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A Particle Swarm Optimization Approach for
the Earliness-Tardiness No-Wait Flowshop
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Abstract—In this researcha particle swarm optimization (PSO)
agorithm is proposedfor no-wait flowshopsequence dependent
setuptime scheduling problem with weighted earliness-tardiness
pendties as the criterion  (Fy|nwt, S| ¥ wjE; + w; T;).The
smallestposition value (SPV) ruleis applied to convert the continuous
value of position vector of particles in PSO to job permutations.A
timing agorithm is generated to find the optimal schedule and
calculate the objective function value of a given sequence in PSO
agorithm. Twodifferent neighborhood structures are applied to
improve the solution quality of PSO algorithm.The first one is based
on variable neighborhood search (VNS) and the second one is a
simple one with invariable structure. In order to compare the
performance of two neighborhood structures, random test problems
ae generated and solved by both  neighborhood
approaches.Computationa results show that the VNS algorithmhas
better performance than the other one especidly for the large sized
problems.

Keywor ds—minimization of summation of weighed earliness and
tardiness, no-waitflowshop scheduling, particle swarm optimization,
sequence dependent setup times

I.  INTRODUCTION

IN this research, a no-wait flowshop scheduling
problen(NWFSP) has been  investigated. Hal and
Sriskandarajah[1] mentioned severalapplications of no-
waitscheduling problems in different industries such as steel,
plastic  modeling, silverproduction,  chemical, and
pharmaceuticalindustry. In a NWFSP, it is assumed that n jobs
areprocessed on a flowshop withm machineswithout
interruption on a machine or between machines.n other
words, when the process of ajob starts on the first machine,its
process should not be interrupted until its process on the last
machine is completed without waiting in the line of any
machine.
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It is assumed that the setup time of each job on each
machine depends on the previous processed job on the
machine. The goal is to find the best sequence of processing
jobs on machines in order to minimize the summation of the
weightedearliness and tardiness. The research problem is
notedasF,, |nwt, S| X w/E; + w;T; based on Pinedo[2].
NWFSPwith makespan criterion is proved to be NP-hard by
Rock[3].Thus, our proposed research problem is NP-hard too
since it deals with a more complex objective function as well
as considering sequence dependent setup times for jobs on
each machine.

Therefore, heuristic and metaheuristic agorithm sare
needed to solve industry sized problems. Hall and
Sriskandarajah[1] provide a review of all research performed
in no-waitscheduling problems before 1996. They study the
computational complexity as well as available heuristic
algorithms for no-wait and blocking scheduling problems.
Gangadharan and Rajendran [4] and Rajendran [5] developtwo
heuristic agorithms to solve NWFSP with makespan criterion
and showthat their heuristicsoutperform than existing heuristic
algorithms in the literature.Dileepan [6] consider two-machine
NWFSP with maximum lateness as criterion and present
severa theoretical results for the proposed research problem.
Wang and Cheng [7] study the two-machine NWFSPwith
batch setups and develop a heuristic algorithm to minimize
maximum lateness as criterion. Allahverdi and Aldowaisan
[8]consider NWFSP with weighted sum of makespan and
maximum |ateness criterion. They propose a hybrid simulated
annealing algorithm and also a hybrid genetic algorithmfor the
proposed research problem. They also develop a lower bound
for the case of the two-machine problem and use that in a
branch and bound algorithm. Wang et a. [9] apply an
accelerated tabu search agorithm with three different
neighborhood strategies to solve NWFSP with maximum
lateness criterion. Pan et al. [10] present a novel discrete
differential evolution(DDE) algorithm for solving NWFSP
with makespan and maximum tardiness criteria. They develop
aloca search agorithm to incorporate into the DDE agorithm
to balance globa and loca explaitation.In recent years a
significant interest has been arisen in applyingparticle swarm
optimization (PSO) algorithm in scheduling problems. Liu et
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al. [11] and Pan et al. [12] examine the perforneamicPSO in
NWFSP with makespan as objective function.Pan .ef18]
propose a discrete PSO algorithm to solve the NWHEP
both makespan and total flow time criteriasimultzunsy.
They hybridize discrete PSO with variable neighlooih
descent (VND) algorithm to improve the solution lifya
They also propose several speed-up methods fonln@igood
structures. Pan et al. [14] present a novel midfgective PSO
algorithm for solving NWFSP with makespan and maxim
tardiness criteria at the same time. Tasgetireralet[15]
develop a PSO algorithm for the single machind tetaghted
tardiness scheduling problem. They use the smabesition
value (SPV) rule, a non-decreasing order mechaniem,
convert a position vector of a particle to a jolynpetation.
With the same approach, Tasgetiren et al. [16] esdhve
permutation flowshop problem with makespan and marm
lateness minimization criteria. They hybridize @&dbsearch
algorithm based on variable neighborhood search\Vith
PSO algorithm and show that VNS improves the paréorce
of the PSO algorithm for the proposed researchlpnobTo
the best of our knowledge there is no researchWSP with
minimization of total weighted earliness and taedis as
objective function. This is our motivation to ap@$0O for no-
wait flowshop scheduling problems with minimizatiohtotal
weighted earliness and tardiness as objective ifumct

