
International Journal of Medical, Medicine and Health Sciences

ISSN: 2517-9969

Vol:3, No:11, 2009

334


Abstract—Electrocardiogram (ECG) data compression algorithm 

is needed that will reduce the amount of data to be transmitted, stored 
and analyzed, but without losing the clinical information content. A 
wavelet ECG data codec based on the Set Partitioning In Hierarchical 
Trees (SPIHT) compression algorithm is proposed in this paper. The 
SPIHT algorithm has achieved notable success in still image coding. 
We modified the algorithm for the one-dimensional (1-D) case and 
applied it to compression of ECG data. 

By this compression method, small percent root mean square 
difference (PRD) and high compression ratio with low 
implementation complexity are achieved. Experiments on selected 
records from the MIT-BIH arrhythmia database revealed that the 
proposed codec is significantly more efficient in compression and in 
computation than previously proposed ECG compression schemes. 
Compression ratios of up to 48:1 for ECG signals lead to acceptable 
results for visual inspection.

Keywords—Discrete Wavelet Transform, ECG compression,
SPIHT.

I. INTRODUCTION

ULTICHANNEL ECG data provide cardiologists with 
essential information to diagnose heart disease in a 
patient. In an ambulatory monitoring system, the volume 

of ECG data is necessarily large, as a long period of time is 
required in order to gather enough information about the 
patient. As an example, with the sampling rate of 360 Hz, 11 
bits/sample data resolution, a 24-hours record requires about 
43 Mbytes per channel. Therefore, an effective data 
compression scheme for ECG signals is required in many 
practical applications including:
(a) ECG data storage; (b) ambulatory recording systems; and 
(c) ECG data transmission over telephone line or digital 
telecommunication network.

Many lossless and lossy compression techniques have been 
presented in literature. The current compression methods can 
be classified into two classes: direct methods and 
transformational methods [1]. In the first class of methods, the 
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signals are processed in a time domain where the samples that 
do not have important information for reconstruction are 
eliminated (polynomial predictor and polynomial interpolator).
The ECG signals can also be compressed in a time domain by 
quantizing and entropy coding the differential values between 
the real and predicted samples.

In the second class of methods, the signal is processed and 
coded in the transformational domain, such as Fourier 
Transform (FT) and Karhunen- Loeve Transform (KLT), Fast 
Walsh transform, Discrete Cosine Transform (DCT) [2,3] and 
wavelet transform [4–8]. In [9], a review for the ECG 
compression methods that have been reported for about three 
decades is given.

Transform based compression techniques are based on the 
application of linear orthogonal transformation to a set of ECG 
samples. Among these, wavelet transform based ECG data 
compression techniques have received significant attention 
because of their good localization properties in the time and 
frequency domains, energy compaction ability, easy 
implementation and efficiency. Recently, many one-
dimensional (1D) and two-dimensional (2D) wavelet transform 
based compression algorithms with low reconstruction error 
and smooth signal qualities are reported.  It is important to find 
the best compression method for all different shapes of ECG 
signal regardless of heart disease of patient. 

This paper presents a very effective transformational 
approach for ECG compression using wavelet transform and 
SPIHT coding. The SPIHT algorithm is a highly refined 
version of the Embedded Zerotrees of Wavelet (EZW) 
transforms algorithm. It was introduced in Said and Pearlman 
[10, 11] which has shown superior results in image 
compression and wavelet compression of ECG signals [12]. 
ECG reconstruction is accomplished by the inverse of the 
wavelet transform. The forward and inverse wavelet 
transforms are efficiently implemented by a pair of 
appropriately designed Quadrate Mirror Filters (QMFs).

The compression ratio depends on the parameters how ECG 
signal is digitized (sampling frequency and number of bits per 
sample) and the level of decomposition. In this paper, 
compression of ECG signal is quantized with 11 bits per 
sample and by sampling frequency of 360 Hz. 

The remainder of this paper is structured as follows. In 
section 2 the compression method used in this work are 
presented. In section 3, the compression algorithm is detailed. 
In section 4 results and discussion are shown and finally, the 
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conclusions are given in section 5. 

