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Abstract—Chemical reaction and diffusion are important 

phenomena in quantitative neurobiology and biophysics. The 
knowledge of the dynamics of calcium Ca2+ is very important in 
cellular physiology because Ca2+ binds to many proteins and 
regulates their activity and interactions Calcium waves propagate 
inside cells due to a regenerative mechanism known as calcium-
induced calcium release. Buffer-mediated calcium diffusion in the 
cytosol plays a crucial role in the process. A mathematical model has 
been developed for calcium waves by assuming the buffers are in 
equilibrium with calcium i.e., the rapid buffering approximation for a 
one dimensional unsteady state case. This model incorporates 
important physical and physiological parameters like dissociation 
rate, diffusion rate, total buffer concentration and influx. The finite 
difference method has been employed to predict [Ca2+] and buffer 
concentration time course regardless of the calcium influx. The 
comparative studies of the effect of the rapid buffered diffusion and 
kinetic parameters of the model on the concentration time course 
have been performed. 
 

Keywords—Calcium Profile, Rapid Buffering Approximation, 
Influx, Dissociation rate constant.  

I. INTRODUCTION 
alcium is one of the most important second messenger 
molecules, with a diverse array of effectors. Calcium 

directly moderates electrical activity, on a relatively fast time 
scale, through its control of calcium dependent potassium 
channels [10], [11], [15]. Long-term effects are mediated by 
various kinases and phosphatases. Calcium is one of the 
activators of protein kinase C, which plays a role in synaptic 
plasticity. One aspect of Ca2+ signaling that affects Ca2+ 
microdomains is the association of Ca2+ with cytosolic Ca2+-
binding proteins. Cellular Ca2+ buffers, whether stationary or 
mobile, reduce the basal free Ca2+ concentration and localize 
Ca2+ signals by reducing the effective diffusion coefficient for 
Ca2+. Mobile Ca2+ buffers have an additional "sink" effect on 
free Ca2+ in proportion to the local Ca2+ gradient that both 
restricts Ca2+ elevations and facilitates Ca2+ clearance after 
channel inactivation. Ca2+ indicator dyes are themselves 
mobile Ca2+ buffers. The Ca2+ microdomain at the mouth of a 
channel forms quickly upon opening of the channel and 
dissipates quickly upon channel closure, reaching equilibrium 
within microseconds. We can formulate the model for the 
equilibrium Ca2+ profile near an open channel [20]. These 
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formulas relate the Ca2+ concentration to the distance from the 
channel, and differ primarily in the treatment of Ca2+ buffers. 
G. D. Smith has developed a simplified mathematical 
description of Ca2+ diffusion that is valid in the presence of 
rapid buffering approximation [10]. Experimental buffers in 
the cytoplasm give equilibrium time on the order of few 
milliseconds. The validity of the rapid buffering 
approximation requires that the equilibrium time be much 
smaller than the time required for Ca2+ to diffuse across a 
region of the size of a typical gradient. 

In a complex with calmodulin, calcium is an activator or 
regulator of several enzymes, including calcium-calmodulin 
dependent protein kinase, which plays a role in synaptic 
plasticity, and adenylate cyclase, which produces cAMP, 
another important second messenger [7], [18]. Neurons have 
numerous sources and sinks of calcium in order to tightly 
control this very active molecule. Sources include voltage 
dependent calcium channels (which allow electrical activity to 
moderate calcium concentration) and intracellular stores; sinks 
include buffers and membrane pumps. 

Experimental attempts were made by many research 
workers to study the role of calcium in neuronal signaling [1], 
[2], [9], [10], [17]. They experimentally studied and explained 
the elementary and global aspects of calcium signaling, effects 
of mobile buffers on facilitation of calcium diffusion, the 
phenomenon of buffered diffusion of calcium in the cells and 
concentration profiles of intracellular Ca2+ in the presence of 
diffusible chelator. 

Also theoretically attempts were made to study calcium 
diffusion problem in neuron cells [3], [8], [10], [13], [14], 
[19]. They derived an analytical steady state solution for the 
Ca2+ profile near an open Ca2+ channel based on a transport 
equation which described the buffered diffusion of Ca2+ in the 
presence of rapid stationary and mobile Ca2+ buffers. They 
also used the steady state rapid buffering approximation to 
estimate the source amplitude of local Ca2+ elevations that 
occur in the presence of several mobile Ca2+ buffers. Further 
their work also highlights all the effect of rapid mobile buffer 
and bulk cytosolic Ca2+ and [Ca2+]d (domain concentration). 
Near source estimate of the effect of rapid mobile buffer on 
[Ca2+]d the steady state rapid buffering approximation near an 
open Ca2+ channel is a novel analytical result that 
complements the excess buffer approximation, when the 
conditions for the validity of the rapid buffering 
approximation near a point source for Ca2+ ions are met, the 
steady state rapid buffering approximation provides an upper 
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limit on the Ca2+ profile during a local Ca2+ elevation [7]. It 
can also be used to relate source amplitude of a local Ca2+ 
elevation to an observed Ca2+ bound dye profile. 

From the literature it is evident that most of the attempts 
have been made to study calcium diffusion problems in neuron 
cells for steady state case and almost no attention has been 
paid to unsteady state problems. In view of above an attempt 
has been made to study unsteady state calcium diffusion in 
neuron cells involving rapid buffers. 

