 5 0B;>� . 
Assign3
 for each job j in the first s clusters. 
If J �  K then STOP, otherwise, go to Step 3. 
If no such J exists, then go to Step 4. 
Step 3. 
Remove the first J clusters from the list. 
Reindex all remaining clusters and jobs. 
Go to Step 2 to consider the set of remaining clusters. 
Step 4. 
Find E��-�-1., . . . , �-K... 
AddE��-�-1., . . . , �-K.) to all 3
 
Eliminate all early jobs that are no longer early. 
Update �-C.and M-C.. 
Go to Step 2. 

III.  NEIGHBORHOOD SEARCH APPROACH 

In this research two different neighborhood search 
approaches are applied. The first one is based on VNS 
algorithmproposed by Tasgetiren et al. [16] and the second 
one is based on a simple neighborhood structure called inset 
neighborhood. In both neighborhood search approaches, at 
each iteration, if the objective function value of the new 
position of a particle has a chance to enhance the value of p-
bests or g-best, a neighborhood search is performed around the 
new position to find better positions. If the neighborhood 
search finds better positions, the better one is considered as the 
new position of the particles and p-bests or g-best are updated 
based on the new position.After updating all p-bests by 
neighborhoodsearch approach and identifying the new g-best, 
a neighborhood search is performed around the new g-best to 
find a better one.Tasgetiren et al. [16] hybridize PSO with 
VNS to enhance the PSO algorithm performance to solve the 
permutation flowshopscheduling problem to minimize both 
makespan and maximum lateness criteria. Our suggested 
neighborhood search methods in VNS algorithm are as 
follows: 

1) Remove job in thekth position and insert it to the hth 
position (insert(k,h)). 

2) Swap two jobs between thekth and thehth positions 
(swap(k,h)). 

3) Interchange two adjacent jobs in thekth and thek+1th 
positions.(sub_interchange(k,k+1)) 

In VNS algorithm all three structures are used. The VNS 
algorithm is the customized version of the one proposed by 
Tasgetiren et al. [16]. There are two major differences 
between our proposed VNS and the one proposed 
byTasgetiren et al. [16]. The first difference is applying VNS 
for p-bests rather than g-bestat each iteration. The second one 
is adding sub_interchange structure to VNS algorithm. In the 
proposed method an insert (swap) moveis performed around 
the permutation as the first step which is either p-bests or g-
best. Ifthe objective function value of the new generated 
solution is better than the original one, the insert (swap) 
moveis continued around the new improved 
solution.Otherwise,the other neighborhood generated 
structure, i.e., swap (insert) moveis performed on the best 
found solution so far. Moreover, after each improvement by 
insert (swap) move, sub_iterchangeis performed to find better 
solutions. 

The second neighborhood structure is called insert 
neighborhood. In this approach,at each iteration, a job is 
randomly selected and is removed from its current position 
and then inserted to another place in the sequence 
randomly.The details of two proposed neighborhood search 
approachesare shown in Appendix A. 

The number of iterations for both neighborhood structures 
is called max-iter. The value of max-iteris determined based 
on extensive experiments. 
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IV. DESIGN OF EXPERIMENTS FOR PARAMETER SETTING 

Thevalues of parameters related to the PSO algorithmare 
determined by experimental design techniques. Test problem 
instances are generated randomly in different sizes from small, 
medium, and large size. The problems with at most 20jobs are 
categorized as small sized problems. Medium sizedproblems 
are the ones with21 to 60jobs and large sizedproblems are 
those with 61to 100 jobs. In this research, problems with two, 
three, and six machine are considered. These problems are 
generated based on Salmasi et al. [19] suggestions about 
generating test problems for flowshop scheduling problems. In 
the interest of time, we perform the Taguchi method (Ross 
[20])to identify the appropriatefactors levels.InTaguchi 
method a set of orthogonal array is developed. These trials are 
a subset of full factorial design trials which reflect full 
required information. Taguchi defines two major sets of 
factors, controllable and uncontrollable noise factors. 
Thefactors used to generate test problems i.e., the number of 
jobs and the number of machines in a problem instance are 
considered as a noise factor with3×3levels(three levelsfor the 
number of jobs and three levelsfor the number of 
machines).The goal is to find the best levels of controllable 
factors in PSO algorithm with both neighborhood search 
approaches.For each developed PSO algorithm, i.e., 
PSOVNSand PSOinsertthree controllable factors exist. These 
factors are presented in Table I and Table II, respectively. The 
goal is to find the best levels for these factors. As shown in 
Table I, all controllable factors in PSOVNSare defined in three 
levels. 