II. COMPRESSION METHOD

In this section, we present a compression scheme. Here, the 
details of the encoding scheme are explained given that the 
incoming signal has been decomposed. This compressor does 
not need any signal pre-processing such as QRS complex 
detection and no a priori signal knowledge is required. The 
compression processing can be divided into subsequent (see 
Figure 1):

Fig. 1 Block diagram of a wavelet transform based ECG 
compression method using SPIHT algorithm

Every input block of N samples is decomposed using 
Discrete Wavelet Transform (DWT).  DWT is one of the most 
powerful tools in digital signal processing. It is often used in 
compression methods because of its energy compaction ability. 
A signal can be represented by scaling and translating a short 
wave called wavelet. Discrete coefficients describing the 
scaling and translations are called wavelet coefficients. In the 
DWT decomposition algorithm, every coefficient at any scale 
is related with two other coefficients at the immediate lower 
scale. The set of wavelet coefficients gives a less redundant 
alter-native representation of the signal well suited for 
compression.

The DWT can be represented as a dyadic filter bank with 
level n. For most physical signals the signal energy is 
concentrated in the lower frequency bands, thus this 
representation gives energy compaction. So, based on 
problems mentioned above, finding a wavelet that has the most 
energy compaction is an important subject in signal 
compression. Many of the resulting wavelet coefficients, 
especially in the higher frequency bands, are either zero or 
close to zero. By coding only the larger coefficients, many bits 
are already discarded without loosing significant information. 

After applying wavelet transform on ECG signal, we can 
represent it using trees because of the sub-sampling that is 
performed in the transform. A coefficient in a low subband can 
be thought of as having four descendants in the next higher 
subband (see Figure 2). The four descendants each also have 
four descendants in the next higher subband and we see a 
quad-tree emerge. Tree-based algorithm is set partitioning in 
hierarchical trees (SPIHT) algorithm. This is used for efficient 
quantization and coding of wavelet coefficients. We can now 
give a definition of the zerotree. A zerotree is a quad-tree of 
which all nodes are equal to or smaller than the root. The tree 
is coded with a single symbol and reconstructed by the 
decoder as a quad-tree filled with zeroes.

Fig.  2 The relations between wavelet coefficients in different 
subbands as quad-trees.

This correspondence is iterated through scale, giving the 
temporal orientation tree. In the encoding process, the whole 
set of coefficients of a zerotree can be referenced by its root, 
which is the first coefficient of the temporal orientation tree at 
the lower scale. Also, a coefficient is called significant if its 
magnitude is greater than a given threshold value. The method 
of setting the value of coefficient to zero if the absolute value 
of a coefficient is below the threshold defined, is calling 
“thresholding”.  It is very important to select appropriate value 
for threshold. Large threshold values lead to very good 
compression but distortion might appear in reconstruction. 
Small threshold values lead to low compression but 
reconstructed signal is very similar to the original one. ECG 
reconstruction is accomplished by inverting the compression 
operations through the use of the inverse of the SPIHT coding 
(SPIHT decoder) to reconstruct the wavelet coefficients, 
followed by the inverse of the wavelet transform to get the 
reconstructed ECG signal.

III. DETAILS OF SPIHT ALGORITHM

Here we explain the details of 1-D SPIHT based on 1-D 
DWT coefficients of a signal. We directly apply the 1D-
SPIHT codec over the subband coefficients from wavelet 
decomposition up to three, four or five levels. There are three 
important definitions in the 1D- SPIHT parent-offspring 
relationship as shown in Figure 3:

1) O(i): offspring O(i) represents the set of the 2 coefficients 
(as pointed by arrows) of next higher subband from coefficient 
X(i).

2) D(i): the descendent D(i) of coefficient X(i) is the set 
containing all offspring in all later subbands.

3) L(i): a set defined by L(i) = D(i) - O(i)

The 1D-SPIHT algorithm assumes that each coefficient X(i) 
is a good predictor of the coefficients which are represented by 
the sub-tree rooted by X(i), i.e. D(i). 

The overall procedure is controlled by an attribute, which 
gives information on the significance of the coefficients.
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Fig. 3 The definition of parent-offspring relationship in 1-D 

SPIHT

The wavelet-transformed signal is searched for the largest 
magnitude which defines the threshold k with the highest 
significance.

