
International Journal of Architectural, Civil and Construction Sciences

ISSN: 2415-1734

Vol:12, No:3, 2018

335

 

 

 
Abstract—This work reports about an approach for an automatic 

adaptation of concrete formulations based on genetic algorithms 
(GA) to optimize a wide range of different fit-functions. In order to 
achieve the goal, a method was developed which provides a 
numerical description of a fibre reinforced concrete (FRC) mixture 
regarding the production technology and the property spectrum of the 
concrete. In a first step, the FRC mixture with seven fixed 
components was characterized by varying amounts of the 
components. For that purpose, ten concrete mixtures were prepared 
and tested. The testing procedure comprised flow spread, 
compressive and bending tensile strength. The analysis and 
approximation of the determined data was carried out by GAs. The 
aim was to obtain a closed mathematical expression which best 
describes the given seven-point cloud of FRC by applying a Gene 
Expression Programming with Free Coefficients (GEP-FC) strategy. 
The seven-parametric FRC-mixtures model which is generated 
according to this method correlated well with the measured data. The 
developed procedure can be used for concrete mixtures finding 
closed mathematical expressions, which are based on the measured 
data. 
 

Keywords—Concrete design, fibre reinforced concrete, genetic 
algorithms, GEP-FC 

I. INTRODUCTION 

HE production of free-formed thin-walled concrete 
elements requires, depending on the curvature state, a 

targeted adjustment of the processing properties of the fresh 
concrete, such as, the dynamic viscosity and the time-
dependent flow behavior [1], [2]. The calculation of such 
application-specific concrete formulations is coupled with a 
high experimental effort in order to meet the mechanical and 
rheological properties as well as requirements regarding to 
formwork, technology and quality. 

Due to the large number of parameters and different target 
variables in the application-specific recipe adaptations, 
multicriteria optimization is essential [3]. Particular 
advantages are provided by optimization algorithms based on 
artificial neural networks as methods of nonparametric 
regression [4], [5]. By the aid of such algorithms, masses can 
be reduced, and the stiffness or strength of such structures will 
be increased. These methods have been already applied in the 
construction industry and for the development of mineral 
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products [6]. For example, Hola and Schabowicz investigated 
the use of neural networks for the assessment of concrete 
strength by means of various non-destructive values [7]. 
Freitag et al. predicted the long-term deformation of textile 
reinforced concrete with recurrent neural networks for fuzzy 
sizes [8]. An analysis procedure based on artificial neural 
networks is also used in combination with stochastic training 
tests for the analysis and monitoring of the life of tunnel 
structures [9]. In addition to the use of optimization techniques 
for the design of structures, methods of artificial intelligence, 
in particular neural networks are used for the determination 
and classification of hard-to-describe material properties. 
These neural networks offer a way to map complicated 
material phenomena as a function of any input data by 
measured training results. In contrast to neural networks for 
which the mathematical model in form of a network is 
presented implicitly only, in this work an approach is 
introduced, which enables the possibility to obtain explicit 
mathematical expressions for an automatic adaptation of 
concrete formulations.  

II. MATERIALS AND METHODS 

A. Structure of Algorithm 

In the original algorithm, GEP [10] is a combination and 
further development of GA [11], [12] and Genetic 
Programming (GP) [13]. Both are population-based 
optimization heuristics, which according to the principle of 
evolution (selection, mutation, and recombination) iteratively 
produce new and better-adapted individuals. These individuals 
will be compared with each other by assigning a quality value, 
which is commonly referred as fitness.  

B. Coding of the Individuals 

The main difference between GA and GP is the encoding of 
the individuals. While GP implements graphs (Parse Trees) 
with variable length in the GA, the representations appear as 
vectors with constant length. The canonical GEP algorithm 
also uses a tree structure (Expression Trees, cf. Fig. 1 (a)) for 
the representation of the mathematical expressions. This only 
occurs in a downstream translation step. The basic 
representation of the different Expression Trees and so 
encoded mathematical expressions is in the form of an initial 
vector representation (Chromosome, cf. Table I). These 
Chromosomes of elementary mathematical functions and 
argument symbols are clearly, sequentially transferred into 
concrete expressions.  

