
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:8, No:3, 2014

498

Abstract—In the current scenario, with the increasing integration

densities, most system-on-chip designs are partitioned into multiple

clock domains. In this paper, an asynchronous FIFO (First-in First-

out pipeline) design is employed as a data transfer interface between

two independent clock domains. Since the clocks on the either sides

of the FIFO run at a different speed, the task to ensure the correct

data transmission through this FIFO is manually performed. Firstly

an existing asynchronous FIFO design is discussed and simulated.

Gate-level simulation results depicted the flaw in existing design. In

order to solve this problem, a novel modified asynchronous FIFO

design is proposed. The results obtained from proposed design are in

perfect accordance with theoretical expectations. The proposed

asynchronous FIFO design outperforms the existing design in terms

of accuracy and speed. In order to evaluate the performance of the

FIFO designs presented in this paper, the circuits were implemented

in 0.24µ TSMC CMOS technology and simulated at 2.5V using

HSpice (© Avant! Corporation). The layout design of the proposed

FIFO is also presented.

Keywords—Asynchronous, Clock, CMOS, C-element, FIFO,

Globally Asynchronous Locally Synchronous (GALS), HSpice.

I.INTRODUCTION

HE conventional VLSI systems being synchronous in

their construction have a global clock signal which acts as

a common timing reference for the operation of entire chip

circuitry. Contrary to this, completely asynchronous designs

do not have any global timing [10]. The benefits of

asynchronous circuits design come from many aspects, such as

getting rid of the power consumption from clock, no need to

do global clock tree synthesis, and potentially higher system

throughput [1]. The most critical problem with asynchronous

circuit design is the poor support from EDA tools. Since there

is no global synchronous clock signal, it is very hard for EDA

tools to check if the function of the circuit is exactly the same

as designed. In most cases, asynchronous circuits are designed

by engineers manually. Current VLSI systems are systems-on-

a-chip (SoC) comprising of mixed clock domains [19]. These

SoCs are developed using numerous pre-designed modules

[intellectual properties or IPs] which are integrated with a

communication medium. Each and every IP has its specific

clock and communication requirements. Numerous bus-based

SoC design methodologies, employing either synchronous or

asynchronous interfaces have been proposed [9]. Due to the

Mansi Jhamb is with the University School Of Information and

Communication Technology, GGSIPU, Sector-16C, Dwarka, New Delhi,

India (e-mail: mansi.jhamb@gmail.com)

Prof. R.K. Sharma and Prof. A.K. Gupta are with the Department of
Electronics and Communication Engineering, NIT Kurukshetra, India (e-mail:

mail2drrks@gmail.com, anilg699@rediffmail.com)

limitations of buses, Networks-on-Chip were proposed as

scalable interconnections by [8], [7]. Globally asynchronous

locally synchronous (GALS), a new paradigm emerged as a

solution for difficulty in synchronization of SoC components

[6]. In this paradigm, blocks are built using traditional

synchronous design techniques, but these synchronous blocks

do not share global timing information and are asynchronous

with respect to each other. Globally- Asynchronous Locally

Synchronous (GALS) offers to solve the problem of clock

skew and delay in System-on-chip (SoC) design. One of the

three communication schemes are employed by GALS;

pausible clocks, asynchronous and loosely synchronous [5].

Pausible clock systems stop the clock of a block during data

transfers. The pausible clocking control is a scheme to avoid

synchronization failure by adjusting the local clock. Reference

[11] has shown that this technique is not suitable for

interfacing large high-speed IP cores in SoCs. The highest

degree of robustness and adaptability to a wide range of

temperature, process and voltage variations along with the

varying data rates are the key attributes of fully asynchronous

interconnects. However the data transfer rates and latencies

are limited due to handshaking [22]. In Loosely synchronous

techniques some form of a FIFO between the sender and

receiver is required to move data across clock domains [20].

