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A Numerical Study of Force-Based Boundary
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Abstract—We propose a new alternative method for imposing
fluid-solid boundary conditions in simulations of Multiparticle
Collision Dynamics. Our method is based on the introduction of
an explicit potential force acting between the fluid particles and a
surface representing a solid boundary. We show that our method can
be used in simulations of plane Poiseuille flows. Important quantities
characterizing the flow and the fluid-solid interaction like the slip
coefficient at the solid boundary and the effective viscosity of the
fluid, are measured in terms of the set of independent parameters
defining the numerical implementation. We find that our method can
be used to simulate the correct hydrodynamic flow within a wide
range of values of these parameters.
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I. INTRODUCTION

M numerical technique originally proposed by Malevanets

and Kapral [1], [2], which has turned out to be a very

attractive procedure for studying diverse systems of soft

condensed matter. It represents a particle-based method, a

feature that makes it suitable for using it in combination

with Molecular Dynamics (MD) [3] in the study of complex

systems, e.g. colloidal suspensions and polymer solutions. In

a typical MD-MPC simulation, the evolution of the suspended

particles is followed at the microscopic level by using MD,

while MPC provides a simplified coarse-grained description

for the solvent. This kind of hybrid algorithm is used to

bridge the characteristic gaps in time, length and energy

existing in the dynamics of the afore mentioned systems [2],

[4]–[6]. It has been shown that MPC captures correctly the

hydrodynamic behavior of the fluid around the embedded

particles and yields the correct hydrodynamic interactions

existing between them [6]. In addition, MPC has a stochastic

character giving rise to hydrodynamic fluctuations and to

random Brownian forces on the suspended particles [6], [7].

Thus, fluids simulated via MPC can be used as thermal baths

supporting also hydrodynamic interactions.

Two of the main advantages offered by MPC are the relative

simplicity of its algorithm and its stability over long-time

simulations. Remarkably, it has been possible to characterize

MPC also from the analytical point of view, by calculating

closed expressions for the transport coefficients of MPC

fluids in terms of the parameters defining the simulations.
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For the original version of MPC, commonly refereed as

Stochastic Rotation Dynamics (SRD), explicit analytical

expressions for the viscosity and the thermal conductivity have

been obtained from both a discrete-time projection operator

techniques [8]–[10], and from a kinetic theory approach [11].

More recently, the corresponding analytical expressions for

the viscosities have been also obtained for variations of the

original SRD algorithm [12]. In all these cases simulation

results have been found to agree very well with the analytical

expressions, thus demonstrating that an excellent analytical

description and understanding of MPC has been achieved.

Up to now, MPC has been used for simulating systems as

diverse as colloids [2], [6] and suspensions of polymers [13],

polymers under flow [7], [14], [15], flow around objects [16],

[17], vesicles under flow [18], particle sedimentation [19],

[20], backtracking of colloidal particles [21], and tracking

control of colloidal particles in fluids under steady flows [22].

Diverse boundary conditions have been used in the literature

of the subject in order to impose constraints on the motion

of fluids simulated via MPC. An analysis of the effects that

these boundary conditions have on the dynamics of MPC

the studied cases correspond to boundary conditions imposed

by so-called hard walls, i.e. walls that confine the fluid by

simply reflecting the incoming particles back into the bulk

system. The interaction of the MPC fluid with reflecting walls

introduces modifications in the stress tensor that have been

There, a properly modified form of the MPC algorithm in the

presence of walls has been proposed that prevents any surface

slip of the confined particles and allows for simulating the

correct plane Couette velocity profile.

In the present work we propose a new method that can

be used to simulate MPC fluids confined by solid walls.

Our approach consists in introducing explicit repulsive forces

which restrict the motion of the MPC particles within specific

regions of the space. These forces are derived by assuming that

the physical walls that constrain the motion of the fluid are

constituted by a continuous surface distributions of particles.

In order to check the validity of the proposed method,

we consider its performance in simulations of MPC fluids

confined between two parallel planes and in the presence of

a uniform pressure gradient (plane Poiseuille flow). We show

that our method allows for reproducing the correct velocity

profile expected for a viscous fluid under such conditions.

the expression for the confinement force to be used in our

Boundary Conditions, Molecular Dynamics.

ULTIPARTICLE Collision Dynamics (MPC) is a recent

fluids has been carried out in [23]. There, however, all

calculated for confinement in a slit geometry in [24].

