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Abstract—In-place sorting algorithms play an important role in 

many fields such as very large database systems, data warehouses, 
data mining, etc. Such algorithms maximize the size of data that can 
be processed in main memory without input/output operations. In this 
paper, a novel in-place sorting algorithm is presented. The algorithm 
comprises two phases; rearranging the input unsorted array in place, 
resulting segments that are ordered relative to each other but whose 
elements are yet to be sorted. The first phase requires linear time, 
while, in the second phase, elements of each segment are sorted in-
place in the order of z log (z), where z is the size of the segment, and 
O(1) auxiliary storage. The algorithm performs, in the worst case, for 
an array of size n, an O(n log z) element comparisons and  O(n log z) 
element moves. Further, no auxiliary arithmetic operations with 
indices are required. Besides these theoretical achievements of this 
algorithm, it is of practical interest, because of its simplicity. 
Experimental results also show that it outperforms other in-place 
sorting algorithms. Finally, the analysis of time and space 
complexity, and required number of moves are presented, along with 
the auxiliary storage requirements of the proposed algorithm. 
 

Keywords—Auxiliary storage sorting, in-place sorting, sorting. 

I. INTRODUCTION 
ORTING is one of the most fundamental problems in the 
field of computer science[1], [2]. Comparison-based 

algorithms perform, in the average case, at least log n! ≈ n • 
log n −n • log e ≈ n • log n −1.443n comparisons to sort an 
array of n elements [2], [3]. The lower bound for element 
moves is n log n. The merge sort Algorithm performs very 
closely to the optimum, with n log n comparisons [2], [4]. 
However, the merge sort is not an in-place algorithm, it needs 
an additional n-element array for sorting n elements [5]–[7]. 
In-place algorithms play an important role, because they 
maximize the size of data that can be processed in the main 
memory without input/output operations. In-place sorting 
algorithms, performing O(n • log n) comparisons and, O(1) 

 
Manuscript received September, 2006.  
Hanan Ahmed-Hosni Mahmoud is with the Information Technology 

Department, College of Computer and Information Sciences, King Saud 
University, Riyadh, Saudi-Arabia on leave from the department of Computer 
and System Engineering, Faculty of Engineering, University of Alexandria (e-
mail: hanan2010us@yahoo.com).  

Nadia Al-Ghreimil, is with the Information Technology Department, 
College of Computer and Information Sciences, King Saud University, 
Riyadh, Saudi-Arabia (phone/fax: +966-1-4781479, e-mail: 
ghreimil@ksu.edu.sa). 

auxiliary storage are of great importance.  
The binary-search version of insert sort requires log n!+n 

comparisons, and only O(1) index variables of log n bits each, 
for pointing to the input array [8]–[10]. However, the 
algorithm performs O(n2) element moves, which makes it very 
slow, especially as n increases. The heap sort was the first in-
place sorting algorithm with time complexity bounded by O(n 
• log n) in the worst case with O(1) storage requirements but 
only performs n • log n + O(n) element moves [10]–[14]. In-
place variants of a k-way merge sort with at most n • log n + 
O(n) comparisons, O(1) auxiliary storage, and ε • n • log n + 
O(n) moves are presented, instead of merging only 2 blocks, k 
sorted blocks are merged together at the same time. Here, k 
denotes an arbitrarily large, but fixed, integer constant, and 
ε>0 an arbitrarily small, but fixed, real constant [2], [15], [16]. 

The k-way variant has been generalized to a (log n/log log 
n)-way in-place merge sort. This algorithm uses n • log n + 
O(n • log n) comparisons, O(1) auxiliary storage, and only 
O(n • log n/log log n) element moves. This algorithm is of 
theoretical interest, as the first comparisons-based sorting 
algorithm to break the bound of (n • log n) for the number of 
moves [17]–[21]. 

In this paper, a new in-place sorting algorithm that reduces, 
simultaneously, the number of comparisons, element moves, 
and required auxiliary storage will be presented. Our 
algorithm operates, in the worst case, with at most n log z 
element comparisons, n log z element moves, and O(1) 
auxiliary storage. Also there are no auxiliary arithmetic 
operations with indices. Besides these theoretical 
achievements of this algorithm, it is of practical interest, 
because of its simplicity. Experimental results will also show 
that it outperforms other in-place sorting algorithms [21].  

