
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3444

Abstract—In-place sorting algorithms play an important role in

many fields such as very large database systems, data warehouses,
data mining, etc. Such algorithms maximize the size of data that can
be processed in main memory without input/output operations. In this
paper, a novel in-place sorting algorithm is presented. The algorithm
comprises two phases; rearranging the input unsorted array in place,
resulting segments that are ordered relative to each other but whose
elements are yet to be sorted. The first phase requires linear time,
while, in the second phase, elements of each segment are sorted in-
place in the order of z log (z), where z is the size of the segment, and
O(1) auxiliary storage. The algorithm performs, in the worst case, for
an array of size n, an O(n log z) element comparisons and O(n log z)
element moves. Further, no auxiliary arithmetic operations with
indices are required. Besides these theoretical achievements of this
algorithm, it is of practical interest, because of its simplicity.
Experimental results also show that it outperforms other in-place
sorting algorithms. Finally, the analysis of time and space
complexity, and required number of moves are presented, along with
the auxiliary storage requirements of the proposed algorithm.

Keywords—Auxiliary storage sorting, in-place sorting, sorting.

I. INTRODUCTION
ORTING is one of the most fundamental problems in the
field of computer science[1], [2]. Comparison-based

algorithms perform, in the average case, at least log n! ≈ n •
log n −n • log e ≈ n • log n −1.443n comparisons to sort an
array of n elements [2], [3]. The lower bound for element
moves is n log n. The merge sort Algorithm performs very
closely to the optimum, with n log n comparisons [2], [4].
However, the merge sort is not an in-place algorithm, it needs
an additional n-element array for sorting n elements [5]–[7].
In-place algorithms play an important role, because they
maximize the size of data that can be processed in the main
memory without input/output operations. In-place sorting
algorithms, performing O(n • log n) comparisons and, O(1)

Manuscript received September, 2006.
Hanan Ahmed-Hosni Mahmoud is with the Information Technology

Department, College of Computer and Information Sciences, King Saud
University, Riyadh, Saudi-Arabia on leave from the department of Computer
and System Engineering, Faculty of Engineering, University of Alexandria (e-
mail: hanan2010us@yahoo.com).

Nadia Al-Ghreimil, is with the Information Technology Department,
College of Computer and Information Sciences, King Saud University,
Riyadh, Saudi-Arabia (phone/fax: +966-1-4781479, e-mail:
ghreimil@ksu.edu.sa).

auxiliary storage are of great importance.
The binary-search version of insert sort requires log n!+n

comparisons, and only O(1) index variables of log n bits each,
for pointing to the input array [8]–[10]. However, the
algorithm performs O(n2) element moves, which makes it very
slow, especially as n increases. The heap sort was the first in-
place sorting algorithm with time complexity bounded by O(n
• log n) in the worst case with O(1) storage requirements but
only performs n • log n + O(n) element moves [10]–[14]. In-
place variants of a k-way merge sort with at most n • log n +
O(n) comparisons, O(1) auxiliary storage, and ε • n • log n +
O(n) moves are presented, instead of merging only 2 blocks, k
sorted blocks are merged together at the same time. Here, k
denotes an arbitrarily large, but fixed, integer constant, and
ε>0 an arbitrarily small, but fixed, real constant [2], [15], [16].

The k-way variant has been generalized to a (log n/log log
n)-way in-place merge sort. This algorithm uses n • log n +
O(n • log n) comparisons, O(1) auxiliary storage, and only
O(n • log n/log log n) element moves. This algorithm is of
theoretical interest, as the first comparisons-based sorting
algorithm to break the bound of (n • log n) for the number of
moves [17]–[21].

In this paper, a new in-place sorting algorithm that reduces,
simultaneously, the number of comparisons, element moves,
and required auxiliary storage will be presented. Our
algorithm operates, in the worst case, with at most n log z
element comparisons, n log z element moves, and O(1)
auxiliary storage. Also there are no auxiliary arithmetic
operations with indices. Besides these theoretical
achievements of this algorithm, it is of practical interest,
because of its simplicity. Experimental results will also show
that it outperforms other in-place sorting algorithms [21].