2 i
i

k log max x    
, Ki0  ,                             (1)

Where k denotes the number of DWT coefficients.

A coefficient of the wavelet transformed signal is significant 

with respect to a threshold k if its magnitude is larger than k2 . 
Otherwise it’s called insignificant with respect to the threshold 
k. it can described as:

k
i

k i
1,       if  x    2

S (x )
0,     otherwise

  


             (2)

Where )( ik xS denotes the significance of ix with respect to 

a threshold k.
In the 1D-SPIHT, the wavelet coefficients are classified in 

three sets, namely the list of insignificant points (LIP) which 
contains the coordinate of those coefficients that are 
insignificant with respect to the current threshold k, the list of 
significant points (LSP) which contains the coordinates of 
those coefficients that are significant with respect to k, and the 
list of insignificant sets (LIS) which contains the coordinates 
of the roots of insignificant sub-trees. 

We use 22 steps to depict the overall 1D-SPIHT coding 
process as follows:

(0) Initialization

LIP= All elements in H, where H is a set of all roots 
coordinates in the top-most lowpass subband.

LSP = Empty
LIS = D’s of Roots
The empty set is assigned to the LSP since no coefficient is 

significant yet. The tree roots H are added to the LIP and those 
with descendants to the LIS.

(1) Sorting Pass

(2)           For each i  LIP
(3)                   Output )x(s ik ;

(4)                   If )x(s ik =1, then

                                 Move i to the LSP and Output sign of   
                     coeff(i): 0/1 = -/+
            Endif
  End loop over LIP
(5)             For each i  LIS
(6)                 If type D, then
(7)                         Send ))i(D(sk ; 

(8)                                  If ))i(D(sk  =1, then

(9)                                       For each  j )i(O

(10)                                          output )x(s jk ;

(11)                                           If )x(s jk =1, then

                                                       add j  to the LSP and     

                                                      output the sign of jx ;

(12)                                          else append j  to LIP;

           End if
   End for

          
(13)                else (type L)
(14)         Send ))i(L(sk

(15)         If ))i(L(sk  =1, then

(16)            add each j )i(O  to the end of the LIS  

                   as an entry of type D
(17)            remove i  from the LIS
(18)         End if on type
(19)         End loop over LIS

(20) Refinement Pass

(21)           For each element i  LSP except those  
                  just added above Output the kth most 

                  significant bit of ix

                  End loop over LIS
      Update
(22)    Decrement k by 1
      Go to Significance Map Encoding Step (1)

In the 1D-SPIHT, wavelet coefficients are arranged in a 
parent-offspring orientation tree in order to exploit the spatial 
self-similarity property of wavelet coefficients across 
subbands. The property implies that if a node coefficient is 
insignificant with respect to a given threshold, probably all 
nodes descending from that are insignificant too.

IV. RESULTS AND DISCUSSION

The ECG signals used in simulation are from MIT-BIH 
arrhythmia database. This database includes different shapes 
of ECG signals. The records used are 100, 101, 102, 103, 104, 
105, 106, 107, 118, 119, 200, 201, 202, 203, 205, 207, 208, 
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209, 210, 212, 213, 214, 215, 217 and 219 (25 records).

The distortion between the original and the reconstructed 
signal was measured by percent root mean square difference 
(PRD). PRD is easy to calculate and compare, and is widely 
used in the ECG compression literature. The PRD is given by:

N 1 2

org rec
n 0

N 1
2

org
n 0

x (n) x (n)

PRD 100%

x (n)








  
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


                  (3)

Where orgx denotes the original data, recx denotes the 

reconstructed data, and N, the number of samples. 
The compression ratio (CR) is calculated as the number of 

bits in the original signal over the number of bits in the 
compressed signal.

number of bits in the original signal
CR

number of bits in the compressed signal
       (4)

The comparison of compression ratios and quality of 
reconstructed signal is done by changing the following 
parameters: Level of decomposition and wavelet used, for 
DWT and number of filters and appropriate number of filter’s 
coefficients. All of our tests are applied on the first 1024 
samples from MIT-BIH records. We retain the same number 
of largest coefficients for each wavelet, and then invert the 
algorithm to reconstruct the signal and measure the 
performance of each wavelet. 

