
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:12, 2007

1719

Abstract—A new genetic algorithm, termed the ‘optimum

individual monogenetic genetic algorithm’ (OIMGA), is presented
whose properties have been deliberately designed to be well suited to
hardware implementation. Specific design criteria were to ensure fast
access to the individuals in the population, to keep the required
silicon area for hardware implementation to a minimum and to
incorporate flexibility in the structure for the targeting of a range of
applications. The first two criteria are met by retaining only the
current optimum individual, thereby guaranteeing a small memory
requirement that can easily be stored in fast on-chip memory. Also,
OIMGA can be easily reconfigured to allow the investigation of
problems that normally warrant either large GA populations or
individuals many genes in length. Local convergence is achieved in
OIMGA by retaining elite individuals, while population diversity is
ensured by continually searching for the best individuals in fresh
regions of the search space. The results given in this paper
demonstrate that both the performance of OIMGA and its
convergence time are superior to those of a range of existing
hardware GA implementations.

Keywords—Genetic algorithms, genetic hardware, machine
learning.

I. INTRODUCTION
O incorporate real-time learned intelligent functionality
into applications such as fault tolerance, pattern

recognition and optimal control, one approach is to embed
machine learning in system-on-chip (SoC) implementations.
Desirable features of such solutions are realization in a small
silicon area to leave space for other SoC components, a
flexible re-configuration structure to suit the needs of a wide
range of applications, as well as short execution (learning)
time. Desirable properties for hardware GAs are fast access to
the individuals in the population, efficient use of available
silicon area and flexibility in its structure to allow for a range
of applications to be targeted, as well as good convergence
performance, both in terms of calculation time and the quality
of the result produced. The novel OIMGA approach presented

Manuscript received May 24, 2006.

Z. Zhu is with the Department of Electronic and Electrical Engineering,
Loughborough University, Loughborough, LE11 3TU, UK.

D. Mulvaney is with the Department of Electronic and Electrical
Engineering, Loughborough University, Loughborough, LE11 3TU, UK
(phone: +44 1509 227042; fax: +44 1509 227014; e-mail:
d.j.mulvaney@lboro.ac.uk).

V. Chouliaras is with the Department of Electronic and Electrical
Engineering, Loughborough University, Loughborough, LE11 3TU, UK.

in this paper has been specifically developed to ensure that it
incorporates all of these properties. In particular, by keeping
only the single current optimum individual, it addresses the
memory and silicon area requirements. In addition, OIMGA is
flexible in its structure in that it requires minimal changes to
alter the population size to adapt to the requirements of a wide
range of applications. Moreover, the results shown in this
paper demonstrate that its rate of convergence is significantly
faster than those of existing GA hardware methods described
below.

A number of authors have described GA hardware solutions
and applied these to embedded applications, either simply for
algorithm acceleration [3][4][5], or for specific applications
[1][2]. In hardware implementations, the need to provide
substantial on-chip memory to store the population is
generally recognized to affect adversely both the execution
speed and the physical silicon area required. For example, in
the roulette GA [6], memory is required to store the entire
population data as well as the fitness values. Such memory
could be provided on-chip, in which case it is likely to operate
at full clock speed, but occupy significant physical area that
could otherwise have been used for additional GAs or
processing elements relevant to the solution of the problem at
hand. The alternative is to provide off-chip memory, in which
case not only may cost considerations dictate the use of slower
memory requiring a number of clock cycles to access, but
also, if a number of GAs are combined in a single device, it is
unlikely that the data bandwidth will be sufficient to allow all
GAs simultaneous access to their respective populations. The
compact GA [3] is one approach specifically targetted to
address this memory bottleneck issue. To permit their use in a
wide range of applications, implementations of GAs need to
be flexible in their structure to allow variations in the
population size and the lengths of individuals [3][4]. For
example, a suitable length for the individuals is typically
influenced by the size of the solution space and the diversity
of the population is often related to the number of individuals
in that population. One important measure of the performance
of GAs is their rate of convergence. A hardware
implementation based on a ‘half-siblings-and-a-clone’ [1] was
shown to shorten the GA convergence time.

