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Abstract— In this paper, a new reverse converter for the moduli 
set {2n, 2n–1, 2n–1–1} is presented. We improved a previously 
introduced conversion algorithm for deriving an efficient hardware 
design for reverse converter. Hardware architecture of the proposed 
converter is based on carry-save adders and regular binary adders, 
without the requirement for modular adders. The presented design is 
faster than the latest introduced reverse converter for moduli set {2n,
2n–1, 2n–1–1}. Also, it has better performance than the reverse 
converters for the recently introduced moduli set {2n+1–1, 2n, 2n–1} 

Keywordss— Residue arithmetic; Residue number system; 
Residue-to-Binary converter; Reverse converter. 

I. INTRODUCTION

HE basis for each residue number system (RNS) is a 
moduli set which consists of a set of pairwise relatively 

prime numbers [1]. Until now, many moduli sets with different 
dynamic ranges have been introduced for RNS [2]-[8]. Among 
these, the moduli set {2n–1, 2n, 2n+1} is the most well-known. 
This moduli set can result in simple and efficient designs for 
reverse converters, but the performance of arithmetic unit of 
RNS systems based on this moduli set are restricted to the 
time-performance of the modulo 2n+1. The modulo 2n+1 
operations are very complex, and are usually the bottleneck for 
RNS arithmetic units [9]. Hence, the moduli sets {2n, 2n–1, 2n–

1–1} [5],[6] and {2n+1–1, 2n, 2n–1} [7] have been suggested as 
alternatives for the moduli set {2n–1, 2n, 2n+1}. In these 
moduli sets, the moduli 2n–1–1 and 2n+1–1 are used instead of 
2n+1. The arithmetic units of RNS systems based on moduli 
sets {2n, 2n–1, 2n–1–1} and {2n+1–1, 2n, 2n–1} are faster than 
those based on the moduli set {2n–1, 2n, 2n+1}, but due to the 
mathematical properties of these moduli sets, they have more 
complex reverse conversion than the moduli set {2n–1, 2n,
2n+1}.  

In this paper, we apply some simplifications to the reverse 
conversion algorithm of [6], and present a new hardware 
implementation of the reverse converter for the moduli set {2n,
2n–1, 2n–1–1}. The proposed reverse converter has lower 
conversion delay than the reverse converters of [5] and [6]. 
Also, it has better performance in comparison to the recently 
proposed reverse converters for the set {2n+1–1, 2n, 2n–1} [7]. 

In the rest of paper, the conversion algorithm of [6] is 
introduced in section II. In section III we propose the 
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improvements on conversion algorithm of [6]. Also, hardware 
implementation of the improved conversion algorithm is 
presented in section IV. Section V evaluates the performance 
of the proposed reverse converter as well as the other reverse 
converters, with regard to the conversion delay and hardware 
complexity, and section VI is conclusion.  

II. WANG'S CONVERSION ALGORITHM

Wang et al. [6] used New CRT-I [10],[11] to derive a high-
speed reverse conversion algorithm as follow: 

Theorem 1 [6]: In the RNS system based on the moduli set 
{2n, 2n–1, 2n–1–1}, the residue represented number (x1, x2, x3)
can be converted into its equivalent weighted binary number 
by 

1 2nX x Z= + (1) 
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The proof of this theorem is described in [6]. 

III. IMPROVED CONVERSION ALGORITHM
In this section, we make some simplifications to the Wang et 

al. [6] conversion algorithm, for achieving a more efficient 
hardware implementation. First, Theorem 1 can be rewritten as 

1 2nX x Z= + (10) 

where 
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Equation (11) can be parsed as below: 

2nZ A B= + (13) 

2 1 2 1nB Y x x
−

= − + − (14) 

outBYA += (15) 

It should be noted that Bout is the borrow which is produced by 
the subtraction of (14). Also, the operands needed for 
calculating Y, are given in (4)-(9). 

First, the relationship between (8) and (9) is remarkable, and 
based on it, we can write the following equation 

5 5̂ 1T T= + (16) 

Therefore, we can add up binary vectors of equations (4)-(7) 
and (9), and then when x2≥x1, the result should be incremented 
by one. So, 

12 1 1 2 3 4 5
2 1

ˆ( , )
n

P P T T T T T
− −

= + + + +

(17) 

The expression (P2,P1) denotes two (n–1)-bit wide result of 
end around carry save addition of equations (4)-(7) and (9).  

