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 
Abstract—In this paper, we present a simple effective numerical 

geometric method to estimate the divergence of a vector field over a 
curved surface. The conservation law is an important principle in 
physics and mathematics. However, many well-known numerical 
methods for solving diffusion equations do not obey conservation 
laws. Our presented method in this paper combines the divergence 
theorem with a generalized finite difference method and obeys the 
conservation law on discrete closed surfaces. We use the similar 
method to solve the Cahn-Hilliard equations on evolving spherical 
surfaces and observe stability results in our numerical simulations. 

 
Keywords—Conservation laws, diffusion equations, 

Cahn-Hilliard Equations, evolving surfaces.  

I. INTRODUCTION 

INDING numerical methods to compute partial differential 
equations on evolving surfaces is an interesting and 

difficult problem. These methods have many important 
applications in fluid dynamics, magnetohydrodynamics, image 
processing, and so on. See more details in [1], [2], [9]. In this 
note, we shall introduce a new numerical method for solving 
the diffusion equation on evolving closed surfaces that we 
proposed in 2016. This method is an intrinsic geometric 
method to deal with the discrete conservation law on evolving 
regular surfaces, and we shall improve the Cahn-Hilliard 
equation on evolving spherical surfaces by this method.  

The Cahn-Hilliard equation with a variable mobility on a 
regular closed surface   takes the form: 
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where the quantity ),( txu  is the difference between the mole 

fractions of binary mixtures. The function 22 )1(
4

1
)(  uuF  is 

the Helmholtz free energy per unit volume of a homogeneous 
fluid, and   is a positive constant. See [10], [11] for more 
details. 

II. PRELIMINARIES 

First, we introduce a discrete Laplace-Beltrami operator on a 
stationary surface that we proposed in 2013 and 2014 [3], [4]. 
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A. The Local Tangential Method [3] 

Let ),( FVS  be a triangular mesh with }1|{ Vi nipV   

the list of vertices and }1|{ Fk nkTF   the list of triangles. 

We introduce the approximating tangent plane )( pTS  at the 

vertex p of as: 

1. The unit normal vector )pN A (  at the vertex p  in S  is 

given by the weighted normal vector  
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where 
kTN is the unit normal vector of the triangle kT  

including a vertex p . We refer to [3] for more details. 

2. The approximating tangent space )pTS(  of S  at p  is 

now determined by  
 

  )(|)( pNwwpTS A 3R  .            (2) 
 

We can choose an orthonormal basis 21,ee  for the tangent 

plane )pTS( of S at p . Hence, )}(,{ 21 pNee A forms an 

orthonormal basis for 3R  and every q  around p  can be 

assigned a new xyz -coordinate by  
 

  )()()()()()( 21 pNpNpqpqeqyeqx AA   (3) 
 
and 

  )()())(),(()( pNpqpypxhqz A .          (4) 
 

Obviously, the new coordinate of p  is )0,0,0( . 

B. Discrete Tangential Gradient Vector 

Since the gradient f  of a smooth function f  on a 

regular surface   with a parametrization ),( vux is given by 
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where E, F, and G  are the coefficients of the 1st fundamental 

form of   and  ),( vuf
u

fu x

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  and  ),( vuf
v
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 , we 
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need to approximate the local parametrization of  around p  

and the differential quantities of the function f . 

We shall construct a local parametrization by representing 
the regular surface   as locally a graph surface around the 
vertex p . Consider the triangular mesh ),( FVS   of a closed 

surface   with mesh size 0r . Given a vertex Vp , let 

jp , nj ,,1,0   be the neighboring vertices of p  with 

npp 0 . Suppose that the new coordinate of jp  is 

),,( jjj zyx , and we denote jjj zyxh ),( . We use the 

polynomial fitting for the height function h  of   around p . 

By the Taylor expansion, one has  
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for each nj ,,1 . 
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 and j , nj ,,1  is a set of 

real numbers. Then, we have  
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Similarly, we can also approximate the differential 
quantities of the function f  on  . Therefore, the gradient 

vector f  at p  can be approximated by 
 

 
  .1

1

1

1
)( 2

2

22























vu

vuuvv

vuvuu

vu

A

ff

hhfhf

hhfhf

hh
pf       (9) 

 
We refer to [5] for the detail of the high-order approach. 

Theorem 1. Using above notations, one has 
 

)()()( 2rOpfpf A                          (10) 

where 

 
  .1

1

1

1
)( 2

2

22























vu

vuuvv

vuvuu

vu

A

ff

hhfhf

hhfhf

hh
pf       (11) 

C. Discrete Laplace-Beltrami Operator 

If X is a local vector field vu BAX xx   on )(Ux . 

The divergence XDiv , of X  is defined as a function 

Rx  )(: UXDiv  given by the trace of the linear map 

XpY pY )()(   for p  in  . A direct computation yields 
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Note that the divergence theorem gives 
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where n  is the unit outward normal vector on U . 

The Laplace-Beltrami operator f acting on the function 

f is defined by  fDivf    and has the local 

representation  
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See [7], [8] for details. 