In the following sections, the proposed algorithm, and the 
computational requirement analysis will be presented in 
details. The proposed algorithm and the required data 
structures will be presented in section 2. Analysis of the time 
complexity will be carried out in section 3. Analysis of 
required number of moves will be discussed in section 4. 
Auxiliary storage requirements will be discussed in section 5. 
Issues on stability of the proposed algorithm will be detailed 
in section 6. Experimental results are presented in section 7. 
Conclusions and references will follow. 
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II. THE PROPOSED IN-PLACE SORTING ALGORITHM 
Using n elements, divide the elements into some segments 

σ0, σ1, . . . , σ f , of variable lengths Li,  such  that all elements 
in the segment σk satisfy ak ≤ a ≤ ak+1. Li can be obtained by 
scanning the n elements once.  The sorted array is obtained by 
forming the sequence a1, . . . , af , where ak denotes the 
segment σk in sorted order. To sort σk, use any in-place sorting 
algorithm with worst case time complexity of n log n where n 
is the size of the segment to be sorted. Also the chosen 
algorithm to sort the segments should require at most n log n 
moves. The data structure and the proposed algorithm are 
presented below. 

A. Data Structures 
1. ELM is an array of n elements. This is the array of the 

elements to be sorted. The elements can be of any type 
as long as lexical ordering between the elements can be 
established.  

2. count, count1 are two small integer arrays of  m 
elements, where m denotes the number of segments or 
buckets. The elements of these two arrays will hold the 
number of elements in each segment, i.e. element 
count(j) will hold the count of the elements of segment 
j. 

3. where is a small  array of m integers, the element 
where(j)  of this array will hold the supposed start  
position of  the elements of segment j.  

4. last is a small array of  m integers, the element last(j) 
holds the supposed last position of the elements of the 
segment j. 

B. The New Proposed Algorithm 

Algorithm In-place Sorting 
{ 
//phase 1: in place formation of segments or buckets// 
for j= 1 to m 

{ 
count(j) = 0; 
count1(j) = 0; 
where(j)= 0; 
last(j)= 0; 
} 

for i = 1 to n  
{  
read ELM(i); 
buck = determine( ELM(i));   
//determine buck which is the bucket of element ELM(i)// 
count(buck)++; 
}  

for j = 1 to m 
{ 
count1(j) = count(j); 
where(j) = count(j-1) +1; 
last(j) = where(j) +count(j); 
} 

i=1; temp =ELM(i); 

Do until (count(1)=0 and count(2)=0 and ……. count(m)=0) 
{ 
read temp; 
buck = determine( temp) 
if ( temp is not equal to ELM(where(buck)) 

{ 
i1= where(buck); 
Temp= ELM(i1); 
move ELM(i) to position (where(buck)) in the array ELM; 
count(buck)--; 
where(buck)++; 
i=i1; 
} 

else  
i++;  

temp = ELM(i); 
} 
 
//phase 2: in place sorting of each segment // 
str = 1; 
for j = 1 to m 

{ 
for (k = str to str + count (j)) 

{  
xsort(ELM(i), K} 
str = str + count(j); 
} 

//xsort is any in-place sorting algorithm of O(n log n), in 
time complexity and number of required moves// 
}  

III. ANALYSIS OF TIME COMPLEXITY 

A. Time Complexity of Phase 1 
1. Counting elements in each bucket requires one scan for 

the array ELM; therefore, time complexity for this step 
is of the order n. 
Time complexity of Phase1_step1 Θ n. (1) 

2. Moving the elements to their appropriate place 
according to their bucket requires one scan for the 
array ELM, therefore, time complexity for this step is 
of the order n. 
Time complexity of Phase1_step2 Θ n. (2) 

From (1) and (2): 
Time complexity of Phase1 Θ n. (3) 