Initially, we considered a large number of candidate GA
algorithms with respect to their suitability for hardware
implementation. Many conventional GA were discarded for
the purposes of this study as not considered as they did not
have any of the desirable properties for hardware

A Novel Genetic Algorithm Designed for
Hardware Implementation

Zhenhuan Zhu, David Mulvaney, and Vassilios Chouliaras

T

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:12, 2007

1720

implementation. The implementations and preliminary results
for the exiting hardware GAs we considered suitable for
further investigation are described in section 2, section 3 then
considers the new OIMGA solution that is designed to
overcome the drawbacks of existing GAs. The results of the
implementations of all the GAs in terms quality of results and
calculation time are presented in section 4.

The contributions of this paper are: (a) the investigation of
a number of existing GA solutions specifically targeted for
embedded (though not necessarily hardware)
implementations; (b) the introduction of a new GA with
attributes specifically suited to hardware implementation; and
(c) results that demonstrate the particular advantages of the
new approach.

II. INVESTIGATION OF EXISTING HARDWARE GAS
This section describes previous work that has developed

GA approaches relevant to an efficient hardware realization.
In section 4, these GAs, as well as OIMGA, are applied to
benchmark problems to assess a number of aspects of their
performance relevant to hardware implementation. Note that a
modification to one of the existing approaches (the roulette
GA) was made by the authors in order to reduce its memory
usage and calculation times.

A. Hsclone GA
The ‘Hsclone’ GA was developed as a time-efficient

approach based on the ‘half-siblings-and-a-clone’ crossover
technique that manages the assignment of fitness probabilities
to chromosomes [4]. A predefined fitness criterion is applied
to the population and on the input data measurement. Based
on the results obtained, the chromosomes that best meet the
fitness criteria are kept, while others are replaced by the
individuals that result from crossover should their fitness
exceed a given threshold, or otherwise by a new randomly
generated chromosome. In the authors’ simulation, the
threshold was the defined to be the error voltage equal to one-
fourth of the maximum. Fig. 1 shows the psuedocode of the
Hsclone GA, designed according to the description in [4].

In this GA, the crossover rate is normally changed based on
the results obtained following each generation; where an
improvement over the previous best solution lowers the
crossover rate. The mutation rate is set by a threshold, where
the larger its value the greater the number of chromosomes
that are selected. The GA requires memory for storing its
population and the selection of appropriate parameters for a
particular application of the GA need to be determined
empirically.

B. Roulette GA
Ramamurthy and Vasanth [6] describe a roulette wheel for

crossover selection that is constructed as follows. The data
element with the smallest error value is given highest rank and
appears n times in the wheel, the member with the second
smallest error value is given second rank and is duplicated n-1

times, and so on. The resultant size of the wheel is then
n(n+1)/2, where n is the number of individuals in the
population. Mutation is implemented by inverting one bit
selected at random from an individual in the population that
has also been selected at random. Following sorting in terms
of fitness values, the n best individuals are kept for the
subsequent generation. Fig. 2 shows the psuedocode of the
Roulette GA.

Fig. 1 Psuedocode of the half-sibling-and-a-clone GA

In the implementation described in [6], it is evident that in
addition to the memory was used for storing the individuals,
their indices and their fitness values, an additional n(n+1)/2
memory units are needed for the roulette wheel during the
selection of individuals for crossover. In addition, the
calculation time is also adversely affected by the need to sort
the population In order to mitigate these drawbacks, the
authors developed an alternative roulette algorithm, shown in
Fig. 3. Although this implementation is able to significantly
reduce the memory requirement by removing the need to store
the data associated with the roulette wheel, floating point
calculations of the probabilities are now needed, and its
hardware implementation will occupy significant silicon area.
However, in most practical implementations, it is likely that a
scaled integer calculation of the probabilities would be
suitable or that floating point units would already exist in the
hardware as part of the fitness calculations. In addition, the
use of probabilities for selection is able to remove the need for
sorting the population.

l : length of individual
n : size of population
max_gen : maximum number of generations

population=randCreateIndvs(n, l);
best_indv= population (1);
best_fit=fitness(best_indv);

gn= max_gen;
while gn>0
 worst_fit=best_fit/4; % set the crossover threshold
 indv_ptr=n;
 while indv_ptr >0
 fit_val=fitness(population(indv_ptr));
 if fit_val>best_fit
 best_indv= population(indv_ptr);
 best_fit= fit_val;
 else
 if fit_val < worst_fit
 population(indv_ptr)=crossover(best_indv, randIndv());
 else
 population(indv_ptr)=crossover(best_indv,
 population(indv_ptr));
 endif
 endif
 indv_ptr = indv_ptr -1;
 endwhile
 gn=gn-1;
endwhile