The vectorial representation increases the expressive power 
on the one hand, because constant vector lengths enable the 
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possibility of coding mathematical expressions of varying 
complexity. On the other hand, genetic operators can be 
applied to vectors in a more flexible manner. To ensure a 
unique transformation of the vector representation to a valid 
mathematical expression, certain conditions for the 
construction of a Chromosome must be considered.  
 To further increase the flexibility, multiple sub 

expressions are connected to form an overall expression 
about the defined Linking function (e.g. add). These 
mathematical sub expressions are organized within the 
Chromosome in independent sections (Genes).  

 Different Genes must have the same basic structure, when 
information is exchanged.  

 The vector of a Gene-section is divided into a Head with h 
elements, which may contain function symbols and 
arguments also called Terminals as well as a Tail, which 
only contains Terminals.  

 The required number t of Terminal symbols in the Tail 
range depends on the length h of a given Head sequence 
and the maximum number of function arguments n passed 
to it (mostly two): 
 

     t = h∙(n–1) + 1                             (1) 
 
As an example, the basic structure of a multigenic- 

Chromosome is shown in Table I. It consists of three sub 
expressions (Genes) of the same structure (h = 3, t = 4) which 
are linked via a Linking function (add: addition) to a resulting 
overall expression see (3). 

 
TABLE I 

BASIC STRUCTURE OF A MULTIGENIC-CHROMOSOME [14] 

1. CHROMOSOME ↪ LINKING: ADD 

1. Gene       

add cos √ݔ x1 x2 x2 x1 

2. Gene       

add sin x2 x1 x1 x1 x2 

3. Gene       

x2 mul add x1 x2 x2 x2 

C. GEP-FC 

The aim is to obtain a closed mathematical expression 
which best describes a given point cloud (Target environment) 
by applying a genetic optimization. However, to obtain the 
most compact mathematical expressions, the basic GEP-
algorithm will be expanded and supplemented by an additional 
inner optimization step.  

1) Decoding of Individuals and Adaptation of the Free 
Coefficients  

For this purpose, the function symbols of the Head 
sequence are not transferred in the form of elementary 
functions but in a general multi-dimensional family of 
functions. These expressions contain free coefficients wi 
(GEP-FC), compare, e.g. (2). 

 
sinሺݔሻᇣᇤᇥ
ீா௉

→ 	ݔ	଴ݓሺ	݊݅ݏ	଴ݓ ൅	ݓ଴ሻ 	൅ ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇥ	଴ݓ
ீா௉ିி஼

            (2) 

 

Each of free coefficients are adjusted in an inner 
optimization according to the Target environment, and this 
obtained function is associated to a fitness. These two stages 
allow, in contrast to the canonical GEP algorithm (2), to create 
a more compact mathematical expression. In the first step, the 
appropriate mathematical structure is built and in the second 
step the free coefficients are assigned with appropriate values. 
In Fig. 1 (a), the transfer of the multigenic- Chromosome from 
Table II to the Expression Tree with numbered free 
coefficients is shown, where the argument symbols 
(placeholders) #1 and #2 are successively replaced with 
Terminals or other mathematical expressions.  

If the individual Sub Expression Trees shown in Fig. 1 (a) 
(according to vector Table I) are transferred to mathematical 
expressions and linked by addition (Linking function), the 
following mathematical function applies: 

 

௜݂(ݓሬሬԦ, ݔଵ,   = ଶሻݔ
ଵݔସݓሺ	ଷcosݓ଴ሼݓ ൅ ହሽݓ ൅ ଶݔ଼ݓ଻ඥݓଵ൛ݓ ൅ ଽݓ ൅ ଵ଴ൟݓ ൅ ଶᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥݓ

ଵ.ீ௘௡௘

+  

ଶݔଵହݓଵସsinሺݓଵଵሼݓ ൅ ଵ଺ݓ ൅ ଵ଻ሽݓ ൅ ଶᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥݔଵଶݓ
ଶ.ீ௘௡௘

	+ ด	ଶݔ	
ଷ.ீ௘௡௘

               (3) 

 
This total mathematical expression contains k = 18 free 

coefficient w Ԧ which are assigned with concrete values in a 
further optimization step. In order to reduce the number of 
possible solutions, a simplification of the term as an 
intermediate step will be carried out before the internal 
optimization takes place. Products and sums of coefficients are 
each summarized (w1w2…wn → w1, w1+w2…+wn → w1) by 
one variable. A complete reduction to unique solutions is not 
feasible due to the variety of possible functions and can be 
done only in a post-processing step (cf. (11)). 