Communication throughput and latency depends on the design

of the FIFO, transmitter/receiver clock rates and

communication patterns. An asynchronous FIFO would at

most achieve a throughput of 1 datum/three clock cycles of the

slower of the two clocks due to handshaking and

synchronization between the two domains [5]. While it is

often convenient to divide a system into multiple

subcomponents, it is unlikely that these components will

operate autonomously. Accordingly, data transfer is required

between local synchronous blocks. Performing this task

reliably and efficiently are key challenges in GALS designs.

One structure that is particularly well-suited for this task is the

dual-clock first-input first-output (FIFO) or mixed-clock FIFO

[3], [21]. The basic FIFO architecture must be modified to

accommodate two independent clock inputs. Data passing

through the FIFO module will enter with reference to one

clock and exit with reference to the other clock. In this way,

data can be passed safely between independent clock domains

[3]. References [12], [13] have presented high-level views of

dual-clock FIFO structures, but details of dual-clock FIFO

designs are lacking in the literature. Fully asynchronous FIFOs

often appear in the literature , but these designs do not utilize

clocks, and therefore, are difficult to apply in cases of

synchronizing data between clock domains [14], [15]. Despite

Mansi Jhamb, R. K. Sharma, A. K. Gupta

A Novel FIFO Design for Data Transfer in

Mixed Timing Systems

T

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:8, No:3, 2014

499

all these issues, in the GALS architecture, blocks in different

clock domains communicate with each other using

asynchronous connections [16]. Asynchronous FIFO is an

important component for the efficient data transfer in

asynchronous communication [3]. Hence the asynchronous

FIFO design is necessary for implementing

a SoC design [17], [4], [18]. Asynchronous FIFO using

micropipeline is presented in [10]. The main characteristic of

micropipeline FIFO is that the data will flow through all data

cells in the FIFO before reaching the output port. Hence the

delay due to data movement from input

unavoidable [4]. Reference [17] presented

FIFO using counter as control logic, avoiding data movement

at the cost of increased complexity. Reference [4] p

asynchronous FIFO structures using token passing

(sender/receiver can transmit/receive data to/from FIFO only

when it has a token) and a common data bus for data in and

out. This enables the data to be pushed or popped from

asynchronous FIFO without data movement inside FIFO.

Hence the latency caused in a micropipeline

resulting in power reduction [10].

demonstrated globally asynchronous locally synchronous

(GALS) clocking applied to a System-on

design where each core is a synchronous block and

communication between the cores is controlled by wrapper

logic around the cores. Data is transferred between

synchronous blocks through asynchronous communication

channels which may be pipelined with self

channel has its own request and acknowledge

signals which accompany bundled data words. T

synchronization strategies used for inter-

are a strong source of non-determinism, which causes a chip to

randomly choose one of a set of possible correct responses to a

given input stimulus. Non –determinism greatly complicates

chip-level debug and test because these activities rely on the

existence of a unique correct response with which an observed

response is compared for error detection. Reference

described a novel deterministic GALS methodology called

“Synchro-tokens” whose parameterized wrappers are flexible

enough to be used in wide range of applic

an efficient architecture of an asynchronous FIF

as a data transfer interface in GALS design,

paper is organized as follows. In Section II

existing asynchronous FIFO is presented in detail. In

III, a three stage four bits FIFO is simulated

simulation results depict a problem in the existing FIFO

design. Thereafter the corrections are suggested and a new

asynchronous FIFO design is proposed

proposed FIFO is then simulated and the results for the

maximum clock frequencies at which sender and receiver

blocks can be clocked are determined.

drawn in Section IV.