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:12, 2007

1721

Fig. 2 Pseudocode for the roulette GA

C. Compact GA
The parameters for the compact GA [3] are the population

size n and the chromosome length l. A population is
represented by an l-dimensional probability vector p, where
the p[i] are the probabilities that the ith bit in an individual,
randomly selected from the population, will have the value of
unity. Initially, all the values in p are set to 0.5 and two
individuals, a and b, have their constituent bits initialized
according to p and their corresponding fitness values, fa and fb,
are determined. The operation of the GA then involves
repeatedly comparing the fitness values and, according to its
outcome, then updating the individuals. If fa ≥ fb then the
probability vector will be updated towards the individual a,
otherwise towards b. If a[i] = 1 and b[i] = 0 then p[i] is
incremented by 1/n and conversely if a[i]=0 and b[i]= 1, p[i]
is decremented by 1/n. The cycle halts once each entry in p is
either zero or unity, at which point p holds the final solution.
Fig. 4 shows the psuedocode of the compact GA.

The compact GA is straightforward to extend in terms of
size of population and the length of chromosome. There is no
need for memory to store the population or fitness, and the
circuitry is simplified by the absence of crossover. However,

the practical results presented later in the paper indicate that
the compact GA has relatively long calculation times.

Fig. 3 An alterative algorithm for the roulette GA

Fig. 4 Psuedocode for the compact GA

l : length of individual
n : size of population
max_gen : maximum number of generations
m_rate : mutation rate
c_rate : crossover rate

r_wheel[1..(1+n)n/2]=createWheel (n);
population=randCreateIndvs(n);
fit_val[]=fitness(population);
indv_idx[]={1..n};
[fit_val, indv_idx]=sorting(fit_val, indv_idx);
best_fit=fit_val(1);
best_indv=population(indv_idx(1));

gn=max_gen;
while gn>0
 for i=1to n/2
 [p1, p2]=roulette(r_wheel, indv_idx);
 if (rand<c_rate)
 [children(i×2-1), children(i×2)]=crossover(population(p1),

population(p2));
 else
 [children(i×2-1), children(i×2,1)]=[population(p1),

population(p2)];
 endif
 endfor
 population=mutation(children, m_rate, n);
 fit_val[]=fitness(population);
 indv_idx[]={1..n};
 [fit_val, indv_idx]=sorting(fit_val, indv_idx);
 if best_fit<fit_val(1)
 best_fit= fit_val(1);
 best_indv=population(indv_inx(1));
 else
 population(indv_idx(n))=best_indv;
 indv_idx= rightShift(indv_idx);
 endif
 gn=gn-1;
endwhile

l : length of individual
n : size of population
max_gen : maximum number of generations
m_rate : mutation rate
c_rate : crossover rate

population=randCreateIndvs(n, l);
fit_val[]=fitness(population);
best_fit=0;
[best_indv, best_fit]=getBest(population, best_fit);
 prob[]=calProb(fit_val);

 gn=max_gen;
 while gn>0
 for i=1 to n/2
 [p1, p2]=roulette(prob);
 if (rand()<c_rate)
 [children(i×2-1), children(i×2)]= crossover(population(p1),

population(p2));
 else
 [children(i×2-1), children(i×2,1)]=[population(p1), population(

p2)];
 endif
 endfor
 population=mutation(children, m_rate, n);
 fit_val[]=fitness(population);
 [best_indv, best_fit]=getBest(population, best_fit);
 bad_index=getWorst(population);
 [population(bad_index), fit_val(bad_index)]=[best_indv, best_fit];
 prob=calProb(fit_val);
 gn=gn-1;
endwhile

n: population size
l: chromosome length

for i = 1 to l
 p[i] = 0.5;
endfor
repeat
 for i = 1 to l
 a[i]= 1 with probability p[i], 0 otherwise
 b[i]= 1 with probability p[i], 0 otherwise
 endfor

 fa= fitness(a);
 fb= fitness(b);
 for i = 1 to l
 if fa ≥ fb then
 if a[i]= 1 and b[i]=0 then p[i]= min(1, p[i]+1/n); endif;
 if a[i]= 0 and b[i] = 1 then p[i]= max(0,p[i]-1/n); endif
 else
 if a[i] = 1 and b[i] = 0 then p[i]= max(0, p[i]-1/n); endif
 if a[i] = 0 and b[i] = 1 then p[i]= min(1, p[i]+1/n); endif
 endif
 endfor
until each p[i]∈{0,1}