Our paper is organized as follows. In Section II we derive

simulations. In Section III we discuss the details about the
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the results obtained for the simulation of flow between parallel

plates induced by a uniform pressure gradient. In Section V

we summarize our main conclusions, discuss some advantages

of our approach and state its limitations.

II. CONFINEMENT FORCES

A. Fluid-Solid Interaction

Let us consider an ensemble of particles moving through a

channel or pore defined by a wall with irregular geometry,

as it is schematically illustrated in Fig. 1a. In order to

confine the particles inside the pore, we will assume that the

latter consists of a continuous surface distribution of particles,

which interact with the confined particles via a generalized

Weeks-Chandler-Andersen (WCA) potential. Thus, if �R and
�R′ denote the position vectors of a confined and a surface

particle, respectively, their interaction will be given by [25]

φ
(
�R, �R′

)
= ε

⎡
⎢⎣
⎛
⎝ σ∣∣∣�R− �R′

∣∣∣
⎞
⎠

12n

−

⎛
⎝ σ∣∣∣�R− �R′

∣∣∣
⎞
⎠

6n

+
1

4

⎤
⎥⎦ ,
(1)

if

∣∣∣�R− �R′

∣∣∣ < σ̃; and will be zero if

∣∣∣�R− �R′

∣∣∣ ≥ σ̃. In (1), ε

is the interaction strength, σ is the effective diameter of the

interaction, n is a positive integer, and σ̃ = 2
1

6nσ is the cutoff

radius of the interaction.

Let ρS denote the numerical surface density of particles at

the wall, which hereafter will be assumed to be uniform. Then,

the total potential at the position �R inside the pore will be

Φ
(
�R
)
= ρS

∫
S∗

dS′φ
(
�R, �R′

)
, (2)

where S∗ denotes the set of all those points at the surface

which satisfy the condition

∣∣∣�R− �R′

∣∣∣ < σ̃.

For particles located at positions �R′ in which the right hand

side of (2) does not vanish, we will approximate the integral

by its mean value. This procedure yields

Φ
(
�R
)
� ρSS

∗φ
(
�R, �R∗

)
, (3)

where �R∗ is the closest point of the surface to the position �R,

see Fig. 1 a.

In the present work we will only consider the limiting case

in which the size of the confined particles is small as compared

with the characteristic dimensions of the confining wall. In

this limit the curvature of the surface is not significant and

S∗ can be approximated at first order as the cross section

corresponding to the intersection of a solid sphere of radius

σ̃/2 with a plane located at a distance

∣∣∣�R− �R∗

∣∣∣ /2 from its

center, i.e.

S∗ �
π

4

(
σ̃2 −
∣∣∣�R− �R∗

∣∣∣2) . (4)

Replacing (4) into (3) yields the expression for the

interaction potential between the surface and the confined

particles,

Φ
(
�R
)

=
περS
4

(
σ̃2 −
∣∣∣�R− �R∗

∣∣∣2)
⎡
⎢⎣
⎛
⎝ σ∣∣∣�R− �R∗

∣∣∣
⎞
⎠

12n

−

⎛
⎝ σ∣∣∣�R− �R∗

∣∣∣
⎞
⎠

6n

+
1

4

⎤
⎥⎦ , (5)

which is valid if

∣∣∣�R− �R∗

∣∣∣ < σ̃; while Φ
(
�R
)

= 0, if∣∣∣�R− �R∗

∣∣∣ ≥ σ̃.

In the previous expression, �R∗ is indeed a function of �R
which must be given in order to obtain the explicit form of the

potential Φ. The specific dependence of �R∗ on �R is determined

from the geometry of the pore.

At this point let us simply assume that the function �R∗

(
�R
)

is known. Thus, we can calculate the force exerted by the pore

on a particle located at position �R. Since Φ depends on �R only

through the quantity |�R− �R∗|2, this force is giving by

�F
(
�R
)
= −�∇Φ = −2

dΦ

d|�R− �R∗|2

(
�R− �R∗

)
. (6)

Now, by calculating the derivative of Φ with respect to |�R−
�R∗|2 explicitly, we obtain

�F
(
�R
)

=
περS
2

(
�R− �R∗

){
3n

σ̃2 − |�R− �R∗|2

σ2
(7)

⎡
⎣2
(

σ
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(
σ
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)6n+2
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+
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⎣( σ
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σ
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)6n
+

1
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⎦
⎫⎬
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when

∣∣∣�R− �R∗

∣∣∣ < σ̃; while the force vanishes for particles

such that

∣∣∣�R− �R∗

∣∣∣ ≥ σ̃. It can be noticed that �F
(
�R
)

is

indeed a continuous vector field, which points along the vector
�R− �R∗ for particles close to the surface of the pore.