II. MATHEMATICAL MODEL 
Reaction diffusion equations are often used to simulate the 

buffered diffusion of intracellular Ca2+ an important process to 
include in biophysically realistic neuronal models. The 
buffered diffusion of Ca2+ near isolated point sources can be 
described mathematically by a system of reaction- diffusion 
equations with spherical symmetry. It is standard to assume 
homogeneity, isotropy, and Fickian diffusion as well as 
bimolecular association reaction between Ca2+ and buffer. 
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where Bj and CaBj are free and bound buffer, respectively and 
j is an index over the buffer species. 

With these assumptions the system of reaction – diffusion 
equations for the concentrations of Ca2+, free buffer Bj and 
bound buffer CaBj respectively are as below, 
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where reaction term Rj is given by  
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In this equation DCa, DBj and DCaBj are diffusion coefficients 
for free Ca²+ free buffer and bound buffer respectively. kj

+ and 
kj

- are dissociation rate constants for buffer j respectively. We 
know that the association and dissociation rate constants for 
the bimolecular association reaction between Ca2+ and buffer j 
can be combined to obtain a dissociation constant, Kj 
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Because Ca2+ has a molecular weight that is small in 

comparison to most Ca2+ binding species, The diffusion 
constant of each mobile buffer is not affected by the binding 
of Ca2+ that is DBj = DCaBj = Dj and substitute it in (3) & (4) we 
get  
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where  

            ][B + ][CaB = ][B jjTj         (6) 
 
Providing that the [Bj]T profile is initially uniform and there 

is no source or sink for Ca2+ buffer, the [Bj]T will remain 
uniform for all time. Thus we write the following equation for 
the buffered diffusion of Ca2+ 
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 (9) 
 
For boundary condition, we assume a point source Ca2+ at 

the origin and a fixed background Ca2+ concentration. There is 
no source for buffer and the buffer is assumed to be in 
equilibrium with Ca2+ far from the source  

A reasonable initial condition for their simulation is a 
uniform background Ca2+ profile of [Ca2+] = 0.1 μM 

We further assume that all buffers are initially in 
equilibrium with Ca2+ and boundary conditions are given by 
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Near the source we enforce the boundary conditions 
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implying an influx of free Ca² + at the rate σ, By Faraday’s 
law, σ = ICa /zF [6]. 

For notational simplicity we have written Dc and Db for the 
diffusion coefficient of free Ca²+ and free buffer, respectively 
and ∇² as an abbreviation for equations for the buffered 
diffusion of Ca2+[5]. 
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These full equations for the buffered diffusion of Ca²+ have 

been used to analyze the ability of endogenous buffers (fast 
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BAPTA and slow EGTA) and exogenous Ca²+ buffers in the 
vicinity of a channel pore.  

A. The Rapid Buffering Approximation 
In case of rapid buffering approximation, buffer 

concentration is variable [4], [13], [14], [16]. We can make a 
quasi-steady-state approximation and assume that changes in 
buffer concentration occur in such a manner that Ca2+ and 
buffer are essentially always in equilibrium (i.e. Rj = 0). Thus 
we have the following equilibrium expressions for single rapid 
buffer. 
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From above the total concentration of Ca2+ (free and bound) 

is a simple function of [Ca2+] and can be expressed as given 
below 

 

][
]][[][][][][ 2

2
222

+

+
+++

+
+=+=

CaK
BCaCaCaBCaCa T

T

   

 (14) 

 
Now with the help of (12), (13) & (14) we define the 

“buffer capacity” i.e. the rate of change of bound [Ca2+] with 
respect to free [Ca2+] 
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and the “buffering factor” as the differential of free [Ca 2+] 
with respect to total [Ca2+] that is  
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where β is always some number between zero and one (β = 
1/100 is not unreasonable, but the exact value depends on 
[Ca2+] and buffer parameters). Using these buffered diffusion 
equations of Ca2+ for one buffer becomes  
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It allows us to quantify the effect of rapid buffers on Ca2+ 

diffusion. The pre-factor of the laplacian term in (17) can be 
identified as an effective diffusion coefficient, Deff, given by 

 
   ( )κβ bceff DDD +=          (18) 

Case-I: When the [Ca2+] >>K, 
Although β and κ are general function of [Ca2+] but in 

certain circumstances this dependence can be weak, eg, when 
the [Ca2+] >> K, κ approaches 0 and β approaches one, 
reflecting the fact that nearly saturated buffers will have little 
effect on [Ca2+] .  

Then (17) becomes 
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 By applying finite differences technique, we get for ri? 0 
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for  ri ≠ 0                   
where Ui

j is an approximation to the function u(ri , tj), and u 
represents the concentration of Ca2+. h and k are step sizes for 
the r and t,
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At the origin (ri=0,i=0) a finite difference approximation to 
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Case-II: When the [Ca2+] << K, 
Then the value of κ and β are given by 
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TABLE I 

NUMERICAL VALUES OF VARIOUS CALCIUM BUFFERS 
 A) ENDOGENOUS BUFFERS 

Ca2+ buffer k+ μM-1s-1 k- s-1 K μM [B]T μM 
Troponin-C 90-100 7-300 0.05-3 0 50(varied) 

Calmodulin D28K 100-500 37-470 0.2-2.0 32 
Triponin C 39 20 0.51 70 

Parvalbumin  6 1 0.00037 36 
 

TABLE II 
NUMERICAL VALUES OF VARIOUS CALCIUM BUFFERS  

B) EXOGENOUS BUFFERS 
Ca2+ buffer k+ μM-1s-1 k- s-1 K μM [B]T μM 

EGTA 1.5 0.3 0.2 113 
BAPTA 600 100 0.1-0.7 95 

 
      Applying finite differences technique, we get 
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