The adaptation of the free coefficients was performed by 
robust nonlinear optimization algorithm, NELDER-MEAD. 

2) Optimization of the Mathematical Structure 

Fig. 1 illustrates schematically the entire process of the two-
stage optimization process. The termination is reached by a 
given number of generations or a function exactly 
approximates all test points. For an assessment of the fitness 
(fit_i) for the outer optimization loop as suggested by [10], the 
cumulative relative error (E_i) with a fitness between zero (no 
match) and 1000 (perfect match) according to (4) is 
introduced. 
 

min௪బ௪భ…௪ೖషభ∈Թ ൜ܧ௜ሺݓሻ
ሬሬሬሬሬԦ ൌ ଵ

௠
∑ ൬

௙೔൫௪,ሬሬሬሬԦ௫Ԧೕ൯ି்ೕ
்ೕ

൰௠
௝ୀଵ

²ൠ  

 
as well as 

௜ݐ݂݅ ൌ
ଵ଴଴଴

ଵାா೔ሺ௪ሬሬԦ೚೛೟ሻ
                               (4) 

 
To exclude invalid mathematical expressions in the domain 

such as division by zero, √Թିor ln ඥሺԹିሻ,	for these proposed 
solutions a fitness of fiti = 0 will be assigned immediately. 
Furthermore, individuals are selected according to their fitness 
for the outer optimization loop similar to a GA. The selection 
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probability is proportional increasing to the fitness, ‘‘Roulette 
Wheel selection’’. To the genetic representation 
(Chromosome) of such selected individuals, different genetic 
operators will be applied with a certain probability (rate). This 
forms a new mathematical expression for the next iteration 
(generation) of the outer optimization loop. The various 
operators can be classified according to: 

Mutation: changing a function symbol (Head) or Terminal 
(Tail) at a location of a Gene, wherein the structure of the 
Gene is to preserve. 

Transposition: sequences within a Gene copied to other 
locations within the Chromosome. The selected sequences are 
copied to the first place within a chosen Gene (Root Insert 
Sequence, RIS) or to the second place (Insert Sequence, IS). 
The transposition in multigenic representations can also be 
done in a higher level by copying of entire Genes (Gene 
Transposition).  

Inversion: a selected sequence is randomly rearranged.  
Crossover: genetic regions are exchanged between two 

Chromosomes. Begin to exchange from one position to the 
end (Single Point Crossover) or between two positions, (Two 
Point Crossover). The exchange of entire Genes in multigenic 
representations is also implemented (Gene Crossover).  

The operators were implemented referring to [10], where 
the selection of appropriate locations, sequences as well as 
Genes is chosen randomly. Studies with different test 
functions have shown that, particularly in populations with a 
low number of individuals, the mutation operator can 
significantly contribute to the acceleration of convergence, 
caused by creation of new genetic material in populations. For 
this reason, an additional operator, the so-called Range 
Mutation, was implemented. Here, a contiguous sequence 
mutates simultaneously. Thereby, the diversification of the 
population is successively increased. 

Fig. 1 (b) illustrates schematically the entire process of the 
two-stage GEP-FC optimization process. The termination is 
reached by a given number of generations or a function 
exactly approximates all test points. 

 

 

(a) Expression Tree           (b) Schematic flow of an optimization run 

Fig. 1 GEP-FC-optimization [14] 
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D. Composition of FRC 

Table II illustrates the qualitative and quantitative 
compositions of a typical FRC for façade applications. In 
order to test the novel approach for an automatic adaptation of 
concrete formulations based on GEP-FC algorithm, the 
compositions of the FRC was varied in one dimension. For 
this purpose, the water-binder (w/b ≡ x) ratio was varied, 
whereby the aim was to obtain only homogeneous and non-
segregated fresh concrete. According to that, the w/b ratio was 
varied from 0.28 to 0.42. The fine concrete contained apart 
from white Portland Cement type 52.5 R (according to EN 
206) an amorphous aluminosilicate as puzzolanic binder 
(Table II). Dolomite sand with a grain size of 0.1-1.0 mm was 
used as aggregate, and dolomite powder with an average grain 
size of 70 μm was used as filler. The alkali-resistant (AR) 
short glass fibres (16 M.-% ZrO2) were 12 mm long and had a 
length mass of 45 tex. The high-performance superplasticizers 
had a polycarboxylate ether (PCE) content of 30 wt.%. The 
volumetric compensation (V = 1.00 m³) required due to the 
different water contents was performed over the dolomite 
sand. 