Next, we simplify (14) and (15). The following algorithm 
can be used for calculating the correct value of Y in (14) and 
(15). 

If (x2 < x1) then 12 1 2 1nY P P − −
= +

If (P1+P2 < 2n–1–1) then Y=P1+P2

If (P1+P2 ≥ 2n–1–1) then Y=P1+P2–(2n–1–1) 

Else if (x2 ≥ x1) then 12 1 2 1
1 nY P P − −

= + +

If (P1+P2+1 < 2n–1–1) then Y=P1+P2+1 

If (P1+P2+1 ≥ 2n–1–1) then Y=P1+P2+1–(2n–1–1) 

End if 

Fig. 1 The algorithm for selection of correct value of Y

Based on this algorithm, Y can be calculated by 
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Now, from (14) we have  
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Therefore, by substituting the values of (18) and (20) in (19), 
we have 
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where 
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1
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The equation (22) can be rewritten as follows 
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So, the above equation becomes: 
1
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with considering the facts that 1 1(2 1 )n x x− − = ,
1

1 1(2 1 )n P P− − − = and 1
2 2(2 1 )n P P− − − = , we have 

1 2 1 1 2 2 2nV x x P P= + + + + − (28) 

Using similar derivation, (23)-(25) can be calculated as 
1

2 2 1 1 2 1 2nV x x P P −= + + + + − (29) 

1
3 2 1 1 2 2 2nV x x P P += + + + + − (30) 

1
4 2 1 1 2 1 2 2n nV x x P P −= + + + + − − (31) 

The equations (28)-(31) can be rewritten as 

1 6 5((2 1) 1) 2nV P P= + + + − (32) 

1
2 6 5(2 1) 2nV P P −= + + − (33) 

1
3 6 5((2 1) 1) 2nV P P += + + + − (34) 

1
4 6 5(2 1) 2 2n nV P P −= + + − − (35) 

where 
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6 5 2 4 3( , ) 2P P x P P= + + (36) 

4 3 1 1 2( , )  P P x P P= + + (37) 

The terms (P6,P5) and (P4,P3) denote the result of carry save 
addition. Also, since P4 and P6 are the carry vector results of 
the carry save additions, they should be shifted by one bit to 
the left for performing regular addition.  

Finally, (15) can be simplified as below 

outBYA += (38) 

The value of Y from (18) can be substituted in (38) as 

outBPPA +++= α21 (39) 
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It should be noted that, –2n–1  in (18) only changes the most 
significant bits of Y, and since the most significant bit of Y for 
calculation of (38) will be ignored, we don't take into account 
the –2n–1 in computing the value of α.

IV. HARDWARE IMPLEMENTATION

Hardware architecture of the proposed reverse converter for 
the moduli set {2n, 2n–1, 2n–1–1} is based on equations (10) 
and (13)-(15). Firstly,  as shown in Fig.2, by using three (n–1)-
bit carry save adders (CSAs) with end around carry (EAC), the 
modulo carry save addition of (17) is performed. Since, (n–2) 
bits of (6) are 0's, and (n–3) bits of (9) are 1's, (n–2) and (n–3) 
of the full adders (FAs) in CSA1 and CSA3 are reduced to (n–
2) half adders (HAs) and (n–3) XNOR/OR gates, respectively.  

( 1) 1n bit CSA with EAC− −

1T2T3T

4T

$
5T

1n −1n −1n −

1P2P

1n −

( 1) 2n bit CSA with EAC− −

( 1) 3n bit CSA with EAC− −
1n −1n −

1n −1n −

1n − 1n − 1n −

Fig. 2 Realization of  (17)

Fig.3 shows the implementation of (21). First, two CSAs is 
used for realization of (36) and (37). Then, (32)-(35) are 
implemented by using two (n+1)-bit carry propagate adders 
(CPAs) followed by a constant subtractor unit (CSU).  
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1P2P1x
1n −1n −n

nn
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1n +1n +

2x

( 2) 1n bit CPA+ −
2n +
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Fig. 3 Calculation of B

It should be noted that the carry-in of these CPAs are 1, and 
so, CPA2 includes only (n+2) HAs. Hence, CPA1 and CPA2 
function in a bit level parallel architecture. Therefore, the total 
delay of CPA1 plus CPA2 is (n+2)tFA+tHA, where tFA and tHA
denote the delay of an FA and HA, respectively. Fig. 4 depicts 
the CPA1 and CPA2 for constant value of three bits. So, It is 
clear that, the complexity and the delay are HAHAFA ++ )(3

and HAFA tt +3 , respectively. 
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Fig. 4 Implementation of CPA1 and CPA2 for a constant value 