In the following sections, the proposed algorithm, and the
computational requirement analysis will be presented in
details. The proposed algorithm and the required data
structures will be presented in section 2. Analysis of the time
complexity will be carried out in section 3. Analysis of
required number of moves will be discussed in section 4.
Auxiliary storage requirements will be discussed in section 5.
Issues on stability of the proposed algorithm will be detailed
in section 6. Experimental results are presented in section 7.
Conclusions and references will follow.

A Novel In-Place Sorting Algorithm with
O(n log z) Comparisons and

O(n log z) Moves
Hanan Ahmed-Hosni Mahmoud, and Nadia Al-Ghreimil

S

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3445

II. THE PROPOSED IN-PLACE SORTING ALGORITHM
Using n elements, divide the elements into some segments

σ0, σ1, . . . , σ f , of variable lengths Li, such that all elements
in the segment σk satisfy ak ≤ a ≤ ak+1. Li can be obtained by
scanning the n elements once. The sorted array is obtained by
forming the sequence a1, . . . , af , where ak denotes the
segment σk in sorted order. To sort σk, use any in-place sorting
algorithm with worst case time complexity of n log n where n
is the size of the segment to be sorted. Also the chosen
algorithm to sort the segments should require at most n log n
moves. The data structure and the proposed algorithm are
presented below.

A. Data Structures
1. ELM is an array of n elements. This is the array of the

elements to be sorted. The elements can be of any type
as long as lexical ordering between the elements can be
established.

2. count, count1 are two small integer arrays of m
elements, where m denotes the number of segments or
buckets. The elements of these two arrays will hold the
number of elements in each segment, i.e. element
count(j) will hold the count of the elements of segment
j.

3. where is a small array of m integers, the element
where(j) of this array will hold the supposed start
position of the elements of segment j.

4. last is a small array of m integers, the element last(j)
holds the supposed last position of the elements of the
segment j.

B. The New Proposed Algorithm

Algorithm In-place Sorting
{
//phase 1: in place formation of segments or buckets//
for j= 1 to m

{
count(j) = 0;
count1(j) = 0;
where(j)= 0;
last(j)= 0;
}

for i = 1 to n
{
read ELM(i);
buck = determine(ELM(i));
//determine buck which is the bucket of element ELM(i)//
count(buck)++;
}

for j = 1 to m
{
count1(j) = count(j);
where(j) = count(j-1) +1;
last(j) = where(j) +count(j);
}

i=1; temp =ELM(i);

Do until (count(1)=0 and count(2)=0 and ……. count(m)=0)
{
read temp;
buck = determine(temp)
if (temp is not equal to ELM(where(buck))

{
i1= where(buck);
Temp= ELM(i1);
move ELM(i) to position (where(buck)) in the array ELM;
count(buck)--;
where(buck)++;
i=i1;
}

else
i++;

temp = ELM(i);
}

//phase 2: in place sorting of each segment //
str = 1;
for j = 1 to m

{
for (k = str to str + count (j))

{
xsort(ELM(i), K}
str = str + count(j);
}

//xsort is any in-place sorting algorithm of O(n log n), in
time complexity and number of required moves//
}

III. ANALYSIS OF TIME COMPLEXITY

A. Time Complexity of Phase 1
1. Counting elements in each bucket requires one scan for

the array ELM; therefore, time complexity for this step
is of the order n.
Time complexity of Phase1_step1 Θ n. (1)

2. Moving the elements to their appropriate place
according to their bucket requires one scan for the
array ELM, therefore, time complexity for this step is
of the order n.
Time complexity of Phase1_step2 Θ n. (2)

From (1) and (2):
Time complexity of Phase1 Θ n. (3)

B. Time Complexity of Phase 2
Assume that there are m buckets, on the average, each

bucket is of size z = n/m.
1. The complexity of xsort is z log z, therefore:

Time complexity of xsort Θ z log z. (4)
2. Total time complexity for sorting m buckets using xsort

is (m*z log z), therefore:
Time complexity of total xsort Θ m*z log z (5)

From (4) and (5), it can be concluded that the time
complexity for Phase 2 is m*z log z, therefore:

Time complexity of Phase 2 Θ m*z log z (6)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3446

Time complexity of Phase 2 Θ m*n/m log z (7)
Time complexity of Phase 2 Θ n log z (8)