We use the divergence theorem to give a discrete 
approximation of the divergence of a vector field X  defined 
on a triangular surface mesh ),( FVS  . Consider a 

vertex Vp and let jp , nj ,,1,0  , be the neighboring 

vertices of p with npp 0 . These vertices jp  are labeled 

counterclockwise about the normal vector )( pN A . Let jT  be 

the triangle with vertices p , jp , and 1jp . We define the 

approximating outer normal vectors ),( jj pTn and ),( 1jj pTn  

of the triangle jT at the vertex jp and 1jp  in   by 
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and 
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We can now define the discrete divergence XDivA  of a 

vector field on the triangular surface mesh S  by 
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where kT  denotes the area of the triangle kT . 

Theorem 2. Let f  be a smooth function defined on a regular 

surface   and the vector field fA on S  satisfy  
 

)( 2rOff A           (20) 
 

where f  is the gradient vector field of f on  . Then, we 

have  
 

 )())(()( rOpfDivpf AA  .     (21) 

III. DISCRETE ALGORITHMS OF PDES ON EVOLVING 

SURFACES 

Next, we discuss the discrete algorithms about the diffusion 
equation and Cahn-Hilliard equation on evolving surfaces. 

A. Diffusion Equations on Evolving Surfaces 

Let  )(t , ],0[ Tt , denote a moving oriented regular 

surfaces in 3R . Suppose that these regular surfaces are moving 
with prescribed velocity field ))()(( tptX , )()( ttp  . We 

want to solve the surface diffusion equation: 
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*   hXhh ttt          (22) 

 

on evolving surfaces )(t . Here,  Xtt

* is the material 

derivative. See Elliott and Ranner [11] for more details. 
After some direct computations, one has 
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where ),)(( vutH  is the mean curvature on the surface )(t . 

The is the equation for the conservation law on the evolving 
surface )(t  with the velocity field 

),)((),)((),)((),)(( vutNvutcvutVvutX  . See [6] about 

these computations. 
Since the divergence theorem, integrating (22) on a portion 

)()( ttU  , one has 
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and this is equivalent to 
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After an explicit time discretization, (25) becomes 
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After space discretization, (27) yields 
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Now our two-step algorithm can be stated as follows. 

Step 1: For each p , use the above method to compute the 

Laplae-Beltrami operator )( jj

A ph  and set 
 

)()()( jj

A
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Step 2: Let j

kp , nk ,,1,0  , be the neighboring vertices of jp  

with j

n

j pp 0 . These vertices j

kp  are labeled 

counterclockwise about the normal vector )( j

A pN of the 

surface j  at the vertex jp  in the space 3R . Let j

kT  

be the triangle with vertices jp , j

kp and j

kp 1 , 0j . 

We set 
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One can find the proofs of the convergence and conservation 

law of this method in [6]. 

B. Cahn-Hilliard Equation on Evolving Surfaces 

We solve the Cahn-Hilliard equation 
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on an evolving surface )(t . 
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Using the explicit time discretization, the first equation in 

(28) becomes 
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The function n  is given by  
 

  nnnn uuu n
 23  .       (35) 

IV. SIMULATIONS 

Now we solve (32) with 1.0  on two different evolving 
surfaces. All initial conditions of our simulations are the same 

random numbers in ]5.0,5.0[ , and the time step is 
100

2r
. 

We solve (32) on the unit sphere moving with a prescribed 
velocity 
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where )zyxp ,,(  in the unit sphere and s  is a nonzero real 

number. We show all solution of (34) at times are 0.75 and 1. 
Fig. 1 shows the solution of (32) on a stationary unit sphere. 

Figs. 2-7 present the numerical solutions of (32) with 
,250,50,10,2,1s  and 500 . Fig. 8 is the solution with 

 00)5.0sin()500cos(500),(  ztpt X . Fig. 9 shows 

the Ginzberg-Landau free energy of (32) on the moving 
surfaces with different s  in (36). 

Figs. 10-15 show the numerical solution on a unit sphere 
with velocity field Y . 

V. CONCLUSION 

Conservation laws play important key roles in the partial 
differential equation on surfaces. An efficient numerical 
method should at least obey the conservation law. Our 
proposed method obeys the discrete conservation law. 
Furthermore, the Ginzberg-Landau free energy is decreasing in 
our simulations. 

 

 

Fig. 1 The solution of (26) on a unit sphere 
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Fig. 2 The solution of (26) with 1s  in the velocity field X  
 

 

Fig. 3 The solution of (26) with 2s  in the velocity field X  
 

 

Fig. 4 The solution of (26) with 10s  in the velocity field X  
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Fig. 5 The solution of (26) with 50s  in the velocity field X  
 

 

Fig. 6 The solution of (26) with 250s  in the velocity field X  

 

 

Fig. 7 The solution of (26) with 500s  in the velocity field X  
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Fig. 8 The solution of (26) with )5.0sin()500cos(500)1(  ztX  

 

 

Fig. 9 The Ginzberg-Landau free energy with different s  
 

  

Fig. 10 The solution of (26) with 1s  in the velocity field Y  
 



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:10, No:11, 2016

558

 

 

  

Fig. 11 The solution of (26) with 2s  in the velocity field Y  

 

  

Fig. 12 The solution of (26) with 10s  in the velocity field Y  
  

  

Fig. 13 The solution of (26) with 50s  in the velocity field Y  
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Fig. 14 The solution of (26) with 250s  in the velocity field Y  
 

  

Fig. 15 The solution of (26) with 500s  in the velocity field Y  
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