As it was mentioned above, in order to obtain closed

expressions for Φ
(
�R
)

and �F
(
�R
)

, an analytical function for

�R∗ in terms of �R must be given. As it can be anticipated,

this can be done only for a very reduced number of

confining surfaces. Among them, one important case is the

one corresponding to a plane defined by the equation x = x0,

with x0 a constant. This is the case illustrated in Fig. 1 b,

where we clearly have

�R∗ = �R− (x− x0) êx, (8)

with êx denoting the unitary vector along the x direction. Thus,

by replacing the previous expression into (7), the explicit form

implementation of the method. Then, in Section IV we present
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of �F can be found in terms �R only. Specifically,

�F
(
�R
)

= (x− xo) êx
περS
2

{
3n

σ̃2 − |x− xo|
2

σ2
(9)[

2

(
σ

|x− xo|

)12n+2

−

(
σ

|x− xo|

)6n+2
]

+

[(
σ

|x− xo|

)12n
−

(
σ

|x− xo|

)6n
+

1

4

]}
,

if |x− xo| < σ̃, and 0 if |x− xo| ≥ σ̃.

In the present paper we shall restrict our analysis to the case

of a MPC fluid restricted to move in the space between two

parallel planes. Consequently, we will use (9) for achieving

the corresponding confinement force.

It should be stressed, however, that (9) gives rise to purely

repulsive forces between the solid surface and the confined

particles. These forces point along the normal direction to

the confining surface. Accordingly, the incoming particles

colliding with the surface will be reflected back into the bulk

system and only the normal component of their momentum

will be reversed. Thus, only slip boundary conditions can be

obtained from the direct application of (9), and it can not be

used to simulate rough surfaces.

In order to generalize our formalism and to make it able

to simulate the effects produced by uneven surfaces, we will

propose a modification in the application of (9), in which the

magnitude of the force is preserved, but its direction is taken

along the unit vector v̂ in = −�v/v, where �v represents the

velocity with which the particle hits the confining wall.

Therefore, the confining force on a fluid particle will act

along the direction in which it penetrates the surface. In

the following section we will analyze the effects that the

application of the proposed confinement force has on the

dynamics of an ensemble of MPC particles.

For the system described in subsection II-A, confinement

of the fluid is achieved by incorporating a direct interaction

of its constituting particles with a wall. The momentum

exchange resulting from this interaction produces a kinetic

contribution to the stress tensor of the fluid. In order to

simplify the calculation of the stress tensor contribution arising

from collisions with the surface, we shall restrict ourselves to

consider the situation described by (9), in which the confining

surface is a plane parallel to the y-z plane. Moreover, in order

simplify further the involved mathematical analysis, we shall

make the additional assumption of considering that the force

experienced by the fluid particle when it penetrates the wall

is uniform and can be approximated in terms of an effective

constant force field of magnitude Fe. Thus, let us consider

a time interval from tq to tq + h, and a particle with initial

velocity �v (tq) that collides with the wall at time tq+Δt, with

Δt < h. The change in the momentum of this particle due to

its interaction with the wall is found to be

Δ�pw = − (h−Δt)Fe

�v (tq −Δt)

v (tq −Δt)
. (10)

Fig. 1. a Auxiliary quantities used to derive the force exerted by a solid

boundary on a confined fluid. Vectors �R, �R ′ and �R∗, represent, respectively,
the position of a particle in the system, the position of a surface particle and

the closest point of the surface to the vector �R. The area S∗ and the distance
σ̃ are defined through the text. b Special case of a plane confining wall.

Then, the total momentum per unit time per unit area

exchanged with the wall by all the particles having the same

initial velocity can be written in the form

Δ�Ξ = −Feρfhvx (tq)

(
1−

x̃ (tq)

hvx (tq)

)
�v (tq −Δt)

v (tq −Δt)
, (11)

where ρf denotes the numerical density of fluid particles and

x̃ (tq) is initial distance to the wall in the x-direction.

