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Abstract—A new genetic algorithm, termed the ‘optimum 

individual monogenetic genetic algorithm’ (OIMGA), is presented 
whose properties have been deliberately designed to be well suited to 
hardware implementation. Specific design criteria were to ensure fast 
access to the individuals in the population, to keep the required 
silicon area for hardware implementation to a minimum and to 
incorporate flexibility in the structure for the targeting of a range of 
applications. The first two criteria are met by retaining only the 
current optimum individual, thereby guaranteeing a small memory 
requirement that can easily be stored in fast on-chip memory. Also, 
OIMGA can be easily reconfigured to allow the investigation of 
problems that normally warrant either large GA populations or 
individuals many genes in length. Local convergence is achieved in 
OIMGA by retaining elite individuals, while population diversity is 
ensured by continually searching for the best individuals in fresh 
regions of the search space. The results given in this paper 
demonstrate that both the performance of OIMGA and its 
convergence time are superior to those of a range of existing 
hardware GA implementations. 
 

Keywords—Genetic algorithms, genetic hardware, machine 
learning.  

I. INTRODUCTION 
O incorporate real-time learned intelligent functionality 
into applications such as fault tolerance, pattern 

recognition and optimal control, one approach is to embed 
machine learning in system-on-chip (SoC) implementations. 
Desirable features of such solutions are realization in a small 
silicon area to leave space for other SoC components, a 
flexible re-configuration structure to suit the needs of a wide 
range of applications, as well as short execution (learning) 
time. Desirable properties for hardware GAs are fast access to 
the individuals in the population, efficient use of available 
silicon area and flexibility in its structure to allow for a range 
of applications to be targeted, as well as good convergence 
performance, both in terms of calculation time and the quality 
of the result produced. The novel OIMGA approach presented 
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in this paper has been specifically developed to ensure that it 
incorporates all of these properties. In particular, by keeping 
only the single current optimum individual, it addresses the 
memory and silicon area requirements. In addition, OIMGA is 
flexible in its structure in that it requires minimal changes to 
alter the population size to adapt to the requirements of a wide 
range of applications. Moreover, the results shown in this 
paper demonstrate that its rate of convergence is significantly 
faster than those of existing GA hardware methods described 
below. 

A number of authors have described GA hardware solutions 
and applied these to embedded applications, either simply for 
algorithm acceleration [3][4][5], or for specific applications 
[1][2]. In hardware implementations, the need to provide 
substantial on-chip memory to store the population is 
generally recognized to affect adversely both the execution 
speed and the physical silicon area required. For example, in 
the roulette GA [6], memory is required to store the entire 
population data as well as the fitness values. Such memory 
could be provided on-chip, in which case it is likely to operate 
at full clock speed, but occupy significant physical area that 
could otherwise have been used for additional GAs or 
processing elements relevant to the solution of the problem at 
hand. The alternative is to provide off-chip memory, in which 
case not only may cost considerations dictate the use of slower 
memory requiring a number of clock cycles to access, but 
also, if a number of GAs are combined in a single device, it is 
unlikely that the data bandwidth will be sufficient to allow all 
GAs simultaneous access to their respective populations. The 
compact GA [3] is one approach specifically targetted to 
address this memory bottleneck issue. To permit their use in a 
wide range of applications, implementations of GAs need to 
be flexible in their structure to allow variations in the 
population size and the lengths of individuals [3][4]. For 
example, a suitable length for the individuals is typically 
influenced by the size of the solution space and the diversity 
of the population is often related to the number of individuals 
in that population. One important measure of the performance 
of GAs is their rate of convergence. A hardware 
implementation based on a ‘half-siblings-and-a-clone’ [1] was 
shown to shorten the GA convergence time. 