The investigation of the obtained results shows that 
Daubechies (D4), symmetrical (sym6), biorthognonal (bior4.4) 
and coiflet (coif2) perform better than the other wavelets. They 
provide the minimum PRD and the maximum CR. The final 
results of 25 records from MIT-BIH database are shown in 
Figure 4. 
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CR-PRD Diagram for 25 Records from MIH-BIH Database

Fig.  4 CR-PRD results for 25 records from MIT-BIH database

The PRD slightly increases by increasing CR. Here, it 
should be mentioned that in ECG compression, not only we 
deal with normal ECG signals, but also we mostly deal with 
ECG signals with arrhythmia that in general have not a simple 

and common pattern. 
The results of applying the Bior4.4 wavelet with SPIHT 

coding algorithm to records 117, 118, 119, 107, 102, and 203 
are shown in Figures 5 to 9.  In each figure, the original and 
reconstructed signals and difference between them (error) is 
plotted. The values of CR and PRD are also shown in figures.
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Fig. 5 ECG 117 with CR= 45, PRD=1.06
Top figure is original signal, the middle is reconstructed signal and 

bottom signal is error
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Fig. 6 ECG 118 with CR= 48.08, PRD= 1.53
Top figure is original signal, the middle is reconstructed signal and 

bottom signal is error
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Fig. 7 ECG 119 with CR= 45.83, PRD=1.31
Top figure is original signal, the middle is reconstructed signal and

bottom signal is error
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Fig. 8 ECG 107 with CR= 48.15, PRD= 1.18
Top figure is original signal, the middle is reconstructed signal and 

bottom signal is error
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Fig. 9 ECG 102 with CR=46.41, PRD= 1.10
Top figure is original signal, the middle is reconstructed signal 

and bottom signal is error
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Fig. 10 ECG 203 with CR= 48.38, PRD= 1.18
Top figure is original signal, the middle is reconstructed signal and 

bottom signal is error

The figures indicate that the characteristic features of the 
signal are preserved well in the reconstructed signals and the 
main effect of the proposed method is the smoothing of 
background noise.

The results showed that our coding algorithm has following 
features: Our algorithm compresses all kinds of ECG data very 
efficiently, perhaps more efficiently than any previous ECG 
compression method.

The proposed method has been compared with some other 
compression techniques [9], [10], [11], [12] for the records 
117, 119 and the results are presented in Table 1.

In Table I, the proposed method is compared to other 
methods in literature for different CR's and records. The 
methods in this table include other wavelet-based coders, as 
well as the parametric ECG signal coder AZTEC [9]. 

TABLE I
COMPARISON BETWEEN THE PROPOSED METHOD AND OTHER COMPRESSION 

ALGORITHMS (THE RECORD 117 AND 119)

Methods Signals CR PRD (%)

117 45:1 1.06
Proposed method

119 45.83:1 1.31

Wavelet and Huffman 
[10]

117 9.4:1 3.2

117 8:1 1.18
SPHIT [12]

119 21.6 5
Hilton [11] 117 8:1 2.6

Djohn [11] 117 8:1 3.9

AZTEC [9] 117 10:1 28

TP [9] 117 2:1 5.3

CORTES [9] 117 4.8:1 7

JPEG2000 [13] 117 10:1 1.03
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Although the proposed method compares favourably with 
other methods in terms of PRD, it should be noted that a 
diagnostic quality assessment would be required to compare 
the clinical utility of different methods.

V. CONCLUSION

We proposed an ECG data compression codec based on 1-D 
SPIHT coding algorithm. Discrete Wavelet Transform, 
mentioned, samples of signals are transformed to groups of 
transformation coefficients. Almost all coefficients below the 
determined threshold are rounded to zero values and by 
inverse transform the similar signal to original one is created. 
In this way small number of coefficients is stored, and 
compression is obtained.  The proposed method is rather fast 
and easy to implement and leads to high CR with a good 
reconstructive quality. We test its performance by coding 
several records in MIT-BIH ECG arrhythmia database and 
compared the results to other methods. 
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