C. Total Time Complexity
From (3) and (8), total time complexity for The proposed

in-place sorting algorithm can be computed as follows:
Time complexity of Sort Θ n+ n log z (9)
Since z is an integer that is much greater than 1,
therefore log z is greater than 1,
therefore n log z > n (10)
Time complexity of The proposed in-place sorting
algorithm Θ n log z (11)

IV. ANALYSIS OF NUMBER OF MOVES

A. Phase 1
1. Counting elements in each bucket requires no moves.
2. Moving elements to their appropriate buckets requires

n moves.
These results are detailed in the following equation:
Total number of moves for Phase 1 Θ n (12)

B. Phase 2
The number of moves, required by phase two, depends on

the used sorting algorithm xsort. However, according to our
assumptions, the maximum number of moves for sorting each
bucket is equal to z log z. This sums up to n log z for the m
buckets which is presented in the following equation:

Total number of moves in Phase 2 Θ n log z (13)

C. Total Moves
Maximum number of moves for The proposed in-place

sorting algorithm can be calculated from (12) and (13) as
follows:
Total number of moves for The proposed in-place sorting
algorithm Θ n + n log z (14)

But since n log z > n as given in (10), we can conclude
that

Total number of moves for The proposed in-place sorting
algorithm Θ n log z (15)

As discussed before, the time complexity analysis and the

analysis of the number of moves required by The proposed in-
place sorting algorithm depends – to a great extent – on the
time complexity and the number of moves required by the
xsort algorithm. Further studies are already in progress for
choosing an appropriate algorithm for xsort. These studies are
going to be published in the near future.

V. ANALYSIS OF SPACE COMPLEXITY
There is no extra auxiliary storage required for The

proposed in-place sorting algorithm. Also, there are no indices
or any other hidden data structures required for the execution
of the algorithm. These issues are discussed below.

A. Phase 1
There is a requirement for m integer variables in Phase 1,

since m is a small constant, we can assume that the auxiliary
storage required for Phase 1 is of O(1), this is summarized in
(16) as follows,

Auxiliary storage for Phase1 Θ (1) (16)

B. Phase 2
The computation of the auxiliary storage requirements for

Phase 2 depends on the choice of xsort algorithm. Since one
of the conditions for choosing xsort is that it has to be an in-
place algorithm, this implies that xsort and consequently
Phase 2 require auxiliary storage in O(1), this is summarized
in (17).

Auxiliary storage for phase2 Θ (1) (17)

C. Total Space Complexity
The auxiliary storage requirements for The proposed in-

place sorting algorithm can be derived from (16) and (17) as
follows:

Auxiliary storage for The proposed in-place sorting
algorithm Θ (1) (18)
It can be concluded, from the previous discussion, that The

proposed in-place sorting algorithm is indeed an in-place
algorithm.

VI. ANALYSIS OF THE STABILITY
Stability of sorting algorithms is required in many

applications, for some others stability is not be that important.
Generally speaking, stability of a sorting algorithm is
established by a penalty in the algorithm performance (time or
space complexity).

The proposed in-place sorting algorithm is an unstable
sorting algorithm. A counter example showing the instability
of the proposed in-place sorting algorithm follows.

Assume that the unsorted array ELM is as shown in Fig.1.

x
x
a
z
a
a
x

Fig. 1 The array ELM before sorting

Applying phase 1 of the proposed in-place sorting

algorithm will result in properly placed segments. As one can
see in Fig. 2, the x’s have been placed in the buckets without
preserving the original order. Also, there is no way to tell
what the original ordering was.

In future work, further study of the stability of the
algorithm and how to establish a stable version of it will be
carried out.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3447

Start End
x1 - - - a a a a
x2 x2 x2 x2 x2 - a a
a a a a a a a a
z x1 x1 x1 x1 x1 x1 x1
a a a x3 x3 x3 x3 x3
a a a a a x2 x2 x2
x3 x3 z z z z z z

Note: the subscripts on the x’s are only for
clarification of their relative position to each other.
And highlighted cells indicate the elements that are
put into their appropriate position during an iteration

Fig. 2 The changes in the array ELM when applying phase
1

VII. EXPERIMENTAL RESULTS
To obtain experimental results, 3 of the better-known

sorting algorithms were chosen and implemented: mergesort,
in-place mergesort (k-way mergesort), and quicksort. A
comparison of the properties of these basic sorting algorithms
and our proposed in-place sorting algorithm is given in Table
I below.