We will consider now the presence of a uniform external

force per unit mass, �g, which may play the role of a

pressure gradient acting on the confined fluid. We thus have

�v (tq +Δt) = �v (tq) + Δt�g. It should be stressed that in the

present work we shall restrict ourselves to consider only small

values of g, and assume that fluid particles are uniformly

distributed in space. Then, by expanding the right hand side

of (11) in a Taylor up to first order in �g, and averaging over

the initial positions we obtain the following expression for the

xz component of the stress tensor

σxz = −
ρfh

2v2xFe

2Lxv

[
vz +

gh

3

(
1−

v2z
v2

)]
, (12)

where all velocities are evaluated at the initial time tq.

Equation (12) shows that the proposed confining force is

expected to produce a stress tensor contribution at the wall

that is independent of the external force and a term increasing

linearly with g, for small values of this quantity. The former

contribution will introduce an apparent viscosity at the wall

that will produce slip boundary conditions. On the other hand,

higher order terms on g that have not been considered in (12)

will produce non-Newtonian effects by making the viscosity

of the confined fluid to depend on the externally applied force.

This effects, however, are not expected to be significant if g
is kept small.

B. Wall Stress Tensor
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III. SIMULATIONS OF PLANE POISEUILLE FLOW IN MPC

FLUIDS

In order to test the performance of the previous model, we

conduct a series of simulations of Poiseuille flow confined

between two parallel planes. A well-known analytical solution

for the flow profile exists in this case, which serves as a clear

test of the accuracy of the algorithm. The location of the planes

is defined by the equations x = Lx/2, and x = −Lx/2,

where Lx denotes the distance between the planes. The lengths

of the planes along the y and z directions are Ly and Lz ,

respectively, where Ly, Lz � Lx. The planes will be assumed

to be constituted by a continuous distribution of particles with

surface density ρS.

The confined MPC fluid will be assumed to be an ensemble

of N particles of mass m, whose positions and velocities are

continuous functions of the time t. An external uniform field

will be considered to be present which exerts a force per unit

mass �g on the fluid particles. For simplicity, �g will be assumed

to point along the z-axis, i.e. �g = gêz .

The time evolution of the system will be simulated by

means of a hybrid technique combining MD and MPC. On

the one hand, MD will allow us to simulate the behavior of

the particles at the microscopic time-scale and will take care of

the interaction of the fluid particles with the confining walls.

On the other hand, MPC will consider the interaction between

the fluid particles in coarse-grained scheme and will allow

us to incorporate the effects occurring at the hydrodynamic

time-scales.

The simulation will proceed in two main steps. In the first

one, the positions and velocities of the MPC particles will be

updated according to the velocity Verlet algorithm, i.e.

�Ri (t+Δt) = �Ri (t) + Δt�vi (t) +
(Δt)

2

2m
�Fi (t) , (13)

and

�ui (t+Δt) = �ui (t) +
Δt

2m

[
�Fi (t+Δt) + �Fi (t)

]
, (14)

for i = 1, 2, . . . , N . In the previous expressions �Ri and �vi are

the position and velocity vectors of the i-th fluid particle; and

Δt represents the microscopic time-step of the MD method.

Notice in addition that �Fi denotes the total force field acting

on the i-th particle, which must be calculated by adding the

confining force given by (9), and the external force field m�g.

The second main step of the simulation algorithm is

precisely the so-called collision step of the MPC method. In

this step, the simulation box is subdivided into cells of volume

a3, forming an evenly spaced grid, and interparticle collisions

are simulated by various momentum swapping schemes within

each cell. The center-of-mass velocity of each cell is calculated

according to

�uμ (t) =
1

Nμ

∑
i∈μ

�vi (t) , (15)

where the Greek index μ has been used to indicate the μ-th

cell and Nμ represents the total number of particles in that

cell. Finally, particles located in the same cell are forced to

collide according to the SRD rule

�vi (t+Δt) = �uμ (t) +R (α;�nμ (t)) · [�vi (t)− �uμ (t)] . (16)

Here μ indicates the cell where the i-th particle is located

and R is a stochastic rotation matrix which rotates velocities

by a fixed angle α around a random axis �nμ. In our

simulations, the vector �nμ is produced in each cell at every

time-step by randomly selecting a point on the surface of a

sphere with unit radius.

It should be stressed that the collision rule described by (15)

and (16) is not applied every time-step but at intervals of time

of size ΔtMPC = ñΔt, where ñ is a positive integer.