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:12, 2007

1722

III. OIMGA ALGORITHM
OIMGA incorporates two searches that interact

hierarchically, namely a global search and a local search. In
the global search, regions are selected sequentially from the
entire search space for more detailed exploration by the local
search. In the global search, a single individual is maintained
(termed topChrom) that is the best (according to the fitness
criterion) obtained from all the local searches carried out so
far. The local search investigates the regions selected by the
global search in order to determine the local optimum
individual (LOI). This is achieved by generating an initial
population in a narrow range using micro mutation. If the
micro mutation results in a better individual this becomes the
new LOI. The process is repeated until a termination criterion
is satisfied.

As the best individual among all generations that have been
investigated is always kept, then the proof given by Radolph
[7] can be applied directly to demonstrate that OIMGA is
convergent. As the algorithm repeatedly initializes the
population space following a global search, OIMGA is very
effective in maintaining diversity and preventing premature
convergence.

Compared with the existing methods described above, the
convergence time of OIMGA is likely to be shorter due to
reductions both in the total search space explored and in the
population size [8]. A further execution speed enhancement in
the hardware implementation is also easily identifiable since
the executions of the global and the local searches are prime
candidates for hardware pipelining. Table I shows the
parameters available to a designer using the OIMGA
algorithm, while Fig. 5 shows the pseudocode of OIMGA
itself.

TABLE I

OIMGA PARAMETERS
l individual length
n population size
m the size of the miniature space around the LOI
t_gens maximum number of consecutive global generations

without improvement
k_gens

maximum number of consecutive local generations without
improvement

d_adjustor range of mutation of an individual
m_rate probability of mutation

IV. OIMGA HARDWARE DESIGN
Fig. 6 shows the main structure of the hardware

implementation of OIMGA. The LOI-generator initiates the
local process by randomly producing a population that
includes n individuals, and then searches for the LOI. In the
micro-mutation unit, the individuals are allowed to evolve in
value only within the range indicated by the value of
d_adjustor and any change of range is controlled by the
d_controler. The fitness value of the generated individual is
calculated by the fitness-unit and the local-evaluator
compares the fitness of the current LOI with that of the
previous one and replaces it if its fitness is better. The search
in the local space is repeated m times. If, during these

searches, a new LOI is not found then the range that
d_adjustor indicates is decreased. Should the fitness of the
LOI not improve over k_gens cycles, then the LOI is sent to
the global evaluator. The global evaluator implements the
global process and retains the globally best individual and its
fitness value found from all the local searches. The global
process terminates when the fitness has not improved over

Fig. 5 The pseudocode for the OIMGA algorithm

t_gens operations of the local process.

g=t_gens;
while g>0 % start a global search
 d=d_adjustor;
 for i=1 to :n

loiChrom= randCreateIndv(l); % random l-bit individual
loiFit=fitness(loiChrom,l); % find its fitness
if loiFit>bestFit % keep an elite individual and

 bestChrom=loiChrom; % its fitness
 bestFit=loiFit;
 endif
 endfor

 k=k_gens;
 while k>0 % start a local search
 update=0; % number of updates of tempChrom and bestChrom
 for i=1 to :m % perform local search m times
 tempChrom=bestChrom;
 for j=d to l % produce a micro mutation in the range d to l
 if rand()<m_rate % 'rand' is a random number
 tempChrom(j)=not(tempChrom(j)); % invert the jth bit
 endif
 endfor
 tempFit=fitness(tempChrom,l);
 if tempFit>bestFit
 bestChrom=tempChrom; % keep the elite local individual
 bestFit=tempFit; % and its fitness
 update=update+1;
 k=k_gens;
 d=d_adjustor;
 endif
 endfor
 if update=0 % decrease range (d-l) if no update
 d=d+1;
 endif
 k=k-1;
 endwhile
 if bestFit>topFit % keep elite global individual
 topChrom=bestChrom; % and its fitness
 topFit=bestFit;
 g=t_gens;
 endif
 g=g-1;
endwhile

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:12, 2007

1723

Fig. 6 The main structure of OIMGA

A. LOI Generator
The LOI generator shown in Fig. 7 includes a random

number generator RNG that produces an l-bit random
individual whose fitness value is calculated by the fitness unit
and stored in the register loiFit. The unit cmp1 is used to
compare the fitness of loiFit with that of the best fitness value
held in bestFit and, if it is better, bestFit is replaced by loiFit
and the new individual (of length l) replaces that held in the
register bestChrom. The n bit counter ensures that the entire
process is carried out n times, where n is the population size.
Note that in order to modify the size of the population, it is
only necessary to change the length of the counter.