The CSU consists of four small subtractors. The first 
subtractor subtract 2n from v1 in (32), and since this 
subtraction only change the most significant two bits of v1, it 
can be simply implemented with two FAs. Similarly, the other 
subtractors, subtract 2n–1, 2n+1 and 2n–1+2n from v2, v3 and v4,
respectively. The most significant bit of the result of 
subtraction will be ignored, and also one of the borrow-out of 
these four subtractors will be used in the calculation of (38). 
Totally, we need 9 FAs for CSU, and the total delay of this 
unit is the delay of three FAs. For example, the subtract part 
for computing v4 is shown in Fig.5. So, the CSU produces v1,
v2, v3 and v4 in (32)-(35). One of these four numbers must be 
chosen for achieving the correct result of B in (21). The 
correct output between these four numbers will be selected by 
an n-bit MUX. The detector unit produces the select lines of 
this MUX. This detector unit (DU) includes two CPAs as 
shown in Fig. 6. 
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Fig. 5 The  subtractor unit for computing v4

First, for detecting x2≥x1, an n-bit CPA with one carry-in is 
used. We need only the carry-out of this CPA. Similarly, for 
finding P1+P2≥2n–1–1, an (n–1)-bit CPA is used. Next, 
detecting of P1+P2+1≥2n–1–1 can be simply implemented 
based on this CPA, and by using n AND gates plus an OR 
gate. Because, whenever, Cout2 is 1, consequently Cout3 is also 
1. But where Cout2 is 0, if all bits of sum vector of CPA8 are 
1's, therefore Cout3 become 1, otherwise Cout3 is 0. it should be 
noted that, AND gates work parallel with CPA8. Hence, the 
total delay of detector unit is delay of an n-bit CPA. Because, 
Cout1 and Cout2 are calculated independently. Also, when Cout2
is produce, after the delay of an OR gate, Cout3 will be 
obtained. 
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Fig. 6 The detector unit

Table I presents different cases of the outputs of detector 
unit, and the correct result that should be select. 

TABLE I. CORRECT SELECTION THE VALUE OF B

1 0α α α=Correct output3OutC2OutC1OutC
0=00V1000
1=01V1100
1=01V2010
1=01V2110
1=01V3001
2=11V4101
2=11V3011
2=11V4111

Now, we investigate the implementation of A in (39). First, 
as shown in Table I, the value of α can be computed by 

0 1 2 3out out outC C Cα = + + (41) 

1 1 2 3( )out out outC C Cα = + (42) 
Therefore, α can be simply prepared by using some logic 
gates. Next, with considering the facts that Bout=–1,0 and  
α=0,1,2, and substituting in (39), we have 

1 2 ( 1,0,1, 2)A P P= + + − (43) 

Hence, we do these four additions by using four CPAs, and 
then the correct result will be selected by a multiplexer. Fig. 7 
shows the hardware architecture for calculation of A. The 
CPAs of Fig.7 work in a bit level parallel fashion like those in 
Fig.4. Hence, the total delay of Fig.7 is (n–1)tFA+2tHA+tMUX.

1P2P
1n −1n −

1n −

A

MUX
2 1 0 OutB

1α
1−

( 1) 3n bit CPA− −

( 1) 5n bit CPA− − ( 1) 4n bit CPA− −

6n bit CPA−

1n −

1−

0α

1

1

Fig. 7 Calculation of A

Finally, since x1 and B are n-bit numbers, equation (10) can 
be implemented by concatenating x1, B and A in (13) and (10), 
without using any computational hardware. Table II presents 
the characteristics of each part of the proposed reverse 
converter in terms of FA and HA. It should be noted that, we 
used the same assumptions used in [6], such as ignoring the 
cost and the delay of required NOT gates, considering the 
complexity of XNOR/OR gate and MUX as HA and FA, 
respectively. 