Each of the 3 basic sorting algorithms was used in turn as
the xsort for Phase 2 of the proposed in-place sorting
algorithm. This lead to the implementation of 3 versions of
The proposed in-place sorting algorithm.

The 3 basic sorting algorithms and the 3 versions of The
proposed in-place sorting algorithm were tested on different
sizes of datasets where the number of keys to be sorted ranged
from 1000 to 220000. The keys were 20 characters long. The
execution time was measured for the 6 algorithms and
recorded.

The experimental results show that each version of The
proposed in-place sorting algorithm achieves better
performance than its corresponding xsort algorithm alone. I.e.,
the proposed in-place sorting algorithm with merge sort
algorithm as xsort performs better than merge sort alone and
so forth (see Fig. 3). Complete results are presented in Fig. 4-
6.

Finally, the best performance was achieved by the proposed
in-place sorting algorithm with quicksort as the xsort
algorithm.

TABLE I

LIST OF THE PROPERTIES OF SOME WELL KNOWN SORTING ALGORITHMS AND
THE PROPOSED IN-PLACE SORTING ALGORITHM

Sorting Algorithm Average
Time

Worst
Time Memory Stable

Merge Sort O(n log
n)

O(n log
n) O(n) Yes

In-Place merge sort O(n log
n)

O(n log
n) O(1) Yes

Quicksort O(n log
n) O(n) O(log n) No

The proposed in-
place sorting algoritm O(n log z) O(n log z) O(1) No

1

2

3

4

5

6

7

8

1000 2000 3000 4000 5000 6000 7000 8000

number of keys

ex
ec

ut
io

n
tim

e
in

 m
ill

is
ec

on
ds

Mergsort

proposed algorithm (using Mergsort in phase2)

(a)

1

2

3

4

5

6

7

8

1000 2000 3000 4000 5000 6000 7000 8000

number of keys

ex
ec

ut
io

n
tim

e
in

 m
ill

is
ec

on
ds

k-way merge sort

proposed algorithm (using k-way Mergsort in phase2)

(b)

1

2

3

4

5

6

7

8

1000 2000 3000 4000 5000 6000 7000 8000

number of keys

ex
ec

ut
io

n
tim

e
in

 m
ill

is
ec

on
ds

Quick sort

proposed algorithm (using quicksort in phase2)

(c)

Fig. 3 Comparing The proposed in-place sorting algorithm and its
xsort: (a) Mergesort, (b) k-way Mergesort, and (c) quicksort

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3448

1

2

3

4

5

6

7

8

1000 2000 3000 4000 5000 6000 7000 8000
number of keys

ex
ec

ut
io

n
tim

e
in

 m
ill

is
ec

on
ds

Mergsort
k-way merge sort
Quick sort
proposed algorithm (using Mergsort in phase2)
proposed algorithm (using k-way Mergsort in phase2)
proposed algorithm (using quicksort in phase2)

Fig. 4 The running times of sorting algorithms in milliseconds for a
number of keys to be sorted ranging from 1000 to 8000 keys each

key is 20 characters long

4

6

8

10

12

14

16

18

10000 12000 14000 16000 18000 20000 22000

number of keys

ex
ec

ut
io

n
tim

e
in

 m
ill

is
ec

on
ds

Mergsort
k-way merge sort
Quick sort
proposed algorithm (using Mergsort in phase2)
proposed algorithm (using k-way Mergsort in phase2)
proposed algorithm (using quicksort in phase2)

 Fig. 5 The running times of sorting algorithms in milliseconds for a
number of elements to be sorted ranging from 10000 to 22000 keys

each key is 20 characters long

50

75

100

125

150

175

200

100000 120000 140000 160000 180000 200000 220000

number of keys
ex

ec
ut

io
n

tim
e

in
 m

ill
ise

co
nd

s

Mergsort

k-way merge sort

Quick sort

proposed algorithm (using Mergsort in phase2)

proposed algorithm(using k-way Mergsort in phase2)

proposed algorithm (using quicksort in phase2)

Fig. 6 The running times of sorting algorithms in milliseconds for

a number of elements to be sorted ranging from 100000 to 220000
keys each key is 20 characters long

VIII. CONCLUSION
In this paper, a new sorting algorithm was presented. This

algorithm is an in-place sorting algorithm with O(n log z)
comparisons and O(n log z) moves and O(1) auxiliary storage.
Comparison of the new proposed algorithm and some well-
known algorithms has proven that the new algorithm
outperforms the other algorithms. Further, it was proved that
no auxiliary arithmetic operations with indices were required.
Besides, this algorithm is of practical interest because of its
simplicity. Experimental results have shown that it
outperformed other in-place sorting algorithms.