 
TABLE II 

COMPOSITION OF THE FRC MIXES IN KG/M³ 

	 1 2 3 4 5 6 7 8 9 10 

CEM I 52.5 R (EN 206) 500 

Amorphous aluminosilicate 55 

sand 0.1/1.0 1350-1120	
filler (x50= 74 µm) 300 

Water 170-252	
AR-glass fibres 5 

superplasticizers 11 

w/b 0.28-0.42	

 
The fine-grained concrete was mixed with the intensive 

mixer Eirich R05T. The mixing parameters are shown in 
Table III. The mixing time was 5 min in total. The fresh 
concrete was tested according to DIN EN 12350. 

 
TABLE III 

MIXING PARAMETERS FOR THE PRODUCTION OF FINE CONCRETE 

 COMPONENT 
MIXING 

PRINCIPLE 
MIXING 

POWER IN %
MIXING 

TIME IN S 
1. binders + aggregates counter rotation 15 60 

2. water + super plasticizer co-rotation 50 120 

3. AR-Glass fibres co-rotation 60 60 

E. Test Specimens and Test Setup Fibre FRC 

The flow test of the fresh FRC was measured according to 
DIN EN 12350-5. The samples for the tests to be performed 
on the hardened concrete were filled into corresponding molds 
without vibrations and were stored dry, according to DIN EN 
12390-2. The 3-point bending tensile strength (Fig. 2 (a)) was 
determined by means of the ToniNorm (company Toni 
Technik) with samples which measured 225 x 50 x 15 
mm³.The span width set was 200 mm and the constant load 
speed was 100 N/s. The compressive strength was determined 
by means of the following DIN EN 12390-3, with cubes 
having an edge length of 150 mm (Fig. 2 (a)). The measured 

data points for the calculations were based on arithmetic 
averages, which were calculated from three measured values. 

 

 

(a) Bending tensile strength            (b) Compressive strength 

Fig. 2 Determination of the FRC-strengths 

III. RESULTS AND DISCUSSION 

A. Properties of the Fresh and Hardened Concrete Mixes 
TABLE IV 

PROPERTIES OF FRESH AND HARDENED FRC MIXES 

MIX 
FLOW SPREAD 

IN CM 
COMPRESSIVE 

STR. IN MPA 
BENDING TENSILE 

STR. IN MPA 
1 0 55.4 4.8 

2 0 57.2 6.7 

3 0 59.2 6.9 

4 0 62.7 6.1 

5 33 79.2 10.7 

6 55 75.6 10.1 

7 58 71.5 10.8 

8 65 65.9 8.6 

9 70 67.8 8.7 

10 70 62.5 9.4 

 

 

(a) Flow spread of mix 1        (b) Flow spread of mix 10 

Fig. 3 Exemplary results of the flow tests 
 
Table IV shows the characteristics of fresh concrete and 

hardened FRC mixes after 28 days. The fresh concrete mixes 
had a spreading flow between 0 and 70 cm depending on the 
w/b-ratio. Thus, the concrete mixes embraced all consistency 
classes of DIN EN 12350-5, starting from very stiff (mixture 
1-4) through to self-compacting (mixture 9 and 10), see Table 
IV and Fig. 3. An increasing of the w/b-ratio results in an 
increasing of the flowability of the FRC, which corresponds to 
the state of the art. The compressive and the 3-point bending 
tensile strength of the FRC mixes ranged from 55.4 to 79.2 
and 4.8 to 10.8 MPa, respectively. The comparatively low 
strengths of the mixtures 1 to 4 (cf. Table IV) resulted from 
the very stiff consistencies and the vibration-free filling of the 
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molds.  

B. Solution of the GEP-FC 

To determine a quantity equation for the measured 
properties of the FRC (Table IV), the parameters in Table V 
for the GEP-FC algorithm are applied. The solution should be 
as compact as possible. Therefore, the allowable complexity is 
reduced to a sub expression (Gene) with a maximum nesting 
base functions of 3 (Head length h). 