TABLE I 
FACTORS AND THEIR LEVELS IN PSOVNS 

Level factors 

  
Neighborhood 
 Structure(A) 

Inertia  
Weight(B) 

p-size(C) 

1 Insert+Swap(0.1) 0.7298 20 

2 Insert+Swap(0.5) 0.4-0.9 30 

3 Swap+Insert(0.1) 0.4-1.2 50 

 
The first factorwhich is called as Neighborhood 

structure(A) represents the order of the first two neighborhood 
move and the maximum number of iterationsfor theVNS 
algorithm.In the first level of factor A (Insert+Swap(0.1)) as 
the first step, the insert (k,h) move is performed. If this move 
fails to provide solutions with better objective function value, 
the swap (k, h) move is performed. In this level the number of 
iterations is set to max-iter=0.1*n.The second level of factor A 
is similar to the first one with max-iter= 0.5*n.The structure of 
the third level is vice versa. As the first step, theswap 
(k,h)move is performed. If this move fails to provide a 
solution with better objective function value,theinsert 
(k,h)move is performed. In this level the number of iterations 
is set to max-iter=0.1*n. 

The second factor is calledinertia weight. At the first level, 
the value of w is considered as a fixed number i.e., 0.7298 in 
all iterations. In other words, thisconstant is the coefficient of 
all components in equation (1). This factor is helpful in 

convergence of the PSO algorithm according to the following 
equations:(Poli et al. [21]) 

N � 2
3 ' 2 � √3� ' 43  , 3 � +� � +� 6 4                             -6. 

!	�)� � N * �!	� � +� * ,� * -�	� ' �	�. � +� * ,�* -%� ' �	�.                                                    -7. 

We set +� and +� to 2.05 to satisfy the condition.  -3 � +� � +� � 2.05 � 2.05 � 4.1. R N � 0.7298 
The value of inertia weight for the other two levels are set 

as ranges presented in Table II. The formula used to generate 
the value of wat each iterationin these two levels is presented 
by equation (8). In this formula, wmax and wmin are the highest 
and the lowest values in the range, respectively. For instance, 
in the second level, these parameters get the values 0.9 and 
0.4, respectively. Iterationrepresents the number of current 
iteration and max_iterationrepresents the maximum number of 
iterations. 

� � ��UV ' -��UV ' ��	�. * ��W,F��X�max _��W,F��X�                               -8. 

It is clear that by increasing the number of iterations, the 
effects of g-best is increased compared to the effect of p-best 
in finding new position for each particle since the value of w is 
increased by performing more iterations.  

The third factor(C)indicatesthe size of the initial 
population(p-size) which is defined at three levels 20,30, and 
50. 

The controllable factors of PSOinsertalgorithm and relevant 
levels are presented in Table II. The first factor which is called 
thesearch strength represents the number of iterations 
ofPSOinsertalgorithm. The number of iterations is set to max-
iter=0.25*n for the first level.The second and the third levels 
of factor A are similar to the first one with max-iter= 0.50*n 
and max-iter=n, respectively.The last two factors of 
PSOinsertalgorithm are similar tothe last two factors of 
PSOVNSalgorithm.  

TABLE II 
FACTORS AND THEIR LEVELS IN PSOINSERT 

Level factors 

  
Search 

 strength (A) 
Inertia 

Weight(B) 
p-size(C) 

1 0.25 0.7298 20 

2 0.50 0.4-0.9 30 

3 1.00 0.4-1.2 50 

 
The stopping criteria in Taguchi methodisconsidered as the 

time spend to solve the problem. In this research, the time 
spend to solve each problem instance is set to 20,60, and 180 
seconds for small,medium and large sizedproblems 
respectively. c�andc� are set to 2 in cases which do not need to 
satisfy condition c� � c� 6 4, i.e., when the value ofw is 
considered as 0.7298 according to equation (6).There are 3×3 
classes (three classes for the number of jobs and three classes 
for the number of machines) for all problems.If two 
probleminstances are generated for each class randomly; thus, 
18 instances should be generated.Since the position and the 
velocity vectors are generated randomly at each run and the 
solution of the problem may be different at each run, we run 
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each of 18 instances two times to gain better result.If we apply 
full factorial design we need to perform 27 treatments (three 
controllable factors with three levels for each). So 
18×2×27=972 instances should be solved totally.Taguchi 
suggest orthogonal array ^_ for an experiment with three 
factors each of them in three levels. Array^_ is given in Table 
III. Taguchi recommends analyzing variation using signal to 
noise ratio(S/N).Since the goal is to minimize the objective 
function value, the appropriate S/N ratio formula is suggested 
as equation (9):  

S N⁄ � '10 * log�f g1� = h	�
�

	>�
i                                                 -9. 