In this research we apply SPV method to converI(i
continuous PSO to discrete PSO. We also develogN& V

algorithm based on Tasgetiren et al. [16] to imprthe results

of PSO algorithm for the proposed research proflem.

notationsused in this research are as the follasving

n: the number of jobs should be processed

m: the number of machines in the flowshop cell

P;;: the process time of jplon maching

Sijk: the setuptimeof jobk onmachinéfiob j is the

immediatelyprecedingjob(sequencedependentsetuptime)

d;: the due date of jop

w;: the earliness penalty of jglfor each time unit of earliness

w}f': the tardiness penaltyof jolfor each time unit of tardiness
The goal is to determine the best sequence of psotgthe

jobs on machinesto minimize theweighted earlinassitess

penalties.

Il.  PARTICLE SWARM OPTIMIZATION

PSO is a population based optimization algorithnoivhis
based on metaphor of social interaction and comaoatinin
such as bird flocking and fish schooling (Pan et[&PR]).
Eberhart and Keneddy[17]
thismetaheuristicalgorithm for the first time to tiopize
various continuousnonlinear functions.We  apply
metaheuristic algorithm to solve the proposed mefea
problem.

PSO is an iterative algorithm starts with a numifenitial
solutions, known as particles. The number of ihfi@ticles is
calledp-size. Each particle is presented by twalimensional
factors as:position and velocity. Letf =[x, x5, ...x5]
denotes the position of the iMparticle in

introduce

thi

thet"iterationwhere/;represents  thg"dimension of then-

dimensional  position  vector  aWfl= [vh,vh, ... v},]
denotesthe  velocity of the i"particle at the
t‘hiterationwhere{jrepresent thej™ dimension of then-

dimensionalvelocityvector.In this research, the eligion of
search space i.en, is the number of jobs. Allparticles move
through then-dimensional searching space by learning from
themovement of swarm population. For this reasamigles
move toward areas with better objective functiotuga.The
position with the best objective function value ebh®d ever
by each particle is presented Ipybest. The best position
observed ever by all particles is callegbest. For the
i"particle in thet"iteration, these parameters are presented by
Pt =[ph, v, . phJand Gt = [gf, gf, .. gf], respectively.
Since particles move toward better positions dusegrching
process, the velocity of each particle changes chase the
values ofp-best andg-best vectors in each iteration. The range
of variation of the velocity vector members shoble in a
predefined range which is determined with a paramet
calledVx In this research based on extensive experiments
Vimax iS chosen equal to 4 and thus, the range of thacine
vector membersshould be jr4,4] interval. The velocity of
thd™ particle in the+1" iterationis updated using the previous
velocity (V) and the previous positioX) as following:
Hl=ws Ve xrx (P =X +pxmyx (GF = XDH(D)
Wherew is the inertia weight which controls the impact of
the velocity in the™ iteration in calculating the velocity in the
(t+1)" iteration for thei™ particle. Moreover ¢, andc, are
constants called acceleration coefficiemignd-, are random
numbers generated uniformly betwefnl].The position of
thei™ particle at thetf-1)" iteration is updated based on (2).
Xit+1 — XLt + Vit+1 (2)

A Initial population

The number of initial population is presented bpy
size.Several efficient rules to generate the initial gplagon in
PSO algorithm are applied in this research.Thet fivgo
particles are generated based on earliest due(dR®) and
Longest Tardiness/Earliness Rate (LTER) rules. Adiog to
EDD rule, the jobs are ordered in increasing owfed; and
according to LTER rule, the jobs are ordered inrglasing
order of w;/wj. 2+0.1)p-sizeparticles are generated by
assigning jobs with higher tardiness/earlinessstatéhe first
slots and the jobs with lower rates to the lastssihe rest of
initial particles are generated randomly.