 
TABLE V 

OPTIMIZATION PARAMETERS FOR THE NUMERICAL DESCRIPTION OF THE FRC 

NUMBER OF RUNS 30 

Max. number of generations 50 

Population size 30 

Number of fitness cases 10 

Function set, two arguments +, -, ∙, / 

Function set, one argument sin; cos; tan; log; exp; √ݔ 
Terminal set x 

Head length 3 

Number of genes 1 

Mutation rate 0.2 

Range-mutation rate 0.2 

Inversion rate 0.1 

Single-point crossover 0.1 

Two-point crossover 0.1 

Transposition IS 0.1 

Transposition RIS 0.2 

Fit function (4) 

Selection Roulette wheel 

 
After 30 independent runs of a GEP-FC algorithm, the 

solution was finally surrendered to the best Chromosome, as 
shown in Table VI. 

 
TABLE VI 

BEST CHROMOSOME AFTER 30 INDEPENDENT GEP-FC RUNS 

1. GENE        

Flow spread exp exp exp x x x x 

Compressive strength / √ݔ sin x x x x 

3-p. bending tensile strength - cos sin x x x x 

 
The optimization results of flow spread, compressive and 3-

point bending tensile strength after transformation to the 
mathematical expression are illustrated in (5)-(7).  
Flow spread 
 

݂ሺݔሻ ൌ ଵݓ ൅ ݁௪య	ଶݓ
೐ೢర೐

ೢఱ	ೣ

                   (5) 
 
Compressive strength 
 

݂ሺݔሻ ൌ ଵݓ ൅
௪మି௪య	ඥ௪రା௪ఱ	௫

௪లାୱ୧୬ሺ௪ళା௪ఴ	௫ሻ
                     (6) 

 
3-point bending tensile strength 
 
݂ሺݔሻ ൌ ଵݓ ൅ ଶݓ 	cosሺݓଷ ൅ ሻݔ	ସݓ ൅ ଺ݓሺ	sin	ହݓ ൅  ሻ    (7)ݔ	଻ݓ

 
After fitting the free coefficients in (5)-(7), Figs. 4-6 show 

the functions of flow spread (Fig. 4), compressive strength 

(Fig. 5), and 3-point bending tensile strength (Fig. 6). Usually, 
the compressive and 3-point bending tensile strength decreases 
by increasing w/b-ratio. In this case, the mechanical strengths 
increased up to a w/b-ratio of 0.36 and then decreased again. 
This is due to the relative low amount of the measured data 
and to the very stiff consistencies of the FRC mixtures 1 to 4. 
Nevertheless, the parametric FRC mix model generated by the 
GEP-FC algorithm correlated well with the measured data (cf. 
Figs. 4-6.).  

 

 

Fig. 4 Flow spread 
 

 

Fig. 5 Compressive strength 
 

 

Fig. 6 Bending tensile strength 
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IV. CONCLUSION 

The GEP-FC procedure can be used for finding closed 
mathematical expressions of FRC mixtures, which are only 
based on measured data. Beyond that, the significant 
advantage of the GEP-FC method is the ability of an 
automatic analysis of datasets resulting in explicit 
mathematical expressions, which allows a compact 
representation of measurement results. This has been shown 
by the results of the practical investigations and the 
subsequent mathematical calculations. The calculated 
mathematical expressions pointed up a good correlation with 
the measured data in general. This means, the function values 
are considered consistent with the given test points. A higher 
match can be achieved in principle. However, it provides only 
unnecessarily complex models, especially if one takes into 
account the measurement accuracy to be realized as well as 
material variations. Of course, even assuming that the 
measured data are completely implausible, the GEP-FC 
algorithm is able to generate a mathematical expression for an 
automatic adaptation of concrete formulations. However, this 
also reveals the weakness of the GEP-FC algorithm: it 
depends on the measurement data and the veracity of these. In 
the end, the algorithm allows the search for relations in the 
form of a closed mathematical description and thus generates a 
model of the material behaviour. For further analysis, only the 
corresponding model coefficients have to be fitted. And this 
results in a significant reduction of high experimental and 
analysis effort in order to meet the mechanical and rheological 
properties as well as requirements regarding to formwork, 
technology and quality. Moreover, it facilitates the sensitivity 
analysis or the integration in further computational models, 
which is often essential in engineering. 
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