This ratio indicates the amount of variation in the response 
variable sincethe signal denotes the desirable value and noise 
denotes the undesirable value(standard deviation). 

TABLE III 
ORTHOGONAL ARRAY L9 DESIGN 

 
Fig.1 and Fig.2 illustrate the results of Taguchi method. As 

shown in Fig. 1 and Fig.2, level 1 for all factors in PSOVNSand 
level 2 for all factors in PSOinsertidentify the best level. The 
result of Taguchi method is summarized in Table IV and 
Table V. 

Fig. 1The S/N ratio of parameters in PSOVNS 
 

Fig. 2 The S/N ratio of parameters in PSOinsert 

TABLE IV 
THE BEST LEVEL FOR ALL FACTORS IN PSOVNS 

  Factors 

  
Neighborhood 
 Structure(A) 

Inertia  
Weight(B) 

p-size(C) 

best 
level 

Insert+Swap(0.1) 0.7298 20 

TABLE V 
THE BEST LEVEL FOR ALL FACTORS IN PSOINSERT 

  Factors 

  
Search  

Strength(A) 
Inertia 

Weight(B) 
p-size(C) 

best 
level 

0.50 0.4-0.9 30 

V. TEST PROBLEM SPECIFICATION 

Based on Salmasi et al. [19] theratioofsetup times of jobs on 
consecutive machinesis an important factor in generating test 
problems for flowshop scheduling problems.They consider 
three different levels for this factor. In a sequential machine 
pair if the setup time of jobs in the first machine is less than 
the setup time of jobs in the second one, the ratio of setup 
times belongs to the first level. If the setup time of jobs in the 
first machine is the same as the setup time of jobs in the 
second one, the ratio of setup times belongs to the second 
level and if the setup time of jobs in the first machine is larger 
than the setup time of jobs in the second machine,the ratio of 
setup timesbelongs to the third level. These levels are shown 
in Table VI-VIII  for two, three, and six machine 
problems,respectively.Thus,there are three andnine different 
levels for two and three-machine problems, respectively. For 
six-machine problems since the number of levels is increased, 
Salmasi et al. [19] suggest applying one factor for the ratio of 
setup times for all consecutive machines in the interest of 
time. All setup times in sequential machine pairsare 
considered at the same level. Thus, for two-machine problems 
there are 3×3 different levels (three levels for the number of 
jobs and three levels for the number of setup time ratio). For 
three machine problems there are 3×9 different levels(three 
levels for the number of jobs and nine levels for the number of 
setup time ratio) and3×3 different levelsfor six-machine 
problems (three levels for the number of jobs and three levels 
for the number of setup ratio). Three problem instances are 
generated for each level of two, three, and six-machine 
problems. 

 
 

-105.600

-105.389

-105.178

-104.968

-104.757

-104.546

-104.335

-104.124

1 2 3

S
/N

 R
at

io

Factors levels

Neighborhood 
Structure(A)

Inertia Weight(B)

P_Size(C)

-100.966

-100.764

-100.563

-100.361

1 2 3

S
/N

 R
at

io

Factors levels

Search Strength

Inertia Weight

p_size

Factors A B C 

trial 1 1 1 1 

trial 2 1 2 2 

trial 3 1 3 3 

trial 4 2 1 3 

trial 5 2 2 1 

trial 6 2 3 2 

trial 7 3 1 2 

trial 8 3 2 3 

trial 9 3 3 1 
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TABLE VI 
THE SETUP TIME OF EACH MACHINE ON TWO-MACHINE PROBLEMS 

Machine Level 1 Level 2 Level 3 

M1 [1,50] [1,50] [17,67] 

M2 [17,67] [1,50] [1,50] 

 

TABLE VII 
THE SETUP TIME OF EACH MACHINE ON THREE-MACHINE PROBLEMS 

Machine Level 1 Level 2 Level 3 

M1 [1,50] [1,50] [45,95] 

M2 [17,67] [1,50] [17,67] 

M3 [45,95] [1,50] [1,50] 

TABLE VIII 
THE SETUP TIME OF EACH MACHINE ON SIX-MACHINE PROBLEMS 

Machine Level 1 Level 2 Level 3 

M1 [1,50] [1,50] [300,350] 