Fig. 7 LOI generator

B. Micro-Mutation Unit
The micro-mutation unit is shown in Fig. 8. If the

probability of mutation pm is greater than RNGi and
d_MRSRi is set, the ith

 bit of bestChrom is mutated. The
register tempChrom holds the value of the chromosome
following mutation and is evaluated in the fitness unit. If its
fitness is better than that in bestFit (as determined in the local
evaluator shown in Fig. 9), the signal cmp2 operates the tri-
state gate to replace bestChrom by the value in tempChrom.
To modify the length of the individual, a corresponding
change can be made to the number of bits in the micro
mutation unit.

Fig. 8 Micro mutation unit

C. Local Evaluator
The local evaluator shown in Fig. 9 uses the fitness values

to select the better individual from tempFit and bestFit, and
keeps this elite individual and its fitness value during local
evolution.

Fig. 9 Local evaluator

D. Adjusting the Range of Mutation
During an evolution process, generally the times between

modifications to the fitness values decrease, indicating that the
evolution is converging to a final value. To speed up
convergence, it is appropriate to reduce the allowed change of
mutation values in order to investigate the space in the more
immediate vicinity of the current best individual.

Initially, the bits in the mask right shift register shown in
Fig. 10 are all set, MRSRi,=1, i∈[1,l]. The initial value of the
range held in d_initial is set to a predefined value, signifying
that all but this number of bits in the individuals should be
mutated. This value is copied into d_counter. The update
register (update) is initialized with 0 and is incremented
whenever the local evaluator replaces the current best
individual. The value in d_counter defines the number of
shifts that are performed by the MRSR (with the left-most bit
zero filled); at each shift d_counter decrements by 1. To
understand the operation, consider the case where the initial
value held in d_counter is 3. In this case, following the shift
operations, the state of MRSR is shown as follows.

⎩
⎨
⎧

≤≤
≤≤

=
li

i
MRSRd i 4 1

30 0
_ (1)

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:12, 2007

1724

These values indicate that the range of mutation is in [4, l].
During local evolution based on LOI, update will be
increased by 1 if bestChrom and bestFit are replaced. After
each generation of local evolution, d_initial will increase by 1
if update is still 0, thereby reducing the number of bits that
are mutated in the micromutation unit.

Fig. 10 Circuitry to adjust the range of mutation

E. Global Evaluator
The principle of operation of the global evaluator, shown

in Fig. 11, is very similar to that of the local evaluator. The
global evaluator selects the better individual from bestFit and
topFit, and keeps the elite individual from all generations and
its corresponding fitness value in topChrom and topFit
respectively.

Fig. 11 Global evaluator

V. RESULTS
To evaluate the efficiency of a number of hardware

implementations of GAs with OIMGA, namely half-siblings-
and-a-clone [1], roulette [6] and compact GA [3], the two
benchmark functions defined by Zhang and Zhang [9] shown
in the following equations were used.

)3()1,0())20(sin)3(sin21()(
)2()1,0(|)200sin()1(|)(

202020
2

2
1

∈+−=
∈−=

xxxxf
xxxxxf

ππ
π

f1(x) has 200 local maximum and minimum values in its
defined range (Fig. 12), while f2(x) has 20 local maximum and
minimum values in its defined range (Fig. 13). It is very
difficult to determine analytically the maximum and minimum
values of the two functions by methods other than using some
form of search [9].

Fig. 12 Benchmark function f1(x)

Fig. 13 Benchmark function f2(x)

Presented here are results of a number of experiments to
assess the following three aspects of the four hardware GA
implementations: the quality of the solution produced, the
calculation time and the hardware component requirements.

The GA implementations (other than OIMGA) were carried
out according to the descriptions given by the respective
authors. The simulations were all developed and run in
MATLAB [10] on the same host computer system. Since
MATLAB cannot fully reproduce the cycle-accurate timings
of a hardware implementation, the timings can only be
regarded as indicative.