Initially, we considered a large number of candidate GA 
algorithms with respect to their suitability for hardware 
implementation. Many conventional GA were discarded for 
the purposes of this study as not considered as they did not 
have any of the desirable properties for hardware 
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implementation. The implementations and preliminary results 
for the exiting hardware GAs we considered suitable for 
further investigation are described in section 2, section 3 then 
considers the new OIMGA solution that is designed to 
overcome the drawbacks of existing GAs. The results of the 
implementations of all the GAs in terms quality of results and 
calculation time are presented in section 4.  

The contributions of this paper are: (a) the investigation of 
a number of existing GA solutions specifically targeted for 
embedded (though not necessarily hardware) 
implementations; (b) the introduction of a new GA with 
attributes specifically suited to hardware implementation; and 
(c) results that demonstrate the particular advantages of the 
new approach.  

II. INVESTIGATION OF EXISTING HARDWARE GAS 
This section describes previous work that has developed 

GA approaches relevant to an efficient hardware realization. 
In section 4, these GAs, as well as OIMGA, are applied to 
benchmark problems to assess a number of aspects of their 
performance relevant to hardware implementation. Note that a 
modification to one of the existing approaches (the roulette 
GA) was made by the authors in order to reduce its memory 
usage and calculation times. 

A.  Hsclone GA 
The ‘Hsclone’ GA was developed as a time-efficient 

approach based on the ‘half-siblings-and-a-clone’ crossover 
technique that manages the assignment of fitness probabilities 
to chromosomes [4]. A predefined fitness criterion is applied 
to the population and on the input data measurement. Based 
on the results obtained, the chromosomes that best meet the 
fitness criteria are kept, while others are replaced by the 
individuals that result from crossover should their fitness 
exceed a given threshold, or otherwise by a new randomly 
generated chromosome. In the authors’ simulation, the 
threshold was the defined to be the error voltage equal to one-
fourth of the maximum. Fig. 1 shows the psuedocode of the 
Hsclone GA, designed according to the description in [4]. 

In this GA, the crossover rate is normally changed based on 
the results obtained following each generation; where an 
improvement over the previous best solution lowers the 
crossover rate. The mutation rate is set by a threshold, where 
the larger its value the greater the number of chromosomes 
that are selected. The GA requires memory for storing its 
population and the selection of appropriate parameters for a 
particular application of the GA need to be determined 
empirically. 

B.  Roulette GA  
Ramamurthy and Vasanth [6] describe a roulette wheel for 

crossover selection that is constructed as follows. The data 
element with the smallest error value is given highest rank and 
appears n times in the wheel, the member with the second 
smallest error value is given second rank and is duplicated n-1 

times, and so on. The resultant size of the wheel is then 
n(n+1)/2, where n is the number of individuals in the 
population. Mutation is implemented by inverting one bit 
selected at random from an individual in the population that 
has also been selected at random. Following sorting in terms 
of fitness values, the n best individuals are kept for the 
subsequent generation. Fig. 2 shows the psuedocode of the 
Roulette GA. 

Fig. 1  Psuedocode of the half-sibling-and-a-clone GA 

In the implementation described in [6], it is evident that in 
addition to the memory was used for storing the individuals, 
their indices and their fitness values, an additional n(n+1)/2 
memory units are needed for the roulette wheel during the 
selection of individuals for crossover. In addition, the 
calculation time is also adversely affected by the need to sort 
the population In order to mitigate these drawbacks, the 
authors developed an alternative roulette algorithm, shown in 
Fig. 3. Although this implementation is able to significantly 
reduce the memory requirement by removing the need to store 
the data associated with the roulette wheel, floating point 
calculations of the probabilities are now needed, and its 
hardware implementation will occupy significant silicon area. 
However, in most practical implementations, it is likely that a 
scaled integer calculation of the probabilities would be 
suitable or that floating point units would already exist in the 
hardware as part of the fitness calculations. In addition, the 
use of probabilities for selection is able to remove the need for 
sorting the population.  