B. Time Complexity of Phase 2 
Assume that there are m buckets, on the average, each 

bucket is of size z = n/m. 
1. The complexity of xsort is z log z, therefore: 

Time complexity of xsort  Θ z log z. (4) 
2. Total time complexity for sorting m buckets using xsort 

is (m*z log z), therefore: 
Time complexity of total xsort  Θ m*z log z (5) 

From (4) and (5), it can be concluded that the time 
complexity for Phase 2 is m*z log z, therefore:  

Time complexity of Phase 2   Θ m*z log z (6) 
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Time complexity of Phase 2   Θ m*n/m log z (7) 
Time complexity of Phase 2   Θ n log z (8) 

C. Total Time Complexity 
From (3) and (8), total time complexity for The proposed 

in-place sorting algorithm can be computed as follows: 
Time complexity of Sort  Θ n+ n log z (9) 
Since z is an integer that is much greater than 1, 
therefore log z is greater than 1, 
therefore n log z > n (10) 
Time complexity of The proposed in-place sorting 
algorithm  Θ n log z (11) 

IV. ANALYSIS OF NUMBER OF MOVES 

A. Phase 1 
1. Counting elements in each bucket requires no moves. 
2. Moving elements to their appropriate buckets requires 

n moves. 
These results are detailed in the following equation: 
Total number of moves for Phase 1 Θ n (12) 

B. Phase 2 
The number of moves, required by phase two, depends on 

the used sorting algorithm xsort. However, according to our 
assumptions, the maximum number of moves for sorting each 
bucket is equal to z log z. This sums up to n log z for the m 
buckets which is presented in the following equation: 

Total number of moves in Phase 2 Θ n log z  (13) 

C. Total Moves 
Maximum number of moves for The proposed in-place 

sorting algorithm can be calculated from (12) and (13) as 
follows: 
Total number of moves for The proposed in-place sorting 
algorithm  Θ n + n log z (14)  

But since n log z > n as given in (10), we can conclude 
that 

Total number of moves for The proposed in-place sorting 
algorithm Θ n log z (15) 
 
As discussed before, the time complexity analysis and the 

analysis of the number of moves required by The proposed in-
place sorting algorithm depends – to a great extent – on the 
time complexity and the number of moves required by the 
xsort algorithm. Further studies are already in progress for 
choosing an appropriate algorithm for xsort. These studies are 
going to be published in the near future.  

V. ANALYSIS OF SPACE COMPLEXITY  
There is no extra auxiliary storage required for The 

proposed in-place sorting algorithm. Also, there are no indices 
or any other hidden data structures required for the execution 
of the algorithm. These issues are discussed below. 

 

A. Phase 1 
There is a requirement for m integer variables in Phase 1, 

since m is a small constant, we can assume that the auxiliary 
storage required for Phase 1 is of O(1), this is summarized in 
(16) as follows, 

Auxiliary storage for Phase1 Θ (1) (16) 

B. Phase 2 
The computation of the auxiliary storage requirements for 

Phase 2 depends on the choice of xsort algorithm. Since one 
of the conditions for choosing xsort is that it has to be an in- 
place algorithm, this implies that xsort and consequently 
Phase 2 require auxiliary storage in O(1), this is summarized 
in (17). 

Auxiliary storage for phase2 Θ (1) (17) 

C. Total Space Complexity 
The auxiliary storage requirements for The proposed in-

place sorting algorithm can be derived from (16) and (17) as 
follows: 

Auxiliary storage for The proposed in-place sorting 
algorithm Θ (1) (18) 
It can be concluded, from the previous discussion, that The 

proposed in-place sorting algorithm is indeed an in-place 
algorithm. 

VI. ANALYSIS OF THE STABILITY  
Stability of sorting algorithms is required in many 

applications, for some others stability is not be that important. 
Generally speaking, stability of a sorting algorithm is 
established by a penalty in the algorithm performance (time or 
space complexity).  

The proposed in-place sorting algorithm is an unstable 
sorting algorithm. A counter example showing the instability 
of the proposed in-place sorting algorithm follows. 