In the first set of experiments, the performance of the GAs
in determining the maximum values of the functions f1(x) and
f2(x) were investigated for various values of population size
and individual lengths. Fig. 14 shows that for a fixed
individual length, OIMGA outperformed the other GA
implementations, particularly for small populations. The
performance of the compact GA was noticeably inferior to the
other implementations. The poor performance of the compact
GA was also apparent when the population size was fixed and
the maximum function values determined for a range of
lengths of the individuals, Fig. 16. The remaining three GAs
all performed similarly under this test.

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:12, 2007

1725

0.140

0.141

0.142

0.143

0.144

0.145

0.146

0.147

0.148

0.149

0.150

16 32 64 128 256
population size, n

fu
nc

tio
n

m
ax

im
um

OIMGA
Clone
Roulette
Compact

(a) Estimated f1(x) maxima

0.600

0.700

0.800

0.900

1.000

1.100

1.200

16 32 64 128 256
population size, n

fu
nc

tio
n

m
ax

im
um

 (x
10

6)

OIMGA
Clone
Roulette
Compact

(b) Estimated f2(x) maxima

Fig. 14 Maxima of the benchmark functions found by the GAs for
a range of population sizes and at a fixed individual length (l) of 32.

Each data point shown was calculated from results averaged over 200
tests, except for the compact GA where only 20 tests were carried

out.

0.140

0.141

0.142

0.143

0.144

0.145

0.146

0.147

0.148

0.149

0.150

16 32 64 128 256
length of each individual, l

fu
nc

tio
n

m
ax

im
um

OIMGA
Clone
Roulette
Compact

(a) Estimated f1(x) maxima

0.600

0.700

0.800

0.900

1.000

1.100

1.200

16 32 64 128 256
length of each individual, l

fu
nc

tio
n

m
ax

im
um

 (x
10

6)

OIMGA
Clone
Roulette
Compact

(b) Estimated f2(x) maxima

Fig. 15 Maxima of the benchmark functions found by the GAs for
a range of individual lengths and at a fixed population size (n) of
128. Each data point shown was calculated from results averaged

over 200 tests, except for the compact GA where only one test was
carried out.

The second set of experiments investigated the calculation
times to reach convergence when determining the maximum
values of the functions f1(x) and f2(x) for the different
population sizes and individual lengths. In Fig. 16, it can be
seen that the compact GA performed poorly across a range of
population sizes, with the calculation times often being two
orders of magnitude greater than those of the other GAs. It
can be seen from Fig. 16 that, as the population size is
increased, the calculation times of OIMGA increase less
steeply than those of the other GAs. More detailed
investigations revealed that, with the doubling of the
population size, the calculation times for OIMGA increased at
only half the rate of the half-siblings-and-a-clone and the
roulette GAs. Fig. 17 shows that the calculation times for the
compact GA were particularly long when the length of the
individuals was increased beyond 32. These results also show
that the other GA methods produced shorter calculation times
and OIMGA performed particularly well in the more
demanding cases where the individuals were of greater length
and the population larger.

0.01

0.10

1.00

10.00

100.00

16 32 64 128 256
population size, n

ca
lc

ul
at

io
n

tim
e

(s
)

OIMGA
Clone
Roulette
Compact

(a) Estimated f1(x) calculation times

0.01

0.10

1.00

10.00

100.00

16 32 64 128 256
population size, n

ca
lc

ul
at

io
n

tim
e

(s
)

OIMGA
Clone
Roulette
Compact

(b) Estimated f2(x) calculation times

Fig. 16 Calculation times of the benchmark functions found by
the GAs for a range of population sizes and at a fixed individual

length (l) of 32. Each data point shown was calculated from results
averaged over 200 tests, except for the compact GA where only 20

tests were carried out.

In order to generate representative figures, the experimental
procedure to produce the results involved adjustment of the
respective parameters of each of the GAs (other than for l and
m whose values were purposely varied to obtain the results).
The parameters used by OIMGA for the estimation of the
maximum values of f1(x) and f2(x) are given in Table II. Note
that altering the width of the fitness value affects not only the

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:12, 2007

1726

system performance, but also has an effect on other hardware
requirements, such as the width of the comparator.