l : length of individual 
n : size of population 
max_gen : maximum number of generations 

population=randCreateIndvs(n, l);  
best_indv= population (1); 
best_fit=fitness(best_indv); 

gn= max_gen; 
while gn>0 
  worst_fit=best_fit/4;   % set the crossover threshold 
  indv_ptr=n; 
  while indv_ptr >0 
    fit_val=fitness(population(indv_ptr)); 
    if fit_val>best_fit 
      best_indv= population(indv_ptr);  
      best_fit= fit_val; 
    else 
      if  fit_val < worst_fit 
        population(indv_ptr)=crossover(best_indv, randIndv()); 
      else 
        population(indv_ptr)=crossover(best_indv,                            
                                                               population(indv_ptr)); 
      endif 
    endif     
    indv_ptr = indv_ptr -1; 
  endwhile 
  gn=gn-1; 
endwhile  
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Fig. 2  Pseudocode for the roulette GA 

C.  Compact GA 
The parameters for the compact GA [3] are the population 

size n and the chromosome length l. A population is 
represented by an l-dimensional probability vector p, where 
the p[i] are the probabilities that the ith bit in an individual, 
randomly selected from the population, will have the value of 
unity. Initially, all the values in p are set to 0.5 and two 
individuals, a and b, have their constituent bits initialized 
according to p and their corresponding fitness values, fa and fb, 
are determined. The operation of the GA then involves 
repeatedly comparing the fitness values and, according to its 
outcome, then updating the individuals. If fa ≥ fb then the 
probability vector will be updated towards the individual a, 
otherwise towards b. If a[i] = 1 and b[i] = 0 then p[i] is 
incremented by 1/n and conversely if a[i]=0 and b[i]= 1, p[i] 
is decremented by 1/n. The cycle halts once each entry in p is 
either zero or unity, at which point p holds the final solution. 
Fig. 4 shows the psuedocode of the compact GA. 

The compact GA is straightforward to extend in terms of 
size of population and the length of chromosome. There is no 
need for memory to store the population or fitness, and the 
circuitry is simplified by the absence of crossover. However, 

the practical results presented later in the paper indicate that 
the compact GA has relatively long calculation times. 

Fig. 3  An alterative algorithm for the roulette GA 

 

Fig. 4  Psuedocode for the compact GA 

 

 

l :  length of individual 
n : size of population 
max_gen : maximum number of generations 
m_rate : mutation rate 
c_rate : crossover rate 

r_wheel[1..(1+n)n/2]=createWheel (n); 
population=randCreateIndvs(n);   
fit_val[]=fitness(population);  
indv_idx[]={1..n}; 
[fit_val, indv_idx]=sorting(fit_val, indv_idx); 
best_fit=fit_val(1); 
best_indv=population(indv_idx(1)); 

gn=max_gen;  
while gn>0 
  for i=1to n/2 
    [p1, p2]=roulette(r_wheel, indv_idx); 
    if (rand<c_rate) 
      [children(i×2-1), children(i×2)]=crossover(population(p1),   

population( p2)); 
   else 
      [children(i×2-1), children(i×2,1)]=[ population(p1), 

population(p2)]; 
   endif   
 endfor 
 population=mutation(children, m_rate, n); 
 fit_val[]=fitness(population);  
 indv_idx[]={1..n}; 
 [fit_val,  indv_idx]=sorting(fit_val, indv_idx); 
 if  best_fit<fit_val(1) 
   best_fit= fit_val(1); 
    best_indv=population(indv_inx(1)); 
 else 
     population(indv_idx(n))=best_indv; 
     indv_idx= rightShift(indv_idx); 
  endif 
  gn=gn-1; 
endwhile 

l : length of individual 
n : size of population 
max_gen : maximum number of generations 
m_rate : mutation rate 
c_rate : crossover rate 

population=randCreateIndvs(n, l);   
fit_val[]=fitness(population);  
best_fit=0; 
[best_indv, best_fit]=getBest(population, best_fit); 
 prob[]=calProb(fit_val); 