B. Conversion continuous positions to a sequence of jobs
The SPV rule is appliedto find the sequence of jofs

garticle at each iteration. The position vectoreath particle

is an n dimensional vector.Each element of the vector is
related to a job.To determine this relation base®&BV rule,

all members of the position vector are sorted ftbensmallest

to the largest value. For instance, assume thathént™
iteration the position vector of th& particle isX!' = [0.25,
0.08, 0.92, 0.53, 0.32]. In this case the sequehpeocessing
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jobs is),-J;-Js-J4-J5for this particle by sorting the jobs basedshifted forward to make aextra idle time between processing

on their position values.

C.Timing algorithm

The objective function value of each particle athea
iteration is used to update the valuespdbest and g-best.
Since the objective function of the research is aatgular
one, finding the optimal schedule of processingjtis even
for a given sequence is not an easy task. Thusmiag
algorithmis proposed to find the optimal schedudeneell as
the objective function value of each sequence geedrat
each iteration. The idea is based on
Mukhopadhyay [18]. They propose an exact algorittom
schedule all jobs in a given sequence for a simgiehine
scheduling problem to minimize total weighted esdis and
tardiness penalties. We generalize this algorittom our
proposed research problem. Assume that a sequérjobso

the jobs, the objective function is reduced bytsigfjobj to
the right and eliminate the idle time between pssogy two

jobs. Assume that jolp+1 is tardy i.e.,d; 4 < Cj4q, then

shifting either jol or jobj+1 backward or forward to make an
extra idle time, increases the objective function value. If
dj,1 = Cj41, then shifting joly backward or joj+1 forward

to make anextra idle time increasesthe objective function
value.

Case 2: jobj is completed at its due date; & C;). If

Szwarc a1 > Cj+1, the inequality of lemma (1) does not satisfy.

Thus, the only situation that lemma (1) can be usdle case

in which jobj+1 is late or on time i.e.d;,; < Cj,4. If jobj+1

is shifted to the right or jopis shifted to the left and make an
extra idle time between processing the two jobs,in both cases
the objective function value is increased.

{1, 2, ...n} is given. As the first step,the jobs are schedule Case 3: jolj is completed after its due datg € C;). If job

with no delay from the beginning of the planningikon with
respect to no-wait property. This schedule is dalds the

j+1is early or on timedj,; = C;,), the inequality of lemma
(1)is not satisfied. The inequality of lemma (1ndse valid

initial schedule. It is clearthat this schedule provides thefijob j+1 is tardy i.e.djy; < Cjyq. If job j+1 is shifted to the

earliest time that a job can be processed in thengsequence.

right, the objective function is increased by iragiag

processing two adjacent jobs on machines becautfeeafo-
wait property. As the second step, the jobs araiggd as
clusters. The clustering of jobs is based on a guigrantees
that in the optimal solution among the process tohgobs

belong to a cluster, it does not exist any idleetiraxcept the
idle times needed to satisfy the no-wait propetgs, the
start time of processing of these clusters is athiforward in
several iterations in order to improve the objextfunction
value of the sequence. At each iteration, a nurobelusters
are selected to shift forward. This shift makegallk in these
clusters to be processedlater than the initial celee This
shift causesadditional idle timeson all machinesese
imposed idle timesare callesitra idle times. Assume that/

is the completion time of th& job in theinitial schedule. The

extra idle time between processing the two jobs, jeli can
be shifted to the left to reduce the objective fiorcvalue.

A sequence of jobs suchugs. v is called gobcluster if for
each pair of adjacent jopsandj+1, lemma (1) holds and for
job j=u-1 and jobj=vthe lemma (1) does not hold. Therefore,
according to lemma (1) all jobs in a cluster shoulld
processed without arextra idletime.

The relation between the earliness of two earlys jolthe
tardiness of two tardy jobs in a cluster isdefifded on a
lemma from Szwarc and Mukhopadhyay [18] as the
following:

Lemma (2):In a job cluster, the early jobs precede the tardy
jobs. Moreover, if jobsj and j+1 both are early E; > E;,, and
if both aretardy Tj < Tj,;.

following lemma which is a generalization of a lemm 5. sequence of processing jobs can be decomirdee

proposed by Szwarc and Mukhopadhyay [18] is usediQ: of | clusters such as,

describe the timing algorithm.

Lemma (1): Ifd;y, — d; < Cf,; — C7, then there is nextra
idle time between processing jopsndj + 1 on all machines
in the optimal schedule. In other words, jefd is processed at
the earliest possible time after jplby considering no-wait
constrainton all machines.

Proof: The right hand side of the inequality, i.€7, —
Cfis theminimum possible difference between the cetigh
time of two adjacent jobg andj+1 at the optimal schedule.
We show that in all possible cases, this minimuffedénce is
kept at the optimal schedule for each two adjajodrs that the
inequality stated in lemma (1) holds. The valida§ the
lemma is discussed in all possible cases. Assurae Gh
denotes the completion time of th8 job in the optimal
schedule.