M2 [17,67] [1,50] [170,220] 

M3 [45,95] [1,50] [92,142] 

M4 [92,142] [1,50] [45,95] 

M5 [170,220] [1,50] [17,67] 

M6 [300,350] [1,50] [1,50] 

 
The process time of jobs on machines are generated from 

uniform distribution in the interval of [1,20].The earliness 
penalties for earliness unit and the tardiness penalties for 
tardiness unit are generated from [1,30] uniformly.The due 
dates are generated as follows: 

�^j k1 ' � ' l
�m , ^j-1 ' � � l

�. ; WhereLB is an 

approximation of the earliest possible completion time of the 
last job. T and Rare selected from the set{0.2,0.5,0.8} 
randomly.Since the combinations of{0.8,0.5} and {0.8,0.8} 
provide negative values for due dates, these combinations are 
ignored.  

The stopping criteria for the problems are defined as 
follows: 

• The maximum number of iterationsis set to 1000, 
2000, and 5000 for small, medium and large sized 
problems, respectively. 
• The maximum number of iterations without 
improvement is set to 0.7*max-iteration for all problems. 
• The CPU time is set to 600 seconds for all problems. 

VI.  EXPERIMENTAL RESULTS 
Both proposed PSO algorithms were coded in C++ and run 

on an AMD phenom (tm) 9600 Quad-Core Processor 2.31 
GHz PC with 2 GB memory. The performances of the two 
proposed algorithms are compared as paired t-test for two, 
three, and six machine problems, separately. The results of the 
experiment with SPSS software are presented in Appendix B 
(Table XII-XIII). The p-value for two-machine problems is 
equal to 0.358 implying that there is no evidence about 
existing any difference between the performance of two 
proposed algorithms in two machine problems. But the 
performance of these two algorithms is significantly different 
in three and six-machine problems since the p-value for these 
experiments are almost equal to zero. Since the average 
objective function values provided by PSOVNSare lower than 

the PSOinsert we can conclude that PSOVNS has a better 
performance than PSOinsert for three and six machine problems. 
The result of the experiments is shown in Table IX-XI. The 
percentage error is calculated according to the following 
formula: #W,+W��F&W W,,X, � -�?W ��n FK&X,��?E JXKo��X� ' �?W pWJ� JXKo��X�.�?W pWJ� JXKo��X� * 100 

TABLE IX 
THE AVERAGE PERCENTAGE ERROR FOR TWO-MACHINE PROBLEMS 

                                                 Percentage error(%) 
M1/M2 
Ratio 

size PSOVNS PSOinsert 

  Small 0.4 0.0 

Level 1 Medium 0.0 0.4 

  Large 0.0 0.4 

  Small 0.0 1.1 

Level 2 Medium 4.4 3.1 

  Large 0.0 3.7 

  Small 0.0 4.1 

Level 3 Medium 1.4 1.6 

  Large 0.0 1.0 

Average   0.69 1.71 

 
TABLE X 

THE AVERAGE PERCENTAGE ERROR FOR THREE-MACHINE PROBLEMS 
   Percentage error(%) 

M1/M2 
Ratio 

M2/M3  
Ratio 

size PSOVNS PSOinsert 

    Small 0.9 0.0 

  Level 1 Medium 1.1 0.0 

    Large 0.0 0.0 

    Small 0.0 0.0 

Level 1 Level 2 Medium 3.6 2.0 

    Large 0.0 6.4 

    Small 0.1 9.8 

  Level 3 Medium 1.0 7.7 

    Large 0.8 3.3 

    Small 0.0 0.0 

  Level 1 Medium 1.5 0.0 

    Large 0.0 0.0 

    Small 0.0 0.0 

Level 2 Level 2 Medium 1.6 2.2 

    Large 2.2 4.7 

    Small 0.0 6.4 

  Level 3 Medium 1.5 4.2 

    Large 0.2 1.7 

    Small 0.0 0.0 

  Level 1 Medium 0.0 0.2 

    Large 0.0 1.1 

    Small 0.0 1.1 

Level 3 Level 2 Medium 0.0 3.1 

    Large 0.0 3.5 

    Small 0.0 3.5 

  Level 3 Medium 1.9 1.4 

    Large 0.0 0.1 

Average     0.61 2.31 
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TABLE XI 
THE AVERAGE PERCENTAGE ERROR FOR SIX-MACHINE PROBLEMS 
  Percentage error(%) 