In the hybrid algorithm discussed so far, the presence

of collision cells introduces an artificially fixed frame of

reference, which breaks Galilean invariance, leading to a

breakdown of the molecular chaos assumption. In order to

restore this property, a random displacement of the collision

cells is produced before collisions take place. This random

displacement procedure has important implications for various

aspects of MPC simulations due to the presence of solid

planes. Without the random displacement, the boundary cells

coincides with the respective planes. When displacement

occurs, an additional collision cell is added below the lower

plane and the whole collision cells are displaced in the positive

x-direction by a uniform vector with components uniformly

distributed within the range [−a/2, a/2].
The random displacement leads to partially occupied cells

at the planes and virtual particles must be added to every

partially empty cell cut off by the plane. In the present work

where the number of virtual particles, Nvp, is determined by

the number of fluid particles, Nfp, in the boundary cell cut

off by the opposite plane. In this manner, the average particle

density 〈Nvp +Nfp〉 = Nμ, is restored on partially empty

cells. According to this procedure, the center of mass velocity

of the particles in a boundary cell is

�uμ(t) =
1

m(Nfp +Nvp)

⎛
⎝Nfp∑

i=1

m�vi(t) +

Nvp∑
j=1

m�vj(t)

⎞
⎠ .

(17)

Collisions are executed and the total force on a fluid particle

comprises contributions from collisions among particles and

collisions with the planes. The momentum exchange between

fluid and virtual particles at the boundary contributes to the

stress tensor at the wall with a collision term, which is found

to be [24]

〈ΔPx〉 =
2(cosα− 1)m

3Nc
〈NfpNvp(�uμ − �vp)〉 . (18)

Here �vp represents the average velocity of virtual particles on

the ensemble. It should be noted that this average vanish to

zero at equilibrium. In order to ensure that virtual particles do

not modify the stress tensor at the boundary wall we propose

that the must be introduced with the average velocity of the

Nfp particles on the opposite cell cut off by the plane. On the

average, this procedure will cancel the momentum exchange

A. Hybrid MD-MPC Algorithm with Confining Walls

we will follow a procedure similar to the one used in [24],
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as it can be observed from (18), and the stress tensor will only

have the kinetic contributions described previously by (12).

We consider periodic boundary conditions along the y
and z Cartesian directions. In order to prevent heating of

the simulated system due to the work performed by the

confinement forces [26], we apply a thermostating procedure

after each collision step which fixes the temperature of the

system at a specific value T0. With this purpose we consider a

thermostat acting at the cell level such that relative velocities

of the particles with respect to the center of mass velocity of

the cell are rescaled by the factor (T0/Tμ)
1/2

, where the local

temperature field is defined by

Tμ (t) =
m

3kB (Nμ − 1)

∑
i∈μ

[�vi (t)− �uμ (t)] . (19)

The general schedule followed in performing simulations

consisted of the following main parts. Firstly, particles

were sorted into the simulation box with random positions

and velocities taken from uniform distributions. No initial

overlapping existed between the fluid particles and the

confining surface, the total momentum of the system was fixed

to zero, and its total energy was adjusted to the value dictated

by the equipartition theorem. Then, the hybrid MD-MPC

algorithm was applied to the ensemble of fluid particles

subjected to the external field �g and to the constraining surface

forces. This thermalization precess was applied for a period

of time large enough to guarantee that the proper distribution

of velocities and hydrodynamic fields were established.

Finally, a long enough simulation stage was performed that

allowed us to calculate the average velocity field established

in the system.

B. Simulation Parameters

We chose the independent parameters defining our

numerical implementation to be: the length of the MPC cells,

a; the time-step between SRD collisions, ΔtMPC; the average

number of particles per cell, Np; the thermal energy, kBT0; the

rotation angle for SRD, α; and the mass of the individual MPC

particles, m. All our simulations were performed by fixing the

following values: a = 1, kBT0 = 1, Np = 5, ΔtMPC = 0.05,

and m = 1. Notice that here, as well in the rest of the present

work, simulation units (s.u.) will be used instead of physical

units.

We considered a system with a volume defined by the

quantities Lx = 10a, and Ly = Lz = 20a. On the other

hand, the parameters characterizing the interaction between the

particles and the confining walls were chosen as ε = 0.5kBT0,

σ = 0.5a, and ρS = 2a−2. The MD time-step was chosen as

Δt = 0.005, for which no instabilities of the simulations were

observed.