Case 1: jolj is completed earlyd; > C;). Assume that job
j*1 is early too i.e.dj,; > Cj44. In this case if jog+1 is

1, ..,1. It is clear that the
completion time of all jobs in a cluster increageshifting the
process of the cluster to the right. The goal idetermine the
length of time that each cluster should be shiftethe right
(compared to the schedule provided in ithigial schedule)in
order to find the optimal schedule for a given saye.
Consider a cluster that consists of a couple of.jbhe jobs
inthe cluster may be early, on time, or tardy. Adaog to
lemma (2), the early jobs precede the tardy jobsuikee
thay,is the last job that is early in the clusteri.bg job with
the smallest earliness in the cluster. Thus, &l jbefore job
Jr. if there exist any, are early and the earlinebghose
jobsare more than the earliness of jppand all jobs after job
Jr. if there exist any, are on time or tardy. Consideluster
that consists of jobk,...,h. Following notations are needed in
the proposed method:
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J h IIl.  NEIGHBORHOOD SEARCH APPROACH
AFZW{— Z w; j=k, ..,h 3 In this research two different neighborhood search
=k 1=j+1 approaches are applied. The first one is based % V

WhereA; is calculated for every job belonging to a clusterg|gorithmproposed by Tasgetiren et al. [16] and $keond
It is clear that the value d; is fixed for each job during all one is based on a simple neighborhood structutedciaiset
iterations. According to timing algorithm, at eatération, a neighborhood. In both neighborhood search approaches, at
set of clusters are determined to shift forward.sét of each iteration, if the objective function value thfe new
consecutive clusters suchasr,4, ...,7; are called a block if position of a particle has a chance to enhancerahee ofp-
they are chosen to be shifted to the right withheather inan bests org-best, a neighborhood search is performed around the

iteration. Let: new position to find better positions. If the ndighhood
E(f)=E,=dj,— (4) search finds better positions, the better onensidered as the
A(f) = A= maxeje) (5) new position of the particles amebests org-best are updated

. . . based on the new position.After updating pibests by
E(f)presentsthe earliness of the last early job in trW. hborh h h . o h
cluster. Itrepresents the maximum acceptable sbiftinit of eighborhoodsearch approach and identifying the '

feluster belonaing toa block that tees (e neighborhood search is performed around the gabest to

. cluster belonging toa block that guarantees hI‘?nd a better one.Tasgetiren et al. [16] hybridR8O with
improvement of objective function value.Based oris th VNS to enhance the PSO algorithm performance toestble
definitionmin(E(s),..., E()) represents the appropriatepermutation flowshopscheduling problem to minimizeth
shifting unit of time for all clusters of the blodince it is makespan and maximum lateness criteria. Our suggest
promising for all clusterA(f)presents the maximum value Ofneighborhood search methods in VNS algorithm are as
Ajamong the early jobs(f)is used to calculate the value offgllows:

decreasing objective function at an iteration. dine of the 1)Remove job in thd" position and insert it to tha"
jobs in thef™ cluster is early thed (f) andA(f)are replaced position (insertg,h)).

by o and — Y, w,, respectively. If at least one early job 2)Swap two jobs between ti& and th&" positions
exists at each cluster of a block, then a shithefentire block (swapk,h)).

fth

time for the

by one time unit reduces the total cosfy; A 3)Interchange two adjacent jobs in ifieand thé+1"
The timing algorithm proposed for the research [enwbis ~ POSitions.(sub_interchandek+ 1))
an iterative algorithm which identifies a block dfisters at ~ In VNS algorithm all three structures are used. NS

each iteration to be shifted. This block is shifeith the algorithm is the customized version of the one peeul by
length of the smallesE(f) of all clusters in the block. The Tasgetiren et al. [16]. There are two major diffexes

algorithm is stopped if no such block is found. between our proposed VNS and the one proposed
The timing algorithm can be summarized as follows: byTasgetiren et al. [16]. The first difference fpbing VNS
Step 1. for p-bests rather thamg-bestat each iteration. The second one

Schedule all jobs in the earliest possible timell @ds s adding sub_interchange structure to VNS algoritin the
schedule as thieitial schedule. Let C¢ be the completion time Proposed method an insert (swap) moveis performedna
of job jin theinitial schedule. SetC; = C7 for all jobs. Create the permutation as the first step which is eitpdwests org-

the clusters based on lemma (1) and compy® for each best.'lfthelz objective function \./allue of the new genecat
cluster. solution is better than the original one, the inhg@wap)

moveis  continued around the new  improved
S_tep 2. solution.Otherwise,the  other  neighborhood generated
Find the smallest such thaf?_, A(f) < 0. . . .
. R J structure, i.e., swap (insert) moveis performedtba best
AssigrC;for each jol in the firsts clusters. found solution so far. Moreover, after each improeat by

If s = [then STOP, otherwise, go to Step 3. insert (swap) move, sub_iterchangeis performednib thetter

If no suchs exists, then go to Step 4. solutions.