TABLE II. HARDWARE REQUIREMENTS OF THE PROPOSED CONVERTER

Half AdderFull AdderComponents
n–21CSA1

0n–1CSA2
n–32CSA3

0nCSA4
0n+1CSA5
0n+2CPA1

n+30CPA2
09CSU
02n–1DU
0n–1CPA3

2(n–1)0CPA4,5
n0CPA6
02nMUX

6n–49n+12Total

V. PERFORMANCE EVALUATION

The critical delay path of the proposed reverse converter 
composed of the delay of CSA1 to CSA5, CPA1, CPA2, CSU 
and MUX. The delay of a CSA is the same as that of an FA. 
Also, CPA2 adds the result of CPA1 with one. So, CPA2 can 
work in a bit level parallel fashion with CPA1, and therefore it 
adds only the delay of an HA to the total delay. The hardware 
architecture of the presented reverse converter consists of 
(9n+12) FA's, (6n–4) HA’s and (n–1) two-input AND gates. 
Similar to [6], for the proposed converter as well as for the 
converters of [7], we consider the complexity of an FA is twice 
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that of an HA and the two-input AND gate. Hence, the total 
hardware complexity of the proposed reverse converter can be 
calculated as 

2×(9n+12) HA + (9n+12)AND + (6n–4)HA + (n–1)AND  
=(24n+20)HA + (10n+11)AND 
There exist two other reverse converters for the moduli set 

{2n, 2n–1, 2n–1–1} which have been introduced in [5] and [6]. 
The hardware architecture of the reverse converter of [6] is 
based on Theorem 1, and composed of four (n–1)-bit CSAs 
with EAC for performing modulo (2n–1–1) carry save addition, 
two (n–1)-bit modulo (2n–1–1) adder that work in parallel, a 
(n–1)-bit modulo (2n–1–1) subtractor, a  (2n–1)-bit regular 
binary subtractor, and a  (n–1)-bit 2×1 multiplexer (MUX). 
The critical delay path of the reverse converter of [6] consists 
of three CSAs, a (n–1)-bit modulo (2n–1–1) adder and (2n–1)-
bit  subtractor. The use of two CSAs with EAC, and two 
modulo adders that work in parallel, resulted in reducing the 
conversion delay, but the hardware cost increased.  Also, 
recently, the new three-moduli set {2n+1–1, 2n, 2n–1} has been 
proposed by Mohan [7]. He introduced three reverse 
converters for this moduli set by using CRT and MRC 
algorithms.  

TABLE III. PERFORMANCE COMPARISON

Converters Complexity Delay Time-complexity

[5] (12n–8)HA, 
(6n–4) AND (5n–4)tFA 60n2

[6] (17n–13)HA, 
(7n–3) AND (3n+2)tFA 51n2

[7]-CI (9n+3)HA, 
(8n+3)AND (6n+5)tFA 54n2

[7]-CII (30n+45)HA, 
(14n+21) AND (2n+7)tFA 60n2

[7]-CIII (26n+40)HA, 
(12n+19) AND (2n+7)tFA 46n2

Proposed (24n+20)HA, 
(10n+11) AND (n+11)tFA 24n2

Table III compares the performance of the different reverse 
converters for the moduli set {2n, 2n–1, 2n–1–1} as well as the 
reverse converters for moduli set {2n+1–1, 2n, 2n–1}. As seen 
from Table III, the proposed converter is the fastest between 
the other existing methods for moduli set {2n, 2n–1, 2n–1–1}. 
However, the hardware cost of the presented converter is 
much. But it is essential to remark to the point that, the reverse 
converters of [5] and [6], both use modular adders. They used 
the method of [12] for the implementation of the needed 
modular adders. While, we present the full design of the 
reverse converter without using modular adders. Because of 
the complex structure of the modular adder of [12], the authors 
of [6], assumed the cost and the delay of the modular adder of 
[12] are nFA and ntFA, respectively. But these estimations are 
not exact, and the real cost and delay of the adder of [12] are 
much more. With considering these points, the proposed 
converter has a much better area-time complexity than 
converter of [6]. Also, it can be seen that the proposed 
converter is faster than the reverse converters of [7], and also 
it has better hardware complexity than converters [7]-CII and 
[7]-CIII. Even if proposed converter consume more hardware 

but it demonstrated significant improvement in terms of speed 
in comparison to [7]-CI. 

VI. CONCLUSION

This paper presents an efficient reverse converter for the 
well-known RNS moduli set {2n, 2n–1, 2n–1–1}. The hardware 
architecture of the proposed converter consists of regular 
binary adders and logic gates, without the need for using 
modular adders. Also, the presented reverse converter results 
in significant improvement in terms of conversion delay and 
time-complexity, compared to the last works. 
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