II. FIFO ARCHITECTURE

This paper evaluates the schematic-level design of t

channels shown in Fig. 1. Letter “T” signifies output data port

(FIFO Tail) and “H” corresponds to input data port (FIFO

hitecture, blocks in different

clock domains communicate with each other using

Asynchronous FIFO is an

important component for the efficient data transfer in

Hence the asynchronous

necessary for implementing GALS structure in

. Asynchronous FIFO using

micropipeline is presented in [10]. The main characteristic of

micropipeline FIFO is that the data will flow through all data

the output port. Hence the

delay due to data movement from input to output is

] presented an asynchronous

, avoiding data movement

Reference [4] presented an

asynchronous FIFO structures using token passing

(sender/receiver can transmit/receive data to/from FIFO only

when it has a token) and a common data bus for data in and

out. This enables the data to be pushed or popped from

ta movement inside FIFO.

y caused in a micropipeline is eliminated

 Reference [2] has

asynchronous locally synchronous

on-chip resulted in a

ere each core is a synchronous block and

communication between the cores is controlled by wrapper

logic around the cores. Data is transferred between

synchronous blocks through asynchronous communication

channels which may be pipelined with self-timed FIFOs. Each

channel has its own request and acknowledges handshake

bundled data words. The

-core communication

determinism, which causes a chip to

a set of possible correct responses to a

determinism greatly complicates

level debug and test because these activities rely on the

existence of a unique correct response with which an observed

detection. Reference [2] has

a novel deterministic GALS methodology called

tokens” whose parameterized wrappers are flexible

enough to be used in wide range of applications. In this paper

efficient architecture of an asynchronous FIFO employed

design, is proposed. This

Section II, the structure of

sented in detail. In Section

age four bits FIFO is simulated. The gate level

simulation results depict a problem in the existing FIFO

design. Thereafter the corrections are suggested and a new

hronous FIFO design is proposed. The behavior of

proposed FIFO is then simulated and the results for the

at which sender and receiver

blocks can be clocked are determined. The conclusion is

RCHITECTURE

level design of the data

1. Letter “T” signifies output data port

(FIFO Tail) and “H” corresponds to input data port (FIFO

Head). This asynchronous FIFO supports asynchronous

communication between the either sides. The

architecture are presented as follows.

Fig. 1 The design of Asynchronous FIFO for GALS

A. C-Element as Stage-Controller

C-element is the key component of the design and is

responsible for the handshake

stages as shown in Fig. 2. In this FIFO design, C

ensures correct asynchronous transmission of data between the

two ends.

Fig. 2 The C-element with an active low reset signal

In the FIFO stage, two C

together as a stage controller. The handshake flow of a stag

controller is shown as Fig. 3.

Fig. 3 The Phenomenon of

The process of Handshaking is explained as following

steps:

Step 1. Initially all four handshake signals are low (Reset).

Step 2. The module T sends out data, in the meantime pulls

req_T high.

Step 3. Since req_H is low,ack_T will be high. The leading

Head). This asynchronous FIFO supports asynchronous

communication between the either sides. The details of

presented as follows.

The design of Asynchronous FIFO for GALS

ontroller

element is the key component of the design and is

responsible for the handshake signals between different FIFO

. In this FIFO design, C-element

correct asynchronous transmission of data between the

element with an active low reset signal

In the FIFO stage, two C-elements can be connected

together as a stage controller. The handshake flow of a stage

The Phenomenon of Handshaking in stage controller

The process of Handshaking is explained as following

four handshake signals are low (Reset).

sends out data, in the meantime pulls

,ack_T will be high. The leading

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:8, No:3, 2014

500

edge of ack_T is also the clock signa

thus data_T is loaded to the stage register.

Step 4. The ack_T signal is also the in

element, ack_T when asserted high pulls req_H

Step 5. When req_T goes low, ack_T will also become low.

Step 6. The second C-element waits for the ack_H

next stage, when ack_H is asserted high, it conveys that

next stage is ready to get the data in register. Then with

low ack_T ,req_H will be asserted high.

B. The Data Transmission in Asynchronous FIFO

 Data is transferred between synchronous blocks through

asynchronous communication channels which a

self-timed FIFO as shown in Fig. 1. Each channel has its own

request and acknowledges handshake signal

bundled data words. The entire process of asynchronous data

transmission is as follows:

When TDclken is asserted high, data in the tail begins to

input to the buffer stage by sending Treq to the buffer. In

the buffer is empty, it will receive data from the head register

and pulls up TAck. TReq will not be low until TAck is high. If

the buffer is full, it can only receive data when th

only register has been sent to the next stage buffer. Before

that, TAck will always be low. With more stages of buffer,

more data could be sent to buffer before

pull up. This signal tells the data sending

because buffer is FULL.