Step 3. The second neighborhood structure is callawsert
Remove the first clusters from the list. neighborhood. In this approach,at each iteration, a job is
Reindex all remaining clusters and jobs. randomly selected and is removed from its curresitipn

Go to Step 2 to consider the set of remaining etgst and then inserted to another place in the sequence
Step 4. randomlyThe details of two proposed neighborhood search
Findmin(E(1),..., E(D). approachesare shown in Appendix A.

Addmin(E(1),...,E(])) to all G The number of iterations for both neighborhood cttres
Eliminate all early jobs that are no longer early. is calledmax-iter. The value ofmax-iteris determined based
UpdateE (f)andA(f). on extensive experiments.

Go to Step 2.
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IV. DESIGN OF EXPERIMENTS FORARAMETER SETTING

Thevalues of parameters related to the PSO algoaite
determined by experimental design techniques. piesdtlem
instances are generated randomly in different dioes small,
medium, and large size. The problems with at moOgil%s are
categorized as small sized problems. Medium sizddems
are the ones with21 to 60jobs and large sizedpnublare
those with 61to 100 jobs. In this research, proklevith two,
three, and six machine are considered. These pnsbkre
generated based on Salmasi et al. [19] suggestitasit
generating test problems for flowshop schedulirabfams. In
the interest of time, we perform the Taguchi metliRdss
[20))to identify the appropriatefactors levels.Imlahi
method a set of orthogonal array is developed. & lvéals are
a subset of full factorial design trials which esfl full
required information. Taguchi defines two major ssetf
factors, controllable and uncontrollable noise dext
Thefactors used to generate test problems i.e.ntneber of
jobs and the number of machines in a problem icstare
considered as a noise factor with3x3levels(threel$for the
number of jobs and three levelsfor the number
machines).The goal is to find the best levels aitadlable

convergence of the PSO algorithm according to tflewing
equations:(Poli et al. [21])
2

=—— C=c¢c+c; >4 6
T T A ©
Vit =« Vi +cpxrx (PE= XD + ¢y %y

«(G* = XD] @)

We setc; andc, to 2.05 to satisfy the condition.
(C=c¢; +c, =205+2.05=4.1) - ¢ = 0.7298

The value ofinertia weight for the other two levels are set
as ranges presented in Table Il. The formula ugsageherate
the value ofwat each iterationin these two levels is presented
by equation (8). In this formulay,.x andwi;, are the highest
and the lowest values in the range, respectivaly.ifistance,
in the second level, these parameters get the syd@u® and
0.4, respectivelylterationrepresents the number of current
iteration andmax_iterationrepresents the maximum number of
iterations.

(Wiax — Winin) * iteration

w=w — - - 8
max max _iteration ®)

It is clear that by increasing the number of iters, the
adffects ofg-best is increased compared to the effectpefest
in finding new position for each particle since tradue ofw is

factors in PSO algorithm with both neighborhood reka increased by performing more iterations.

approaches.For each developed PSO algorithm,

i.e.,The

third factor(C)indicatesthe size of the initial

PSQnsand PS@sethree controllable factors exist. Thesepopulationp-size) which is defined at three levels 20,30, and

factors are presented in Table | and Table Il,ees8pely. The
goal is to find the best levels for these factéts.shown in

50.
The controllable factors of P§Q.algorithm and relevant

Table |, all controllable factors in P$@are defined in three levels are presented in Table Il. The first fastdich is called

levels.
TABLE |
FACTORS AND THEIR LEVELS INPSQns
Level factors
Neighborhood Inertia .
Structure(A Weight(B) p-size(C)
1 Insert+Swap(0.1) 0.7298 20
2 Insert+Swap(0.5) 0.4-0.9 30
3 Swap+Insert(0.1) 0.4-1.2 50

The first factorwhich is called asNeighborhood
structure(A) represents the order of the first two neightowrdh

move and the maximum number of iterationsfor theVN

algorithm.In the first level of factor A (Insert+&w(0.1)) as

the first step, the inserk,) move is performed. If this move

fails to provide solutions with better objectivenfiion value,

the swapK, h) move is performed. In this level the number of

thesearch strength represents the number of iterations
ofPSQser@lgorithm. The number of iterations is setnbax-
iter=0.25%*n for the first level.The second and the third levels
of factor A are similar to the first one withax-iter= 0.50*n
and max-iter=n, respectively.The last two factors of
PSQ.sealgorithm are similar tothe last two factors of
PSQynsalgorithm.