M1/M2 
Ratio 

size PSOVNS PSOinsert 

  Small 0.0 0.1 

Level 1 Medium 0.0 0.9 

  Large 0.0 1.3 

  Small 0.0 1.2 

Level 2 Medium 1.4 1.2 

  Large 1.9 3.0 

  Small 0.0 6.0 

Level 3 Medium 0.0 5.2 

  Large 0.0 3.0 

Average   0.37 2.43 

VII.  CONCLUSIONS 

In this research we approach the no-wait flowshopsequence 
dependent setup time scheduling problem with minimization 
of weighted earliness-tardiness as the objective for the first 
time.Since the research problem is NP-hard, a metaheuristic 
algorithm based on PSO algorithm is proposed to solve the 
research problem. Two different neighborhood approaches 
called PSO with variable neighborhood search (PSOVNS) and 
PSO with invariable neighborhood search (PSOinsert) are 
applied to improve the performance of proposed PSO 
algorithm. A timing algorithm is customized to the proposed 
research problem to find the optimal schedule for a given 
order of jobs in PSO algorithm. Taguchi method is applied to 
determine the optimal level of parameters in PSO algorithm. 
Experimental results show that the performance of PSOVNS is 
better than PSOinsert in the problems with three and six 
machine problems.  
Appendix A: The pseudo code of Neighborhood search 
approach 

The pseudo code of VNS algorithm: J � #W,Eo�F��X� �?�+? FJ�W� �X JWF,+? F,Xo�� J
 � J; ,� � ,F��-1, �.; ,� � ,F��-1, �.; ,� r ,� ^XX# � 0; 
do { �+Xo�� � 0; EF�_EW�?X� � 2; �Xs �C-�+Xo�� � � 0. �?W� sJ� � ��JW,�/J�F#-,�, ,�.CX, J;} �C -C-J�. 5 C-J
..�?W� s �+Xo�� � 0; J
 � J�; CX,-C� � 1; C� 5 � ' 1; C� � �.s J� � Jop_���W,+?F�&W-C�, C� � 1.CX, J; �C -C-J�. 5 C-J
..�?W� sJ
 � J�; u u u WKJW s�+Xo�� � �; u �C-�+Xo�� � � 1. �?W� s J� � J�F#/��JW,�-,�, ,�.CX, J;} �C -C-J�. 5 C-J
..�?W� s �+Xo�� � 0; J
 � J�; u WKJW s�+Xo�� � �; u u�?�KW -�+Xo�� 8 EF�_EW�?X�. KXX# � �; 

u�?�KW - KXX# 5 EF� ' ��W,.; �C -C-J
. 5 C-J..�?W�s J � J
u 
 

The pseudo code of insert neighborhood algorithm: J � #W,Eo�F��X� �?�+? FJ�W� �X JWF,+? F,Xo�� J
 � J; � � 0; �Xs � � �; ,� � ,F��-1, �.; ,� � ,F��-1, �.; ,� r ,� J� � ��JW,�-,�, ,�.CX, J; �CIC-J�. 5 C-J
.Ls J
 � J�; u u �?�KW-� 5 EF� ' ��W,. �C-C-J
. 8 C-J.. J � J
 
Appendix B: The result of paired t-tests for the two PSO 
algorithms comparison 

TABLE XII 
PAIRED SAMPLES STATISTICS 

 Mean N 
Std. 

Deviation Std. Error Mean 
 PSOvns-2machine 

7742.04 27 4332.84 833.86 

 PSOinsert-2machine 
7748.96 27 4325.47 832.44 

 PSOvns-3machine 
131248.78 81 98413.35 10934.82 

 PSOinsert-3machine 
134123.23 81 102503.32 11389.26 

 PSOvns-6machine 
2750204.52 27 3420543.50 658283.90 

 PSOinsert-6machine 
2767929.52 27 3422960.28 658749.01 

 

TABLE XIII 
PAIRED SAMPLES TEST 

  
          

95% Confidence 
Interval 

 of the Difference 

  
Mean Std. 

Deviation 
t df p-

value 
Lower Upper 

PSOvns2machine - 
 PSOinsert2machine 

 
-6 38 -0.94 26 0.358 -22 8.29 

PSOvns3machine - 
PSOinsert3machine 

-2874 6691 -3.87 80 0 -4354 -1394.78 

 
PSOvns6machine- 
PSOinsert6machine 

-
17725 

20692 -4.45 26 0 -25910 -9539 
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