In the head side, data can be received when HDclken is

asserted high and HStall is low. As shown in Fig. 1, there is

another C-element in the head section

controls reception of data in the head section.

inputs in this C-element is HDclk, which is controlled by

Hclk, HDclken and HStall. The leadingedge of

reception of data from the buffer register, and HValid

becomes high when HReq is asserted high. Data in the head

register can be read out when HValid is high.

The C-elements permit movement of data

domain to another domain through this FIFO

registers in the FIFO are not full. And in case

it signals the block connected to the FIFO to stop sending new

data. On the other hand reception of the data

when the block connected to the FIFO is ready

III. SIMULATIONS AND THE PROPOSED

In this design of asynchronous FIFO, the clock in the tail

and head parts of the FIFO can be totally different, which is

not possible in synchronous CMOS design. The clock signals

in this FIFO are not directly sent to flip

There are several control signals to gate clocks from

outside.Due to the asynchronous clocks and gated clocks, it is

not possible for EDA tools to do timing check an

synthesis in asynchronous system design. Thus manually

custom design for asynchronous circuit is performed. In order

to evaluate the performance of the FIFO designs presented in

this paper, the circuits were implemented in 0.24µ

CMOS technology and simulated at 2.5V using HSpice (©

Avant! Corporation). In this paper the behavior of three stage

is also the clock signal for data register,

is loaded to the stage register.

signal is also the input of the next C-

element, ack_T when asserted high pulls req_H high.

will also become low.

element waits for the ack_H signal from

is asserted high, it conveys that

in register. Then with

will be asserted high.

Asynchronous FIFO

ata is transferred between synchronous blocks through

asynchronous communication channels which are pipelined by

Each channel has its own

handshake signals accompanying

bundled data words. The entire process of asynchronous data

When TDclken is asserted high, data in the tail begins to

y sending Treq to the buffer. In case

receive data from the head register

and pulls up TAck. TReq will not be low until TAck is high. If

the buffer is full, it can only receive data when the data in its

been sent to the next stage buffer. Before

more stages of buffer,

more data could be sent to buffer before the signal TStall is

sending block to stop

In the head side, data can be received when HDclken is

is low. As shown in Fig. 1, there is

element in the head section. This C-element

the head section. One of the

element is HDclk, which is controlled by

leadingedge of HDclk leads to

from the buffer register, and HValid

becomes high when HReq is asserted high. Data in the head

register can be read out when HValid is high.

data from one clock

hrough this FIFO, only when the

n the FIFO are not full. And in case the FIFO is full,

it signals the block connected to the FIFO to stop sending new

nd reception of the data happens only

when the block connected to the FIFO is ready to receive it.

ROPOSED DESIGN

In this design of asynchronous FIFO, the clock in the tail

and head parts of the FIFO can be totally different, which is

design. The clock signals

in this FIFO are not directly sent to flip-flops and registers.

There are several control signals to gate clocks from

outside.Due to the asynchronous clocks and gated clocks, it is

to do timing check and clock tree

in asynchronous system design. Thus manually

custom design for asynchronous circuit is performed. In order

to evaluate the performance of the FIFO designs presented in

this paper, the circuits were implemented in 0.24µ TSMC

d at 2.5V using HSpice (©

! Corporation). In this paper the behavior of three stage

four bits FIFO is simulated. The width of this FIFO is 4 bits,

thus four registers are needed for every stage of data registers.

Special care has been taken to make the simulations realistic

.This section first presents the gate

the existing design shown in

incurred in the simulations due to the fault prevailing in the

existing design. Thereafter the corrections are suggested in the

existing FIFO design and a new design for asynchronous FIFO

is proposed. Simulation results are then obtained for proposed

FIFO structure. The results thus obtained are in perfect

accordance with theoretical expectat

determine the maximum frequency for this proposed FIFO

behavior is simulated at different clock periods of the Tail and

Head sections. The sizes of all transistors in this design are

carefully selected so that the circuit can have co

functionality and high performance. For the performance of

this circuit to be as high as possible, shortest critical path is

achieved. Finally the layout is obtained for the new FIFO

architecture.