 gn=max_gen; 
 while gn>0 
    for i=1 to n/2 
        [p1, p2]=roulette(prob); 
        if (rand()<c_rate) 
           [children(i×2-1),  children(i×2)]= crossover(population(p1), 

population( p2)); 
       else 
           [children(i×2-1), children(i×2,1)]=[ population(p1), population( 

p2)]; 
       endif   
     endfor 
   population=mutation(children, m_rate, n); 
   fit_val[]=fitness(population);  
   [best_indv, best_fit]=getBest(population, best_fit); 
   bad_index=getWorst(population); 
   [population(bad_index), fit_val(bad_index)]=[best_indv, best_fit]; 
   prob=calProb(fit_val); 
   gn=gn-1; 
endwhile 

n:  population size 
l:  chromosome length 

for i = 1 to l  
   p[i] = 0.5; 
endfor 
repeat 
   for i = 1 to l 
     a[i]= 1 with probability p[i], 0 otherwise 
     b[i]= 1 with probability p[i], 0 otherwise 
  endfor 
  
  fa= fitness(a); 
  fb= fitness(b); 
  for i = 1 to l 
    if  fa  ≥ fb  then 
      if a[i]= 1 and b[i]=0 then p[i]= min(1, p[i]+1/n); endif; 
      if a[i]= 0 and b[i] = 1 then p[i]= max(0,p[i]-1/n); endif 
    else 
      if a[i] = 1 and b[i] = 0 then p[i]= max(0, p[i]-1/n); endif 
      if a[i] = 0 and b[i] = 1 then p[i]= min(1, p[i]+1/n); endif 
    endif 
  endfor 
until each p[i]∈{0,1} 
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III. OIMGA ALGORITHM 
OIMGA incorporates two searches that interact 

hierarchically, namely a global search and a local search. In 
the global search, regions are selected sequentially from the 
entire search space for more detailed exploration by the local 
search. In the global search, a single individual is maintained 
(termed topChrom) that is the best (according to the fitness 
criterion) obtained from all the local searches carried out so 
far. The local search investigates the regions selected by the 
global search in order to determine the local optimum 
individual (LOI). This is achieved by generating an initial 
population in a narrow range using micro mutation. If the 
micro mutation results in a better individual this becomes the 
new LOI. The process is repeated until a termination criterion 
is satisfied. 

As the best individual among all generations that have been 
investigated is always kept, then the proof given by Radolph 
[7] can be applied directly to demonstrate that OIMGA is 
convergent. As the algorithm repeatedly initializes the 
population space following a global search, OIMGA is very 
effective in maintaining diversity and preventing premature 
convergence. 

Compared with the existing methods described above, the 
convergence time of OIMGA is likely to be shorter due to 
reductions both in the total search space explored and in the 
population size [8]. A further execution speed enhancement in 
the hardware implementation is also easily identifiable since 
the executions of the global and the local searches are prime 
candidates for hardware pipelining. Table I shows the 
parameters available to a designer using the OIMGA 
algorithm, while Fig. 5 shows the pseudocode of OIMGA 
itself.  

 
TABLE I 

OIMGA PARAMETERS 
l individual length 
n population size 
m the size of the miniature space around the LOI 
t_gens maximum number of consecutive global generations 

without improvement 
k_gens  
 

maximum number of consecutive local generations without 
improvement 

d_adjustor  range of mutation of an individual 
m_rate probability of mutation 

IV. OIMGA HARDWARE DESIGN 
Fig. 6 shows the main structure of the hardware 

implementation of OIMGA. The LOI-generator initiates the 
local process by randomly producing a population that 
includes n individuals, and then searches for the LOI. In the 
micro-mutation unit, the individuals are allowed to evolve in 
value only within the range indicated by the value of 
d_adjustor and any change of range is controlled by the 
d_controler. The fitness value of the generated individual is 
calculated by the fitness-unit and the local-evaluator 
compares the fitness of the current LOI with that of the 
previous one and replaces it if its fitness is better. The search 
in the local space is repeated m times. If, during these 

searches, a new LOI is not found then the range that 
d_adjustor indicates is decreased. Should the fitness of the 
LOI not improve over k_gens cycles, then the LOI is sent to 
the global evaluator. The global evaluator implements the 
global process and retains the globally best individual and its 
fitness value found from all the local searches. The global 
process terminates when the fitness has not improved over  

 

Fig. 5  The pseudocode for the OIMGA algorithm 

 
t_gens operations of the local process.  
 