REFERENCES
[1] A. LaMarca and R. E. Ladner, “The influence of caches on the

performance of heaps,” Journal of Experimental Algorithmics, vol. 1,
Article 4, 1996.

[2] D. Knuth, The Art of Computer Programming: Volume 3 / Sorting and
Searching, Addison-Wesley Publishing Company, 1973.

[3] Y. Azar, A. Broder, A. Karlin, and E. Upfal, “Balanced allocations,” in
Proceedings of 26th ACM Symposium on the Theory of Computing,
1994, pp.593-602.

[4] Andrei Broder and Michael Mitzenmacher.“Using multiple hash
functions to improve IP lookups,” in Proceedings of IEEE INFOCOM,
2001.

[5] Jan Van Lunteren, “Searching very large routing tables in wide
embedded memory,” in Proceedings of IEEE Globecom, November
2001.

[6] Ramesh C. Agarwal, “A super scalar sort algorithm for RISC
processors,” SIGMOD Record (ACM Special Interest Group on
Management of Data), 25(2):240–246, June 1996.

[7] R. Anantha Krishna, A. Das, J. Gehrke, F. Korn, S. Muthukrishnan, and
D. Shrivastava, “Efficient approximation of correlated sums on data
streams,” TKDE, 2003.

[8] A. Arasu and G. S. Manku, “Approximate counts and quantiles over
sliding windows,” PODS, 2004.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3449

[9] N. Bandi, C. Sun, D. Agrawal, and A. El Abbadi, “Hardware
acceleration in commercial databases: A case study of spatial
operations,” VLDB, 2004.

[10] Peter A. Boncz, Stefan Manegold, and Martin L. Kersten, “Database
architecture optimized for the new bottleneck: Memory access,” in
Proceedings of the Twenty-fifth International Conference on Very Large
Databases, 1999, pp. 54–65.

[11] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms. MIT Press, Cambridge, MA, 2nd edition, 2001.

[12] Abhinandan Das, Johannes Gehrke, and Mirek Riedewald,
“Approximate join processing over data streams,” in Proceedings of the
2003 ACM SIGMOD international conference on Management of data,
ACM Press, 2003, pp.40-51.

[13] A. LaMarca and R. Ladner, “The influence of caches on the performance
of sorting,” in Proc. of the ACM/SIAM SODA, 1997, pp. 370–379.

[14] Stefan Manegold, Peter A. Boncz, and Martin L. Kersten, “What
happens during a join? Dissecting CPU and memory optimization
effects,” in Proceedings of 26th International Conference on Very Large
Data Bases, 2000, pp. 339–350.

[15] A. Andersson, T. Hagerup, J. H°astad, and O. Petersson, “Tight bounds
for searching a sorted array of strings,” SIAM Journal on Computing,
30(5):1552–1578, 2001.

[16] L. Arge, P. Ferragina, R. Grossi, and J.S. Vitter, “On sorting strings in
external memory,” ACM STOC ’97, 1997, pp.540–548.

[17] M.A. Bender, E.D. Demaine, andM. Farach-Colton, “Cache-oblivious B-
trees,” IEEE FOCS ’00, 2000, pp.399–409.

[18] J.L. Bentley and R. Sedgewick, “Fast algorithms for sorting and
searching strings,” ACM-SIAM SODA ’97, 1997, pp.360–369.

[19] G. Franceschini, “Proximity mergesort: Optimal in-place sorting in the
cacheoblivious model,” ACM-SIAM SODA ’04, 2004, pp.284–292.

[20] G. Franceschini. “Sorting stably, in-place, with O(n log n) comparisons
and O(n) moves,” STACS ’05, 2005.

[21] G. Franceschini and V. Geffert. “An In-Place Sorting with O(n log n)
Comparisons and O(n) Moves,” IEEE FOCS ’03, 2003, pp. 242–250.