A. Fault Detection in Existing D

The overall schematic of the existing asynchronous FIFO is

shown in Fig. 4.

Fig. 4 Asynchronous FIFO schematic

In the schematic simulation, the rise and fall t

inputs is considered to be 50ps

is selected to be 5ns and 3ns

simulation results are shown as

While using the FIFO architecture

simulation results exhibit some problems. Fig.

a problem with the Tstall signal. This signal should be high

only when either the next stage register is full or TDclken is

high. In the simulation trace when the next stage register is not

full and TDclken is low, Tstall

(these places are highlighted

to the incomplete clock pulse of TDclk, as shown encircled.

four bits FIFO is simulated. The width of this FIFO is 4 bits,

thus four registers are needed for every stage of data registers.

en taken to make the simulations realistic

.This section first presents the gate-level simulation results of

the existing design shown in Fig. 1 and depicts the problem

incurred in the simulations due to the fault prevailing in the

er the corrections are suggested in the

existing FIFO design and a new design for asynchronous FIFO

is proposed. Simulation results are then obtained for proposed

FIFO structure. The results thus obtained are in perfect

accordance with theoretical expectations. In order to

requency for this proposed FIFO, its

different clock periods of the Tail and

Head sections. The sizes of all transistors in this design are

carefully selected so that the circuit can have correct

functionality and high performance. For the performance of

this circuit to be as high as possible, shortest critical path is

achieved. Finally the layout is obtained for the new FIFO

Fault Detection in Existing Design

ematic of the existing asynchronous FIFO is

4 Asynchronous FIFO schematic

In the schematic simulation, the rise and fall time of all

be 50ps, clock period for tail and head

5ns and 3ns respectively. The HSpice

simulation results are shown as Fig. 5.

While using the FIFO architecture shown in Fig. 4 the

some problems. Fig. 5 shows there is

a problem with the Tstall signal. This signal should be high

the next stage register is full or TDclken is

when the next stage register is not

, Tstall signal has several glitches

(these places are highlighted with circles). This problem leads

to the incomplete clock pulse of TDclk, as shown encircled.

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:8, No:3, 2014

501

Fig. 5 The gate-level simulation results for Original FIFO

The problem arises because the pulses of T

to pulses of TReq signal as shown encircled in Fig. 5. And the

pulses of TReq signal are passed through NAND and INV to

TStall signal which causes pulses in TStall signal .In an

attempt to fix this problem, a modified tail design is proposed

in Fig. 6. The proposed design involves addition of a la

after the NAND gate which is connected to TReq signal in the

existing design. This latch passes TReq signal

signal is low. This latch prevents passage of

TStallsignal when clock is high, thus eliminating the glitches

in Tstall signal.

Fig. 6 The Proposed Tail Design

The Hspice simulation results for the proposed FIFO are

shown in Fig. 7. Fig. 7 demonstrates that an addition of latch

in the existing FIFO architecture, eliminates

Tstall signal.

imulation results for Original FIFO

The problem arises because the pulses of Tack signal lead

led in Fig. 5. And the

through NAND and INV to

pulses in TStall signal .In an

this problem, a modified tail design is proposed

The proposed design involves addition of a latch

which is connected to TReq signal in the

signal only when Tclk

passage of TReq signal to

minating the glitches

Tail Design

results for the proposed FIFO are

7 demonstrates that an addition of latch

eliminates the glitches in

Fig. 7 The gate-level simulation result

B. Performance Evaluation of Proposed FIFO

In order to determine the max

can operate at, the simulation

periods for head and tail sections

architecture. The maximum clock speeds of the tail and head

section are tested separately. Firstly the

reduced till the results become erroneous.