TABLE Il
FACTORS AND THEIR LEVELS INPSQuserr
Level factors
Search Inertia size(C)
strength (A)  Weight(B) p
1 0.25 0.7298 20
2 0.50 0.4-0.9 30
3 1.00 0.4-1.2 50

The stopping criteria in Taguchi methodisconsideasdhe

iterations is set tmax-iter=0.1*n.The second level of factor A time spend to solve the problem. In this reseatih, time
is similar to the first one witmax-iter= 0.5*n.The structure of spend to solve each problem instance is set tdD2@ytd 180

the third level is vice versa. As the first stepedwap

seconds for small,medium and large sizedproblems

(kh)move is performed. If this move fails to provide aespectivelyc,and, are setto 2 in cases which do not need to

solution with better objective function value,theent
(k,n)move is performed. In this level the number ofdtens
is set tomax-iter=0.1*n.

The second factor is calledrtia weight. At the first level,

satisfy conditionc, + c, > 4, i.e., when the value ofw is
considered as 0.7298 according to equation (6)eraes 3x3
classes (three classes for the number of jobslaeé tlasses
for the number of machines) for all problems.If two

the value ofw is considered as a fixed number i.e., 0.7298 iprobleminstances are generated for each class maygdihus,

all iterations. In other words, thisconstant is doefficient of
all components in equation (1). This factor is hdlpin

18 instances should be generated.Since the positidnthe
velocity vectors are generated randomly at eachamnuh the
solution of the problem may be different at each, e run
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each of 18 instances two times to gain better rdéswie apply
full factorial design we need to perform 27 treatise(three
controllable factors with three levels for each)o S
18x2x27=972 instances should be solved totally.€higu
suggest orthogonal array, for an experiment with three
factors each of them in three levels. Attgys given in Table
Ill. Taguchi recommends analyzing variation usingnal to
noise ratio(S/N).Since the goal is to minimize tigective
function value, the appropriate S/N ratio formudasuggested

as equation (9):
n

1 2
S/N = —10 +logy, ,r_lzyi

9
i=1

This ratio indicates the amount of variation in teeponse
variable sincethe signal denotes the desirableevahd noise
denotes the undesirable value(standard deviation).

TABLE IlI
ORTHOGONAL ARRAY L9 DESIGN

Factors A
trial 1
trial 2
trial 3
trial 4
trial 5
trial 6
trial 7
trial 8
trial 9

W W WNNDNNPRP PP
W NP WNEPE WN PR
P W NNRP WWN PR,

Fig.1 and Fig.2 illustrate the results of Taguclgthod. As
shown in Fig. 1 and Fig.2, level 1 for all factans®? SQsand
level 2 for all factors in PSQeidentify the best level. The
result of Taguchi method is summarized in Table dkd
Table V.

-104.124

-104.335

-104.546

—— Neighborhood
Structure(A)

-104.757

-104.968 Inertia Weight(B)

S/N Ratio

-105.178 P_Size(C)

.
-~

-105.389

-105.600
Factors levels

Fig. 1The S/N ratio of parameters in RJ®

-100.361

1 2 3
S -100.563
g —&— Search Strength
Z / N Inertia Weight
O .100.764 Cd p_size
-100.966
Factors levels
Fig. 2 The S/N ratio of parameters in RgQ
TABLE IV
THE BEST LEVEL FOR ALL FACTORS IN°SQyns
Factors
Neighborhood Inertia size(C)
Structure(A)  Weight(B) P
best | sert+Swap(0.1)  0.7298 20
level
TABLEV
THE BEST LEVEL FOR ALL FACTORS IN°SQserr
Factors
Search Inertia size(C)
Strengtt(A)  Weight(B! P
best 0.50 0.4-0.9 30
level
V. TEST PROBLEM SPECIFICATION