Hardware implementations of GAs mainly consist of
random number generators, comparators, registers and
memory. The requirement of each component can be
described with its total bit number (TBN). For example, if
there are ten 8-bit registers in a circuit, their TBN is 80 bits.
To illustrate the relative complexities of the GAs investigated
in the current work, the values in Table III were obtained from
algorithmic estimates of the hardware requirements of four
different classes of component. It can be seen that the TBN for
the compact GA and OIMGA solutions are an order of
magnitude less than those for the other GA methods.
However, in contrast with OIMGA, the modest hardware
requirement of the compact GA has clearly been achieved at
the expense of performance.

0.01

0.10

1.00

10.00

100.00

1000.00

10000.00

16 32 64 128 256
length of each individual, l

ca
lc

ul
at

io
n

tim
e

(s
)

OIMGA
Clone
Roulette
Compact

(a) Estimated f1(x) calculation times

0.01

0.10

1.00

10.00

100.00

1000.00

10000.00

16 32 64 128 256
length of each individual, l

ca
lc

ul
at

io
n

tim
e

(s
)

OIMGA
Clone
Roulette
Compact

(b) Estimated f2(x) calculation times

Fig. 17 Calculation times of the benchmark functions found by
the GAs for a range of individual lengths and at a fixed population
size (n) of 128. Each data point shown was calculated from results

averaged over 200 tests, except for the compact GA where only one
test was carried out

TABLE II

 OIMGA PARAMETER VALUES

function

m

t_gens

k_gens

d_adjuster

 pm
width of
fitness
value

f 1 (x) 10 4 5 3 0.382 32
f 2 (x) 16 6 5 4 0.382 32

TABLE III
HARDWARE REQUIREMENTS OF THE GA IMPLEMENTATIONS

GA

random
number

generators

comparators

registers

memory

total

OIMGA 160 224 296 0 680
Clone 32 96 256 4096 4480
Roulette 59 64 478 8192 8793
Compact 256 262 352 0 870

VI. CONCLUSION
The paper has introduced a new GA algorithm that is

particularly suited for hardware implementation because of its
minimal memory requirement and its ability to allow both the
size of the population and the length of the individuals to be
altered simply by replicating existing logic units. When run on
benchmark problems, the new algorithm compared favorably
with other hardware solutions found in the literature, both in
terms of its execution time and in its performance on
benchmark problems. Future publications will present the
results of our investigations of implementing the GAs in a
hardware design language and running cycle-accurate
simulations in order to determine more precisely their relative
performances.

REFERENCES
[1] Aporntewan, C. and Chongstitvatana, P., “A hardware implementation

of the compact genetic algorithm”, 2001 IEEE Congress on Evolutionary
Computation, Seoul, Korea, 2001, pp.27-30.

[2] Wakabayashi, S., Koide, T., Toshine, N., Yamane, M. and Ueno, H.,
“Genetic algorithm accelerator GAA-II”, Proc. Asia and South Pacific
Design Automation Conference, Yokohama, Japan, January 2000.

[3] Scott, S.D., Samal, A. and Seth, S., “HGA: A hardware-based genetic
algorithm”, Proc. 3rd ACM/SIGDA Int. Symp. on FPGAs, 1995, pp.53-
59.

[4] Sharawi, M.S., Quinlan, J. and Abdel-Aty-Zohdy, H.S., “A hardware
implementation of genetic algorithms for measurement characterization”,
IEEE 9th International Conference of Electronics, Circuits, and Systems,
Dubrovnik, Croatia, 3, 2002, pp.1267-1270.

[5] Hauser, J.W. and Purdy, C.N., “Sensor data processing using genetic
algorithms”, IEEE Mid- West Symp. on Circuits and Systems, August
2000.

[6] Ramamurthy, P. and Vasanth, J., “VLSI implementation of genetic
algorithms” (under review).

[7] Radolph, G., “Convergence analysis of canonical genetic algorithms”,
IEEE Trans. Neural Networks, 5(1), 1994, pp.96-101.

[8] Li, J. and Wang, S., “Optimum family genetic algorithm”, Journal of
Xi’an Jiao Tong University, 38, Jan 2004.

[9] Zhang, L. and Zhang, B., “Research on the mechanism of genetic
algorithms”, Journal of Software, 11(7), 2000, pp.945-952.

[10] Matlab, http://www.mathworks.com/