Case I: Tail Clock = 1900 ps and Head

Fig. 8 The Simulation results for

Clock = 800 ps

Fig. 8 shows that the rise and fall slopes of TDclk

getting mild and the Hvalid signal begins to

clock speed. However, the results are still correct as s

the box.

imulation results of proposed FIFO

nce Evaluation of Proposed FIFO Design

o determine the maximum frequency this FIFO

simulations are performed at different clock

periods for head and tail sections of proposed FIFO

The maximum clock speeds of the tail and head

are tested separately. Firstly the clock period of tail is

reduced till the results become erroneous.

= 1900 ps and Head Clock = 800 ps

for Tail Clock = 1900 ps and Head

Clock = 800 ps

the rise and fall slopes of TDclk signal are

the Hvalid signal begins to show glitch at this

clock speed. However, the results are still correct as shown in

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:8, No:3, 2014

502

Case II: Tail Clock = 1800 ps and Head Clock = 800 ps

 The simulation result for this case is shown in Fig. 9.

Fig. 9 The Simulation results for Tail Clock = 1800 ps and Head

Clock = 800 ps

As shown in Fig. 9, the outputs in the box are deviated from

the expected results shown in Fig. 8. One 4-bit data is missing.

This is due to the reason that the speed of the tail clock is so

high that the tail part can’t finish passing data of the previous

clock before the arrival of the next clock edge. Thus for the

tail part, the minimum clock period for correct data

transmission is 1900ps.

Case III: Tail clock = 1900 ps and Head clock = 700 ps

If the tail clock is kept at 1900ps and head clock is reduced

to 700ps, the simulation results are shown in Fig. 10.

Fig. 10 The Simulation results for Tail clock = 1900 ps and Head

clock = 700 ps

Fig. 11 The Layout Design for Asynchronous FIFO

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:8, No:3, 2014

503

As shown in Fig. 10, the results become erroneous when the

head clock period is decreased to 700ps. And the glitches in

Hvalid signal are becoming severe. Thus for the head part, the

minimum clock period for which data can be correctly

received is about 800ps.

The maximum clock frequencies at which Head and Tail

section can be clocked are presented in Table I.

TABLE I

MAXIMUM CLOCKING FREQUENCIES FOR NEW FIFO

Version Head Section Tail Section

Mixed Clocks 1.25 GHz 0.52 GHz

C. Layout Design

The layout design of the proposed asynchronous FIFO is

shown in Fig. 11. The height of the layout is 46um and the

width is 74um. The ratio is 74/46=1.6.

IV. CONCLUSION

This work presents a novel and an efficient self-timed FIFO

design which acts as a data transfer interface between the

blocks with unrelated clock speeds. The proposed design is

based on the idea of token passing. Our solution is developed

from the flaw depicted in existing FIFO design [2]. The

proposed design does not need any data synchronization and is

able to correctly interface the blocks operating at different

clock speeds. The critical part in this work is the design of C-

elements, which handle pairs of handshake signals between

different clock domains. The C-elements ensure the correct

passage of data from one clock domain to another domain

through this self-timed FIFO only when the registers in the

FIFO are not full. In case the FIFO is full, the block connected

to the FIFO is directed to stop the sending of new data. On the

other hand data reception happens only when the block

connected to the FIFO is ready to receive it. The results

obtained from proposed design are in perfect accordance with

theoretical expectations. The proposed asynchronous FIFO

design outperforms the existing design [2] in terms of

accuracy and speed. The result is quite promising and leaves

the possibilities for further improvements open, leading to

more area and power efficient implementation.

This mixed – clock design can also be adapted for

interfacing asynchronous and synchronous subsystems.