Based on Salmasi et al. [19] theratioofsetup tiofgebs on
consecutive machinesis an important factor in generating test
problems for flowshop scheduling problems.They @bars
three different levels for this factor. In a secisnmachine
pair if the setup time of jobs in the first machiisdess than
the setup time of jobs in the second one, the ratisetup
times belongs to the first level. If the setup tiofgobs in the
first machine is the same as the setup time of jobthe
second one, the ratio of setup times belongs tost#wnd
level and if the setup time of jobs in the firstahie is larger
than the setup time of jobs in the second macthiegdtio of
setup timesbelongs to the third level. These leaedsshown
in Table vi-vin  for two, three, and six machine
problems,respectively.Thus,there are three anddifferent
levels for two and three-machine problems, respelsti For
six-machine problems since the number of leveladseased,
Salmasi et al. [19] suggest applying one factortter ratio of
setup times for all consecutive machines in therest of
time. All setup times in sequential machine pa#sar
considered at the same level. Thus, for two-macpimblems
there are 3x3 different levels (three levels fag tiumber of
jobs and three levels for the number of setup tiai®). For
three machine problems there are 3x9 differentl$éteee
levels for the number of jobs and nine levels far humber of
setup time ratio) and3x3 different levelsfor sixahine
problems (three levels for the number of jobs dndé levels
for the number of setup ratio). Three problem incts are
generated for each level of two, three, and sixhirec
problems.
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TABLE VI
THE SETUP TIME OF EACH MACHINE ON TWEMACHINE PROBLEMS

the PSQs: We can conclude that PSR has a better
performance than P$Q.:for three and six machine problems.

Machine Level1l Level 2 Level3 The result of the experiments is shown in TableXIX-The
M1 (1,50] [1.,50] (17,67 percentage error is calculated according to thdéovidhg
M2 [17,67] [1,50] [1,50] formula:

percentage error =
TABLE VII (the PSO algorithm solution — the best solution)
THE SETUP TIME OF EACH MACHINE ON THREBMACHINE PROBLEMS - x 100
- the best solution
Machine Level 1 Level 2 Level 3
M1 1,50 1,50 45,95 TABLE IX
[ ’ ] [ ’ ] [ ’ ] THE AVERAGE PERCENTAGE ERROR FOR TWHJIACHINE PROBLEMS
M2 (17,67 [1,50] (17,67 Percentage err(%)
M3 45,95 1,50 1,50 M1/M2 .
o] Lo L.50 Rate PSQis PSQhsen
TABLE VIII Small 0.4 0.0
THE SETUP TIME OF EACH MACHINE ON SIXMACHINE PROBLEMS Level 1 Medium 0.0 0.4
Machine Level 1 Level 2 Level 3 Large 0.0 0.4
M, [1,50] [1,50] [300,350] Small 0.0 1.1
M, [17,67] [1,50] [170,220] Level 2 Medium 4.4 31
M3 [45,95] [1,50] [92,142] Large 0.0 3.7
M, [92,142] [1,50] [45,95] Small 0.0 41
Ms [170‘220] [1‘50] [17,67] Level 3 Medium 1.4 1.6
M [300,350] [1,50] [1,50] Large 0.0 10
Average 0.69 171
The process time of jobs on machines are genefedaud T X
ABLE

uniform distribution in the interval of [1,20].Thearliness

THE AVERAGE PERCENTAGE ERROR FOR THREACHINE PROBLEMS

penalties for earliness unit and the tardiness Ipesafor
tardiness unit are generated from [1,30] uniforfiitye due

Percentage error(%)

dates are generated as follows:

[LB(1-T-%),LBA-T+5]; WherdB is
approximation of the earliest possible completiomet of the
last job. T and Rare selected from the set{0.2,0.5,0.8]
randomly.Since the combinations 0f{0.8,0.5} and 80.8}
provide negative values for due dates, these catibirs are
ignored.

The stopping criteria for the problems are defined as
follows:

* The maximum number of iterationsis set to 100C

an

2000, and 5000 for small, medium and large size
problems, respectively.

e The maximum number of iterations without
improvement is set to 0.7ax-iteration for all problems.

* The CPU time is set to 600 seconds for all problems

VI. EXPERIMENTAL RESULTS
Both proposed PSO algorithms were coded in C++rand
on an AMD phenom (tm) 9600 Quad-Core Processor 2.:
GHz PC with 2 GB memory. The performances of the tw

proposed algorithms are compared pasred t-test for two,
three, and six machine problems, separately. Thdtseof the
experiment with SPSS software are presented in AgireB
(Table XII-XIII). The p-value for two-machine problems is
equal to 0.358 implying that there is no evidend®mua
existing any difference between the performance tvad
proposed algorithms in two machine problems. Bug tt
performance of these two algorithms is significamtifferent

