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Abstract—IPN and IPE sections, which are commonly used 
European I shapes, are widely used in steel structures as cantilever 

beams to support overhangs. A considerable number of studies exist 

on calculating lateral torsional buckling load of I sections. However, 

most of them provide series solutions or complex closed-form 

equations. In this paper, a simple equation is presented to calculate 

lateral torsional buckling load of IPN and IPE section cantilever 

beams. First, differential equation of lateral torsional buckling is 

solved numerically for various loading cases. Then a parametric 

study is conducted on results to present an equation for lateral 

torsional buckling load of European IPN and IPE beams. Finally, 

results obtained by presented equation are compared to differential 

equation solutions and finite element model results. ABAQUS 

software is utilized to generate finite element models of beams. It is 

seen that the results obtained from presented equation coincide with 

differential equation solutions and ABAQUS software results. It can 

be suggested that presented formula can be safely used to calculate 

critical lateral torsional buckling load of European IPN and IPE 

section cantilevers. 
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I. INTRODUCTION 

ATERAL torsional buckling is one of the important 

failure modes for slender beams. When the magnitude of 

the load acting on the beam reaches to a critical level, the 

beam experiences global buckling in which the beam is 

twisted and laterally buckled. This case is called lateral 

torsional buckling, which is abbreviated as LTB (Fig. 1). 

 

 

Fig. 1 Lateral torsional buckling (LTB) 
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LTB is effective on laterally unrestrained beams which are 

loaded so as to be under bending about their strong axis. 

Calculating the smallest load causing LTB of the beam, which 

is known as critical LTB load, is a hard problem to solve. 

Especially for the sections which are under greater warping 

moments during torsion such as I sections, presentation of a 

closed form solution is not practical. Many studies are 

conducted in search of this solution. Challamel and Wang 

presented exact stability criteria for the lateral torsional 

buckling of cantilever strip beam under combined intermediate 

and end transverse point loads. In the study, the two-

dimensional stability criteria are expressed in closed-form 

solutions using Bessel functions [1]. Goncalves presented a 

geometrically exact beam formulation to calculate lateral 

torsional buckling loads of Euler–Bernoulli/Vlasov thin-

walled beams with deformable cross-section [2]. Benyamina 

et al. investigated the lateral torsional buckling behavior of 

doubly symmetric web tapered thin-walled beams. In the 

study, Ritz’s method is deployed in order to derive the 

algebraic equilibrium equations and an analytical formula is 

proposed for the lateral buckling strength of web tapered 

beams [3]. Hodges and Peters investigated cantilever strip and 

I beams. By using energy method and a comparison function 

for the twisting angle of the beam, an approximate closed-

form expression for the lateral torsional buckling load is 

presented [4]. Andrade et al. extended the domain of 

application of well-known 3-factor formula to I section 

cantilevers. Cantilever I beams with equal or unequal flanges 

and fully built-in or free to warp at the support are considered. 

Concentrated load at free end and uniformly distributed load 

cases are taken into account [5]. Zhang and Tong presented a 

comparative study on the flexural-torsional buckling of thin-

walled cantilevers. Authors presented explicit solutions for 

predicting critical loads of doubly symmetric cantilevers [6]. 

As for well-known steel structure codes; AISC provides a 

recommendation for critical LTB load of cantilevers to stay on 

the safe side [7]. However, EC3 doesn’t provide an equation 

to calculate critical LTB load [8]. Since LTB is related to 

many parameters including material and section properties, 

searching for another general closed-form solution for 

cantilever I beams will probably lead to involve with complex 

integrals and series. For this reason, scope of the study is 

narrowed down to widely used I shapes to present a practical 

equation. 

In this paper, a simple parametric equation to calculate 

critical LTB load of European IPN and IPE section cantilevers 

which are subjected to loads acting at shear center are 

presented. First, differential equation of LTB is solved 
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numerically for IPN and IPE cantilevers with various lengths. 

Then simple expressions for section properties of IPN and IPE 

sections are obtained. Finally, a slenderness ratio and a 

parametric equation which is related to mentioned slenderness 

is presented by using the results of numerical solutions. 

Parameters are calculated for concentrated load at free end, 

uniformly distributed load, combination of concentrated load 

at free end uniformly distributed load and constant moment 

cases which are given in Figs. 2 (a), (b), (c) and (d), 

respectively. 