 

g=t_gens; 
while g>0 % start a global search  
  d=d_adjustor; 
  for i=1 to :n  

loiChrom= randCreateIndv(l);  % random l-bit individual 
loiFit=fitness(loiChrom,l);  % find its fitness 
if loiFit>bestFit       % keep an elite individual and 

      bestChrom=loiChrom;  % its fitness 
      bestFit=loiFit; 
    endif 
  endfor 

  k=k_gens; 
  while k>0     % start a local search 
    update=0;    % number of updates of tempChrom and bestChrom        
    for i=1 to :m    % perform local search m times 
      tempChrom=bestChrom; 
      for j=d to l      % produce a micro mutation in the range d to l 
        if rand()<m_rate     % 'rand' is a random number 
          tempChrom(j)=not(tempChrom(j));    % invert the jth bit 
        endif 
      endfor 
      tempFit=fitness(tempChrom,l); 
      if tempFit>bestFit       
        bestChrom=tempChrom;    % keep the elite local individual 
        bestFit=tempFit;              % and its fitness 
        update=update+1; 
        k=k_gens;      
        d=d_adjustor;      
      endif 
    endfor 
    if update=0          % decrease range (d-l) if no update 
      d=d+1; 
    endif 
    k=k-1; 
  endwhile 
  if bestFit>topFit          % keep elite global individual 
    topChrom=bestChrom;   % and its fitness 
    topFit=bestFit; 
    g=t_gens; 
  endif 
  g=g-1; 
endwhile 
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Fig. 6 The main structure of OIMGA 

A.  LOI Generator 
The LOI generator shown in Fig. 7 includes a random 

number generator RNG that produces an l-bit random 
individual whose fitness value is calculated by the fitness unit 
and stored in the register loiFit. The unit cmp1 is used to 
compare the fitness of loiFit with that of the best fitness value 
held in bestFit and, if it is better, bestFit is replaced by loiFit 
and the new individual (of length l) replaces that held in the 
register bestChrom. The n bit counter ensures that the entire 
process is carried out n times, where n is the population size. 
Note that in order to modify the size of the population, it is 
only necessary to change the length of the counter. 

 
Fig. 7  LOI generator 

B.  Micro-Mutation Unit 
The micro-mutation unit is shown in Fig. 8. If the 

probability of mutation pm is greater than RNGi and 
d_MRSRi is set, the ith

 bit of bestChrom is mutated. The 
register tempChrom holds the value of the chromosome 
following mutation and is evaluated in the fitness unit. If its 
fitness is better than that in bestFit (as determined in the local 
evaluator shown in Fig. 9), the signal cmp2 operates the tri-
state gate to replace bestChrom by the value in tempChrom. 
To modify the length of the individual, a corresponding 
change can be made to the number of bits in the micro 
mutation unit. 

 
Fig. 8  Micro mutation unit 

C. Local Evaluator 
The local evaluator shown in Fig. 9 uses the fitness values 

to select the better individual from tempFit and bestFit, and 
keeps this elite individual and its fitness value during local 
evolution. 

 
Fig. 9  Local evaluator 

D. Adjusting the Range of Mutation 
During an evolution process, generally the times between 

modifications to the fitness values decrease, indicating that the 
evolution is converging to a final value. To speed up 
convergence, it is appropriate to reduce the allowed change of 
mutation values in order to investigate the space in the more 
immediate vicinity of the current best individual. 