REFERENCES

[1] Jens Sparso, “Principles of Asynchronous Circuit Design: A Systems

Perspective,” Kluwer Academic Publishers, 2002

[2] Matthew W. Heath, Wayne P. Burleson, Ian G. Harris, “Synchro-
Tokens: A Deterministic GALS Methodology for Chip-Level Debug and

Test,” IEEE transactions on Computers, December 2005 (vol. 54 no. 12)

[3] R. W. Apperson, Z. Yu, M. J. Meeuwsen, T. Mohsenin, and B. M. Bass,
“A Scalable Dual-Clock FIFO for Data Transfers Between Arbitrary and

Haltable Clock Domains,” IEEE Transactions on Very Large Scale

Integration, vol. 15, no. 10, pp. 1125–1134, Oct 2007.
[4] Chelcea, T., and Nowick,S.(2004), ‘Robust Interfaces for Mixed Timing

Systems’,IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, 12, 857–873.
[5] Teehan, P., Greenstreet, M., and Lemieux, G. (2007), ‘A Survey and

Taxonomy of GALS Design Styles’, IEEE Design and Test of

Computers, 24, 418–428.

[6] Chapiro, D.M. (1984), ‘Globally-asynchronous Locally-synchronous

Systems’, PhD thesis, Stanford University.
[7] Henkel, J., Wolf, W., and Chakradhar, S. (2004), ‘On-chip Networks: A

Scalable, Communication-centric Embedded System Design

‘Proceedings of 17th International Conference VLSI Design, pp. 845–
851.

[8] Dally, W.J., and Towles, B. (2001), ‘Route Packets, not Wires: On Chip

Interconnection Networks’, in Proceedings of 38th Design Automation
Conference, pp. 684–689

[9] Salminen, E., Lahtinen, V., Kuusilinna, K., and Hamalainen, T. (2002),

‘Overview of Bus-based System-on-chip Interconnections’, in
Proceedings of IEEE International Symposium on Circuits and Systems,
pp. 372–375.

[10] I.E Sutherland, “Micropipelines,” Communications of the ACM, Volume
32 Issue 6, June 1989.

[11] Dasgupta, S., and Yakovlev, A. (2007), ‘Comparative Analysis of GALS

Clocking Schemes’, IET Journal of Computers and Digital Techniques,
1, 59–69

[12] W. J. Dally and J. W. Poulton, Digital Systems Engineering.Cambridge,

U.K.: Cambridge Univ. Press, 1998.
[13] M. Balch, Complete Digital Design, 1st ed.New York: McGraw-

Hill2003.
[14] J. Ebergen, “Squaring the FIFO in GasP,” in Proc. Int. Symp.

Asynch.Circuits Syst., 2001, pp. 194–205.

[15] C. E. Molnar, I. W. Jones, W. S. Coates, and J. K. Lexau, “A FIFO ring
performance experiment,” in Proc. Int. Symp. Asynch. Circuits

Syst.,1997, pp. 279–289.

[16] Xin Wang, TapaniAhonen, JariNurmi, “A Synthesizable RTL Design of
Asynchronous FIFO,” Proc. International Symposium on System-on-

Chip, 2004.

[17] A.V. Yakovlev, A.M. Koelmans, L.Lavagno, “High-Level Modeling and
Design of Asynchronous Interface Logic,” IEEE Design and Test of

Computers, Spring 1995.

[18] E. Brunvand, “Low Latency Self-Timed Flow through FIFOs,” in 16th
Conference on Advanced Research inVLSI, UC Santa Cruz, March 1995,

pp. 76–90.

[19] Chattopadhyay, A., and Zilic, Z. (2005), ‘GALDS: A Complete
Framework for Designing Multiclock ASICs and SoCs’, IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, 13, 641–

654.
[20] Para Ono, T., and Greenstreet, M. (2009), ‘A Modular Synchronizing

FIFO for NoCs’, in Proceedings of 3rd ACM/IEEE International

Symposium on Networks-on-Chip, pp. 224–233.
[21] Strano, A., Ludovici, D., and Bertozzi, D. (2010), ‘A Library of Dual-

clock FIFOs for Cost-effective and Flexible MPSoC Design’, in

Proceedings of International Conference on Embedded Computer
Systems (SAMOS), pp. 20–27.

[22] Chakraborty, A., and Greenstreet, M.R. (2003), ‘Efficient Self-timed

Interfaces for Crossing Clock Domains’, in Proceedings of 9th
International Symposium on Asynchronous Circuits and Systems, pp.

78–88.