Simulations were implemented in which the SRD collision

angle α took twelve different values uniformly distributed

within the range [15◦, 180◦]. Notice that for small values

of the collision angle, the simulated system is expected

to behave close to the so-called gas regime, in which

kinetic contributions to the material properties dominate over

collisional contributions. On the opposite case, for values of α

close to 180◦, the dynamics of the simulated fluid is expected

to be in the so-called liquid regime, where collisional effects

are larger and dominate over kinetic effects. Thus, in our

numerical experiments we were able to explore the complete

range of behaviors expected in simulations of MPC fluids.

For the previously described set of parameters, we

performed simulations in which the systems were allowed

to thermalize in a total of 2 × 105 steps of the MD-MPC

algorithm, while the evaluation of their average properties

was performed through simulations extending along 4 × 105

simulation steps.

IV. RESULTS

The viscosity coefficient of the simulated MPC fluid was

estimated experimentally as function of the collision angle α.

With this purpose we noticed firstly that the velocity profile

expected for a viscous fluid confined between two parallel

planes and subjected to a parallel uniform force field per unit

mass �g, is the classical Poiseuille flow [27], which will be cast

in the form

vz (x) =
g

2ν

[(
Dx

2

)2
− x2

]
, (20)

where ν is the kinematic viscosity of the fluid and Dx is the

effective distance between the plates, i.e. the total distance

between the planes of zero flow velocity. According to (20),

the average velocity produced by the external force is

v̄z =
gD3

x

12ν
. (21)

In our implementation v̄z was straightforwardly estimated.

This quantity corresponded to the time average of the z
component of the center of mass velocity of the MPC cells,

calculated over the whole simulated system.

In order to study the specific relationship between v̄z and g
produced by our algorithm, we carried out a set of experiments

in which the external force per unit mass took 51 different

values uniformly distributed in the range g ∈ [0, 0.5]. Notice

that, in addition, these experiments were performed for the

twelve values of the collision angle α, specified at the end of

section III-B. This gives a total of 612 numerical experiments

that were performed to test the applicability of the proposed

technique.

In Fig. 2 we present the results of such experiments.

For simplicity, there we have only included the results for

some selected values of the collision angle, namely α =
15◦, 45◦, 75◦, 105◦, 135◦, 165◦. It can be observed that for

small values of the external force, all the experiments show

that v̄z increases linearly with g, as it is expected from (21).

In Fig. 2 it is also shown that the linear relation between

the average velocity and the external force is broken for

large values of the latter, g � 0.4. It should be stressed

that although, for simplicity, this situation is illustrated in

Fig. 3 only for the case α = 15◦, it is indeed observed

for the complete set of numerical experiments. This implies

that the proposed technique for confining MPC fluids might

A. Viscosity Estimation
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Fig. 2. Simulation results (symbols) for the average velocity induced by
force fields with different magnitude in a MPC fluid confined by the force
given by (7). The black line shown in the case α = 15

◦ corresponds to a fit
of the experimental data obtained from a simple least squares method.

lead to a stress tensor that depends on the external force,

an effect that was already anticipated by the analysis carried

out in section II-B. However, this effect is not significant if

simulations are restricted to small values of the external force,

and the model proposed in the present work could be used to

simulate the flow of a confined fluid with a viscosity coefficient

independent of the external force field.

It can be readily seen from (21) that the results presented

in Fig. 2 could be used to estimate the viscosity coefficient

of the simulated fluid as function of the collision angle. More

precisely, the numerical results could be approximated by a

linear fit, obtained e.g. by the method of least squares, and

the slope obtained from such a fit for a given value of α,

s (α), will yield the viscosity through

ν =
D3

x

12 s (α)
. (22)

It is clear, however, that an independent estimation of the

quantity Dx is required for this purpose.

The procedure that we used to estimate Dx is illustrated in

Fig. 3. There, we present a typical velocity profile obtained

from our simulation experiments, corresponding to the values

α = 180◦ and g = 0.2. This profile was obtained as a time

average of the z component of the center of mass velocity of

the MPC cells, evaluated at different positions x inside the

simulation cell. We notice firstly that this profile is parabolic,

as it is expected from (20). In fact, the continuous line

presented in Fig. 4 corresponds to a nonlinear fitting of the

numerical results obtained by assuming a quadratic relation

between vz and x. The resulting value of the x coordinate

in which the velocity profile is found to vanish, represented

by the symbol b in Fig. 3, is used in our estimation of Dx.