 

 

Fig. 2 Considered loading cases (a) Concentrated load at free end, (b) 

uniformly distributed load, (c) Combination of concentrated load at 

free end and uniformly distributed load, (d) Constant moment 

 

In Fig. 2 (a), � is cantilever length, � is the distance from 
free end and � is the magnitude of the concentrated load 
acting at free end. In Fig. 2 (b), � is the magnitude of 
uniformly distributed load. In Fig. 2 (c), magnitude of 

concentrated load at free end is calculated by multiplying �� 
by coefficient �. Finally, in Fig. 2d, � is the magnitude of 
bending moment. In the study, �, �, � � ��� and �indicates 
the loading cases introduced in Figs. 2 (a), (b), (c) and (d), 

respectively. As stated before, parameters are calculated for 

mentioned loading cases. However, parameters can be 

calculated for any loading case and application domain of the 

formula can be extended. 

II. LATERAL TORSIONAL BUCKLING OF CANTILEVER I BEAMS 

LTB of cantilever I beams is more complex than LTB of 

simply supported I beams. Free end of the cantilever beam, is 

laterally unrestrained and free to twist, causes variation of the 

twisting angle function with respect to loading case, section 

properties and cantilever length. With this drawback, in 

addition to subtle differential equation solution, it is also hard 

to apply energy methods to obtain an equation for critical LTB 

load of cantilever I beams as a result of complex twisting 

angle form. 

For easy statement of the problem, a cantilever I beam 

which is loaded by a concentrated load acting at shear center is 

given in Fig. 3. 

 
Fig. 3 Cantilever I beam 

 

Fig. 3 (b) is the cross section of stable and buckled beam at 

point � which is given in Fig. 3 (a). In Fig. 3 (b),� and 	 are 
strong and weak axis of the section, respectively and
 is 
twisting angle. Differential equation of LTB is presented by 

Timoshenko for the loading case given in Fig. 3, which is 

introduced as � case in the study, as follows[9]. 
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In (1), � is elasticity modulus, � is torsional rigidity 
calculated by multiplying shear modulus (�) by torsional 
constant (��), �� is warping rigidity calculated by multiplying 
elasticity modulus by warping coefficient (��) and�� is 
moment of inertia about weak axis. Similarly, differential 

equation of LTB for other loading cases can be written by 

neglecting small terms. Equations (2)–(4) are differential 

equations of LTB for �, � � ��� and � cases, respectively 
[10]. 
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It can be seen from (1)–(4) that in addition to loading case, 

lateral torsional buckling of I sections are related to cantilever 

length, elasticity modulus, shear modulus, torsional constant, 

warping coefficient and moment of inertia about weak axis. 

To determine LTB load, differential equation of considered 

loading case should be solved for critical load. It is easier to 

apply numerical methods to solve these differential equations 

instead of searching for a closed form solution. Even 

numerical solution of mentioned equations is hard and not 

practical. In this study, finite differences method [11] is used 

for numerical solution of the mentioned equations. 

Calculations are made by dividing each beam to 500 finite 

elements. It is seen from the calculations that, dividing beams 
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into more finite elements does not cause significant change in 

results. Result obtained by numerical evaluation of differential 

equation of LTB is used to calculate parameters which are 

required to calculate critical LTB loads of IPN and IPE 

cantilever beams with presented equation. 

III. SECTION PROPERTIES 

Because of small geometry differences, section properties 

of IPN and IPE sections should be considered separately. 

Flange thickness of IPN sections is not constant and corners of 

flanges have fillets. IPE sections have flanges thickness of 

which is constant and flange corners of IPE sections are sharp 

(Fig. 4) [12]. 

 

 
Fig. 4 (a) IPN section geometry, (b) IPE section geometry 

 

In Fig. 4, � is section height, � is flange width, �  is flange 
thickness and �� is web thickness. In Fig. 4 (a), !� is flange-
web connection fillet radius and !� is flange corner fillet 
radius. In Fig. 4 (b), ! shows flange-web connection fillet 
radius. Section properties which are effective on LTB can be 

expressed in terms of section height, flange width and flange 

thickness with a good approximation (see Table I). 

 
 TABLE I 

PARAMETRIC SECTION PROPERTIES 

Section Property IPNa IPEb 

Moment of inertia about weak axis (��) 0.143� �% 0.167� �% 
Torsional constant (��) 0.874�� % 0.850�� % 
Warping constant (��) 0.032� ���% 0.038� ���% 

aConsidered IPN sections are IPN100, 120, 140, 160, 180, 200, 220, 240, 

260, 280, 300, 320, 340, 360, 380, 400, 450, 500, 550 and 600. 
bConsidered IPE sections are IPE100, 120, 140, 160, 180, 200, 220, 240, 

270, 300, 330, 360, 400, 450, 500, 550 and 600. 