Initially, the bits in the mask right shift register shown in 
Fig. 10 are all set, MRSRi,=1, i∈[1,l]. The initial value of the 
range held in d_initial is set to a predefined value, signifying 
that all but this number of bits in the individuals should be 
mutated. This value is copied into d_counter. The update  
register (update) is initialized with 0 and is incremented 
whenever the local evaluator replaces the current best 
individual. The value in d_counter defines the number of 
shifts that are performed by the MRSR (with the left-most bit 
zero filled); at each shift d_counter decrements by 1. To 
understand the operation, consider the case where the initial 
value held in d_counter is 3. In this case, following the shift 
operations, the state of MRSR is shown as follows. 

⎩
⎨
⎧

≤≤
≤≤

=
li

i
MRSRd i 4    1

30    0
_  (1) 
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These values indicate that the range of mutation is in [4, l]. 
During local evolution based on LOI, update will be 
increased by 1 if bestChrom and bestFit are replaced. After 
each generation of local evolution, d_initial will increase by 1 
if update is still 0, thereby reducing the number of bits that 
are mutated in the micromutation unit. 

 
Fig. 10  Circuitry to adjust the range of mutation 

E. Global Evaluator 
The principle of operation of the global evaluator, shown 

in Fig. 11, is very similar to that of the local evaluator. The 
global evaluator selects the better individual from bestFit and 
topFit, and keeps the elite individual from all generations and 
its corresponding fitness value in topChrom and topFit 
respectively. 

 
Fig. 11  Global evaluator 

V. RESULTS 
To evaluate the efficiency of a number of hardware 

implementations of GAs with OIMGA, namely half-siblings-
and-a-clone [1], roulette [6] and compact GA [3], the two 
benchmark functions defined by Zhang and Zhang [9] shown 
in the following equations were used. 

)3()1,0( ))20(sin)3(sin21()(
)2(     )1,0( |)200sin()1(| )(

202020
2

2
1

∈+−=
∈−=

xxxxf
xxxxxf

ππ
π  

f1(x) has 200 local maximum and minimum values in its 
defined range (Fig. 12), while f2(x) has 20 local maximum and 
minimum values in its defined range (Fig. 13). It is very 
difficult to determine analytically the maximum and minimum 
values of the two functions by methods other than using some 
form of search [9]. 

 
Fig. 12  Benchmark function f1(x) 

 

 
Fig. 13  Benchmark function f2(x) 

Presented here are results of a number of experiments to 
assess the following three aspects of the four hardware GA 
implementations: the quality of the solution produced, the 
calculation time and the hardware component requirements. 

The GA implementations (other than OIMGA) were carried 
out according to the descriptions given by the respective 
authors. The simulations were all developed and run in 
MATLAB [10] on the same host computer system. Since 
MATLAB cannot fully reproduce the cycle-accurate timings 
of a hardware implementation, the timings can only be 
regarded as indicative. 

In the first set of experiments, the performance of the GAs 
in determining the maximum values of the functions f1(x) and 
f2(x) were investigated for various values of population size 
and individual lengths. Fig. 14 shows that for a fixed 
individual length, OIMGA outperformed the other GA 
implementations, particularly for small populations. The 
performance of the compact GA was noticeably inferior to the 
other implementations. The poor performance of the compact 
GA was also apparent when the population size was fixed and 
the maximum function values determined for a range of 
lengths of the individuals, Fig. 16. The remaining three GAs 
all performed similarly under this test. 
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(b) Estimated f2(x) maxima 

Fig. 14  Maxima of the benchmark functions found by the GAs for 
a range of population sizes and at a fixed individual length (l) of 32. 

Each data point shown was calculated from results averaged over 200 
tests, except for the compact GA where only 20 tests were carried 

out. 
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(a) Estimated f1(x) maxima 
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(b) Estimated f2(x) maxima 

Fig. 15  Maxima of the benchmark functions found by the GAs for 
a range of individual lengths and at a fixed population size (n) of 
128. Each data point shown was calculated from results averaged 

over 200 tests, except for the compact GA where only one test was 
carried out. 