Assume that the unsorted array ELM is as shown in Fig.1. 
 

x 
x 
a 
z 
a 
a 
x 

 
Fig. 1 The array ELM before sorting 

 
Applying phase 1 of the proposed in-place sorting 

algorithm will result in properly placed segments. As one can 
see in Fig. 2, the x’s have been placed in the buckets without 
preserving the original order. Also, there is no way to tell 
what the original ordering was. 

In future work, further study of the stability of the 
algorithm and how to establish a stable version of it will be 
carried out. 
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Start       End 
x1 - - - a a a a 
x2 x2 x2 x2 x2 - a a 
a a a a a a a a 
z x1 x1 x1 x1 x1 x1 x1 
a a a x3 x3 x3 x3 x3 
a a a a a x2 x2 x2 
x3 x3 z z z z z z 

Note: the subscripts on the x’s are only for 
clarification of their relative position to each other. 
And highlighted cells indicate the elements that are 
put into their appropriate position during an iteration 
 

Fig. 2 The changes in the array ELM when applying phase 
1 

VII. EXPERIMENTAL RESULTS 
To obtain experimental results, 3 of the better-known 

sorting algorithms were chosen and implemented: mergesort, 
in-place mergesort (k-way mergesort), and quicksort. A 
comparison of the properties of these basic sorting algorithms 
and our proposed in-place sorting algorithm is given in Table 
I below. 

Each of the 3 basic sorting algorithms was used in turn as 
the xsort for Phase 2 of the proposed in-place sorting 
algorithm. This lead to the implementation of 3 versions of 
The proposed in-place sorting algorithm.  

The 3 basic sorting algorithms and the 3 versions of The 
proposed in-place sorting algorithm were tested on different 
sizes of datasets where the number of keys to be sorted ranged 
from 1000 to 220000. The keys were 20 characters long. The 
execution time was measured for the 6 algorithms and 
recorded.  

The experimental results show that each version of The 
proposed in-place sorting algorithm achieves better 
performance than its corresponding xsort algorithm alone. I.e., 
the proposed in-place sorting algorithm with merge sort 
algorithm as xsort performs better than merge sort alone and 
so forth (see Fig. 3). Complete results are presented in Fig. 4-
6. 

Finally, the best performance was achieved by the proposed 
in-place sorting algorithm with quicksort as the xsort 
algorithm. 

 
TABLE I 

LIST OF THE PROPERTIES OF SOME WELL KNOWN SORTING ALGORITHMS AND 
THE PROPOSED IN-PLACE SORTING ALGORITHM  

Sorting Algorithm Average 
Time 

Worst 
Time Memory Stable 

Merge Sort O(n log 
n) 

O(n log 
n) O(n) Yes 

In-Place merge sort O(n log 
n) 

O(n log 
n) O(1) Yes 

Quicksort O(n log 
n) O(n) O(log n) No 

The proposed in-
place sorting algoritm O(n log z) O(n log z) O(1) No 
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(c) 

Fig. 3 Comparing The proposed in-place sorting algorithm and its 
xsort: (a) Mergesort, (b) k-way Mergesort, and (c) quicksort 
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Fig. 4 The running times of sorting algorithms in milliseconds for a 
number of keys to be sorted ranging from 1000 to 8000 keys each 

key is 20 characters long 
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 Fig. 5 The running times of sorting algorithms in milliseconds for a 
number of elements to be sorted ranging from 10000 to 22000 keys 

each key is 20 characters long 
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Fig. 6 The running times of sorting algorithms in milliseconds for 

a number of elements to be sorted ranging from 100000 to 220000 
keys each key is 20 characters long 

VIII. CONCLUSION 
In this paper, a new sorting algorithm was presented. This 

algorithm is an in-place sorting algorithm with O(n log z) 
comparisons and O(n log z) moves and O(1) auxiliary storage. 
Comparison of the new proposed algorithm and some well-
known algorithms has proven that the new algorithm 
outperforms the other algorithms. Further, it was proved that 
no auxiliary arithmetic operations with indices were required. 
Besides, this algorithm is of practical interest because of its 
simplicity. Experimental results have shown that it 
outperformed other in-place sorting algorithms.  
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