More precisely we have Dx � 2b. Our numerical results show

that variations of Dx with the external force field are not

significant, but Dx depends strongly on the collision angle α.

Thus, we obtain an estimation of the parameter Dx by fixing

the value of α, and averaging the resulting values of b for the

set of simulations performed with different external forces g.

Fig. 3. Typical velocity profile obtained from the hybrid MD-MPC algorithm
with confinement forces. Symbols correspond the results of simulations while
the continuous curve has been obtained from a quadratic fit of the simulation
data. The parameter b is used to estimate the value of Dx, as it is described
in the main text.

Once this quantity has been determined, the effective viscosity

produced by our specific implementation of MPC dynamics

can be estimated by using (22).

We present in Fig. 4 the results obtained from this analysis,

where the estimated viscosity of the MPC fluid was calculated

for the different values of the collision angle used in our

simulations. It can be observed from Fig. 4 that ν increases

rapidly for small values of α, but it is stabilized and presents

no significant variations for values of α close to 180◦. In

addition, Fig. 4 shows that the proposed algorithm is able to

simulate confined fluids whose viscosities can be tunned in a

rather wide range of values by properly selecting the parameter

α.

We will finally present an analysis of the detailed

velocity profiles produced by our numerical implementation

and resulting from the externally imposed forces and the

confinement interaction with the walls. With this purpose, we

carried out a comparison between the results of simulations

and the classical Poiseuille formula, (20), in which we used

the values of ν and Dx estimated according to the procedure

described earlier in the preceding section IV-A. For brevity,

here we will restrict ourselves to present this comparison for

simulations carried out with three different collision angles

α = 15◦, 90◦, 180◦, and three different values of the external

force per unit mass g = 0.1, 0.2, 0.4. Such comparison is

illustrated in Fig. 5, where it can be observed that the proposed

model is satisfactory to describe the behavior of the simulated

system.

It is interesting to notice that in our numerical

implementation the distance Dx does not coincide with the

location of the confining walls, i.e. Dx 	= Lx. This implies

that the proposed algorithm simulates flows with partial slip

at the boundaries, an effect that can be interpreted in terms

of an apparent viscosity contribution at the neighborhood of

B. Velocity Profile
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Fig. 4. Viscosity coefficient of the confined MPC fluid as function of the
collision angle α. Symbols with error bars are the results from simulations.

the confining surfaces, as it was anticipated from the analysis

carried out in section II-B. We found experimentally that for

values of the collision angle in the range α ∈ [60◦, 180◦],
Dx > Lx; while for smaller values of α, i.e. α � 60◦, Dx

was found to be smaller than Lx. This indicates that in the

regime where kinetic effects dominate, the force exerted by the

confining surfaces makes the MPC fluid move in the opposite

direction to the external force �g. This effect can be explained

by noticing that when α is small, MPC particles may travel

large distances without changing their velocities appreciably.

Thus, particles well inside the simulation cell, with rather large

velocities along the direction of �g, are able to collide with

the wall, from where they are rejected with large velocities

pointing mainly in the direction of −�g. These rejected particles

drag the fluid at boundary walls and are responsible for the

afore mentioned backward motion.

V. CONCLUSIONS

We have presented a new methodology for simulating

solid-fluid interactions in MPC. The proposed technique is

based on the introduction of an explicit interaction between

the simulated fluid particles and the surface representing the

solid wall. This interaction is summarized by (9), whose

most important feature is that the microscopic details of the

confinement wall have been averaged and reduced to its local

geometrical properties. This characteristic of the proposed

method could be used in order to generalize it with the purpose

of making it able for simulating MPC fluids confined in more

complex geometries, e. g. a mirror symmetric 3D channel.

We have tested the validity of the proposed model in

simulations of a MPC fluid confined between two parallel

planes and we have shown that the proposed method yields the

correct velocity profile expected from hydrodynamics, when

boundary conditions are of the slip type.

Modification of the present algorithm could be introduced

that would allow the simulation of solid surfaces with arbitrary

slip coefficient. These problems are under current research.

Fig. 5. Plane Poiseuille flows induced by the application of pressure gradients
with different magnitudes g = 0.1 (black squares), g = 0.2 (red circles), and
g = 0.4 (blue triangles), in simulations of confined MPC fluids.
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