The second set of experiments investigated the calculation 
times to reach convergence when determining the maximum 
values of the functions f1(x) and f2(x) for the different 
population sizes and individual lengths. In Fig. 16, it can be 
seen that the compact GA performed poorly across a range of 
population sizes, with the calculation times often being two 
orders of magnitude greater than those of the other GAs. It 
can be seen from Fig. 16 that, as the population size is 
increased, the calculation times of OIMGA increase less 
steeply than those of the other GAs. More detailed 
investigations revealed that, with the doubling of the 
population size, the calculation times for OIMGA increased at 
only half the rate of the half-siblings-and-a-clone and the 
roulette GAs. Fig. 17 shows that the calculation times for the 
compact GA were particularly long when the length of the 
individuals was increased beyond 32. These results also show 
that the other GA methods produced shorter calculation times 
and OIMGA performed particularly well in the more 
demanding cases where the individuals were of greater length 
and the population larger. 
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(b) Estimated f2(x) calculation times 

Fig. 16  Calculation times of the benchmark functions found by 
the GAs for a range of population sizes and at a fixed individual 

length (l) of 32. Each data point shown was calculated from results 
averaged over 200 tests, except for the compact GA where only 20 

tests were carried out. 

In order to generate representative figures, the experimental 
procedure to produce the results involved adjustment of the 
respective parameters of each of the GAs (other than for l and 
m whose values were purposely varied to obtain the results). 
The parameters used by OIMGA for the estimation of the 
maximum values of f1(x) and f2(x) are given in Table II. Note 
that altering the width of the fitness value affects not only the 
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system performance, but also has an effect on other hardware 
requirements, such as the width of the comparator. 

Hardware implementations of GAs mainly consist of 
random number generators, comparators, registers and 
memory. The requirement of each component can be 
described with its total bit number (TBN). For example, if 
there are ten 8-bit registers in a circuit, their TBN is 80 bits. 
To illustrate the relative complexities of the GAs investigated 
in the current work, the values in Table III were obtained from 
algorithmic estimates of the hardware requirements of four 
different classes of component. It can be seen that the TBN for 
the compact GA and OIMGA solutions are an order of 
magnitude less than those for the other GA methods. 
However, in contrast with OIMGA, the modest hardware 
requirement of the compact GA has clearly been achieved at 
the expense of performance. 
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(b) Estimated f2(x) calculation times 

Fig. 17  Calculation times of the benchmark functions found by 
the GAs for a range of individual lengths and at a fixed population 
size (n) of 128. Each data point shown was calculated from results 

averaged over 200 tests, except for the compact GA where only one 
test was carried out 

 
TABLE II 

 OIMGA PARAMETER VALUES 
 

function 
 

m 
 

t_gens  
 

k_gens 
 

d_adjuster 
 

 pm 
width of 
fitness 
value 

f 1 (x) 10  4  5 3 0.382 32 
f 2 (x) 16 6 5  4  0.382 32 

 
 
 
 
 

TABLE III 
HARDWARE REQUIREMENTS OF THE  GA IMPLEMENTATIONS 

 
GA 

random 
number 

generators 

 
comparators 

 
registers 

 
memory 

 
total 

OIMGA 160 224 296 0 680 
Clone 32 96 256 4096 4480 
Roulette 59 64 478 8192 8793 
Compact 256 262 352 0 870 

VI. CONCLUSION 
The paper has introduced a new GA algorithm that is 

particularly suited for hardware implementation because of its 
minimal memory requirement and its ability to allow both the 
size of the population and the length of the individuals to be 
altered simply by replicating existing logic units. When run on 
benchmark problems, the new algorithm compared favorably 
with other hardware solutions found in the literature, both in 
terms of its execution time and in its performance on 
benchmark problems. Future publications will present the 
results of our investigations of implementing the GAs in a 
hardware design language and running cycle-accurate 
simulations in order to determine more precisely their relative 
performances. 
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