in three and six-machine problems since ghalue for these

experiments are almost equal to zero. Since theagee

‘Rao  'Raio % PSQns  PSGhuen
Small 0.9 0.0
Level 1 Medium 11 0.0
Large 0.0 0.0
Small 0.0 0.0
Level 1 Level 2 Medium 3.6 2.0
Large 0.0 6.4
Small 0.1 9.8
Level 3 Medium 1.0 7.7
Large 0.8 3.3
Small 0.0 0.0
Level 1 Medium 15 0.0
Large 0.0 0.0
Small 0.0 0.0
Level 2 Level 2 Medium 1.6 2.2
Large 2.2 4.7
Small 0.0 6.4
Level 3 Medium 15 4.2
Large 0.2 1.7
Small 0.0 0.0
Level 1 Medium 0.0 0.2
Large 0.0 11
Small 0.0 11
Level 3 Level 2 Medium 0.0 3.1
Large 0.0 35
Small 0.0 35
Level 3 Medium 1.9 1.4
Large 0.0 0.1
Average 0.61 231

objective function values provided by Pg@are lower than
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TABLE XI
THE AVERAGE PERCENTAGE ERROR FOR S{MACHINE PROBLEMS

Percentage error(%)

M1/M2

Ratio size PSQns PSQhsert
Small 0.0 0.1
Level 1 Medium 0.0 0.9
Large 0.0 13
Small 0.0 1.2
Level 2 Medium 1.4 12
Large 1.9 3.0
Small 0.0 6.0
Level 3 Medium 0.0 5.2
Large 0.0 3.0
Average 0.37 243
VII. CONCLUSIONS

In this research we approach the no-wait flowshqpeece
dependent setup time scheduling problem with mirétidon
of weighted earliness-tardiness as the objectivette first
time.Since the research problem is NP-hard, a reatétic
algorithm based on PSO algorithm is proposed toestte
research problem. Two different neighborhood apgtea
called PSO with variable neighborhood search {RrgCand
PSO with invariable neighborhood search (PSOinsare

applied to improve the performance of proposed PS

algorithm. A timing algorithm is customized to theoposed
research problem to find the optimal schedule fogivgen
order of jobs in PSO algorithm. Taguchi methodpplid to
determine the optimal level of parameters in PSgorithm.
Experimental results show that the performance3®Rs is

better than PSR in the problems with three and six

machine problems.
Appendix A: The pseudo code of Neighborhood search
approach
The pseudo code of VNS algorithm:
s = permutation which asked to search around
s'=s;
rp =rand(1,n);r, =rand(1,n);r, #1n,
Loop = 0;
do{
kcount = 0;
max_method = 2;
do{
if (kcount = = 0) then {s, = insert/swap(ry,r;)for s;}
if (f(s1) < f(s"))then {
kcount = 0;
s’ =sy;
for(i=LAis<n—-1f++){
sy = sub_interchange(fy, f; + 1)fors;
;’f (f(s1) < f(s)then{s" = s;;}

}

else {kcount + +;}
if (kcount = = 1) then { s, = swap/insert(ry,r;)for s;}

if (f(s1) < f(s'))then {
kcount = 0;

s’ =sy;

}

else {kcount + +;}
Ywhile (kcount < max_method)
loop + +;

}while (loop < max — iter);

if (f(s") < f(s))then{

s=s'}

The pseudo code of insert neighborhood algorithm:
s = permutation which asked to search around
s'=s;
i=0;
do{
i+ +;
r, =rand(1,n);r, = rand(1,n);r, # 1y
s, = insert(ry, ry)fors;

if (f(s) < (D)

s’ =sq;

}

}

while(i < max — iter)
() < F(5)
s=s

Appendix B: The result of paired t-tests for the two PSO
algorithms comparison

TABLE XII
PAIRED SAMPLES STATISTICS
Std.
Mean N Deviation Std. Error Mean
PSCas2machin 774204 27 433284 833.86
PSCrserr2machine 7748.96 27 432547 832.44

PSCne3machine

131248.78 81 98413.35 10934.82

PSOinse-3machini

134123.23 81 102503.32 11389.26

PSOvn-6machin

2750204.52 27 3420543.50 658283.90

PSOinse-6machin

2767929.52 27 3422960.28 658749.01

TABLE XIlI
PAIRED SAMPLES TEST

95% Confidenct
Interval
of the Difference

Std.

p-

Mean Deviation t df value Lower Upper
PSOvns2machir-
PSOinsertzmachine -6 38 -0.94 26 0.358 -22 8.29
PSOvns3machine - -2874 6691 -3.87 80 0 -4354 -1394.78
PSOinsert3machine
PSOvns6machine- 17-725 20692 -4.45 26 0 -25910 -9539
PSOinsertémachine
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