 

In Table I, reference sections which are used to obtain 

presented relations are given. By assuming Poisson’s Ratio as * � 0.3 for structural steel, shear modulus can be written as 
given below as a common expression. 

 

� � �
2�1 � *� � �

2�1 � 0.3� � 0.385� (5) 

In order to present an equation for critical LTB load of 

cantilever IPN and IPE sections, section properties are 

calculated by the equations given in Table I and shear 

modulus is taken 0.385�(5). 
IV. PARAMETRIC STUDY 

Parametric study is conducted by following a similar 

procedure which is presented for single angle sections by 

Aydin et al. [13] and Aydin [14]. For IPN and IPE sections, a 

simple approximate equation which doesn’t require the use of 

section properties included in (1)–(4) can be written by using 

the simplifications introduced in Chapter II. To calculate 

critical LTB load with the equation given below, only required 

parameters are cantilever length (�), elasticity modulus (�), 
section height (�), flange width (�) and flange thickness (� ). 
 

�+, � �+,� � �+,/� � ./�0 � 1� �� 2
�
 (6) 

 

In (6),�+, , �+,  and �+,represents critical concentrated load, 
uniformly distributed load and moment, respectively. Critical 

LTB load type (�+, , �+,or�+,) obtained from (6) varies due to 
considered loading case. For � � ���case, obtained critical 
LTB load is in terms of �+, , which is the critical value of 
uniformly distributed load. Critical value of the concentrated 

load at free end can be calculated by ��+,� where � is the 
concentrated load multiplier. 

In (6), only ./ parameter changes according to loading 
case. Other parameters are material and section properties. ./is a dimensionless coefficient which depends on loading 
case and section properties. For each loading case a different ./ curve should be used. Also, for � � ���case, form of the ./ curve varies by value of �. Therefore, for different 
combinations of concentrated load at free end and uniformly 

distributed load, separate ./ curves should be given. ./can be 
calculated approximately by a slenderness ratio �0 given 
below. 
 

�0 � 3�� �� 4�
 (7) 

 

In this study,./ parameters are calculated for �, �, � �0.5��, � � 1.0�� and � cases. However, ./ parameter for 
any loading case can be calculated with respect to �0. In Fig. 
5, �0-./ graph is given for IPN sections. 
 

 

(a) (b) 
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Fig. 5 �0-./relation for IPN sections
 

Similarly, Fig. 6 presents the �0-.
sections. 

 

Fig. 6 �0-./relation for IPE sections
 

In graphs presented in Figs. 5 and 6, series show 

parametersfor cantilever beams with various 

curves are obtained by numerical solution of differential 

equation of LTB for considered loading cases. Instead of 

reading ./ value from plots, it is more accurate to calculate by 
an approximate function. Curves drawn with dashed lines over 

series are fitted functions. These fitted functions which include �0 as parameter are given in Table II. 
At the end of the parametric study, calculating critical LTB 

load of IPN or IPE beams can be summarized in 3 steps. �0 value should be calculated. Then ./parameter can be found 
for the considered loading case by the approximate functions 

given in Table II. Finally, critical LTB load can be found by 

substituting calculated parameters in (6). 
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relation for IPN sections 

./ relation for IPE 

 

relation for IPE sections 

. 5 and 6, series show ./ 
cantilever beams with various �0 values. These 

curves are obtained by numerical solution of differential 

equation of LTB for considered loading cases. Instead of 

value from plots, it is more accurate to calculate by 

Curves drawn with dashed lines over 

series are fitted functions. These fitted functions which include 

At the end of the parametric study, calculating critical LTB 

load of IPN or IPE beams can be summarized in 3 steps. First, 

parameter can be found 

for the considered loading case by the approximate functions 

. Finally, critical LTB load can be found by 

TABLE./  PARAMETERS
Loading 

Case 
IPN 

P 0.61�09:.;< � 1.04�09:
q 2.92�09:.;; � 3.53�09:
q+0.5qL 0.87�09:.;< � 1.35�09:
q+1.0qL 0.51�09:.;< � 0.82�09:
M 0.12�09:.<� � 0.37�09:

V. COMPARISON

Results obtained by presented equation are

differential equation solutions and ABAQUS software

Differential equations are so

differences method. ABAQUS models are generated with 

S8R5 shell elements. This rectang

and 5 degrees of freedom at every node. 

flange corner fillets of IPN beams and flange

fillets of both IPN and IPE sections are neglected.

thickness of IPN sections is

finite element models with exact section geometries

generated and results of mentioned solid and shell finite 

element models are compared.

above stated assumptions don’t have a significant effect on 

results. Therefore, it is proper to use 

element models for comparison. 

ABAQUS shell model is given in Fig. 
 

Fig. 7 ABAQUS 

 

Four sections are selected to compare the results.

sections are IPN100, IPE

Comparison of IPN100 section is made for 

IPN300 and IPE400 sections are compared for� � 0.5�� cases, respectively. 
possible to see the accuracy of the presented 

small, medium and large sections and under different loading 

cases. �0-critical LTB load relation of IPN100 cantilever beam for � case is given in Fig. 8. 
 

4 5

P

q

q+0.5qL

q+1.0qL

M

4 5

P

q

q+0.5qL

q+1.0qL

M

TABLE II 

ARAMETERS 

IPE 

:.:; 0.73�09:.;< � 1.11�09:.:; 
:.:?
 3.50�09:.;; � 3.80�09:.:?

 
:.:< 1.05�09:.;< � 1.45�09:.:< 
:.:< 0.61�09:.;< � 0.88�09:.:< 
:.:� 0.15�09:.<� � 0.40�09:.:� 

OMPARISON 

ed by presented equation are compared to 

differential equation solutions and ABAQUS software results. 

Differential equations are solved numerically by finite 

differences method. ABAQUS models are generated with 

S8R5 shell elements. This rectangular element has 8 nodes 

and 5 degrees of freedom at every node. For easy modeling, 

of IPN beams and flange-web connection 

and IPE sections are neglected. Also, flange 

thickness of IPN sections is assumed to be constant. Solid 

with exact section geometries are 

of mentioned solid and shell finite 

element models are compared. It is seen from the results that, 

assumptions don’t have a significant effect on 

Therefore, it is proper to use simplified shell finite 

element models for comparison. Buckled form of an 

model is given in Fig. 7. 

 

ABAQUS shell model 

elected to compare the results. These 

0, IPE200, IPN300 and IPE400. 

section is made for � case. IPE200, 
sections are compared for�, �and 

cases, respectively. By this comparison, it is 

possible to see the accuracy of the presented equation on 

sections and under different loading 

critical LTB load relation of IPN100 cantilever beam for 
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Fig. 8 �0-critical LTB load graph of IPN100 cantilever beam for � 
case 

 

In Fig. 8, P.S. series indicate the results obtained by 

presented formula. D.E. indicates the differential equation 

solutions which are introduced in Chapter II. Finally, 

ABAQUS indicate the results obtained by ABAQUS software. �0-critical LTB load relation of IPE200 cantilever beam for � case is given in Fig. 9. 
 

 

Fig. 9 �0-critical LTB load graph of IPE200 cantilever beam for � 
case 

 �0-critical LTB load relation of IPN300 cantilever beam for � case is given in Fig. 10. 
 

 

Fig. 10 �0-critical LTB load graph of IPN300 cantilever beam for � 
case 

 

Finally, �0-critical LTB load relation of IPE400 cantilever 
beam for � � 0.5�� case is given in Fig. 11. 
 

 

Fig. 11 �0-critical LTB load graph of IPE400 cantilever beam for � � 0.5�� case 
 

It can be seen from Figs. 8-11 that the results obtained by 

presented formula are in accordance with differential equation 

solutions and ABAQUS results. It is concluded that critical 

LTB loads of European IPN and IPE cantilever beams can be 

safely calculated by the presented equation. 

VI. CONCLUSION 

In this paper, a parametric equation to calculate LTB load 

of cantilever IPN and IPE sections are presented. Section 

properties of mentioned sections are simplified and LTB load 

parameter is calculated for concentrated load at free end, 

uniformly distributed load, combination of concentrated load 

at free end and uniformly distributed load and constant 

moment cases. However, ./ parameter of presented equation 
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can be calculated for any loading case. The results obtained by 

presented equation, differential equation solutions and 

ABAQUS software models are compared. It is seen that 

results obtained by presented equation perfectly coincide with 

differential equation and ABAQUS solutions. Lateral torsional 

buckling loads of IPN and IPE section cantilevers can be 

determined by presented formula and can be safely used in 

design procedures. 
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