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Abstract—In this paper, penalized power-divergence test 

statistics have been defined and their exact size properties to test a 
nested sequence of log-linear models have been compared with 
ordinary power-divergence test statistics for various penalization, λ 
and main effect values. Since the ordinary and penalized power-
divergence test statistics have the same asymptotic distribution, 
comparisons have been only made for small and moderate samples. 
Three-way contingency tables distributed according to a multinomial 
distribution have been considered. Simulation results reveal that 
penalized power-divergence test statistics perform much better than 
their ordinary counterparts.  
 

Keywords—Contingency table, Log-linear models, Penalization, 
Power-divergence measure, Penalized power-divergence measure. 

I. INTRODUCTION 
ET S1, …, Sn be an independent and identically distributed 
sample of size n ≥ 1 with the probability distribution P(θ0). 

This distribution is assumed to be unknown but belonging to a 
known family,  
 

P = {p(θ ) = (p1(θ ), …, pM (θ ))T: θ ∈ Θ} 
 

of distributions with components taking values on χ = {1, 2, 
…, M} with parameter space Θ ⊆ Rt (t < M-1). Hence, the true 
value, θ0, of parameters vector θ = (θ1, …, θt )T ∈ Θ is 
assumed to be fixed but unknown. The statistic interested in is 
(N1, …, NM)T. Ns, for s = 1, …, M , denotes the cell count in 
the j-th cell of the contingency table. For the rest of the paper, 
it will be assumed that (N1, …, NM)T has the multinomial 
distribution with probabilities belonging to a general class of 
log-linear models, that is ,  
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with θ * = (u, θ1, …, θt)T being (t+1) x 1 column vector with 
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which is overall mean effect parameter calculated as the 

normalizing constant to insure 1)(
1

=∑
=

M

s
sp θ . 1 x t vector 

),...,( )()(1 sts 
T
s ww=w  in equation (2) forms the M x t log-

linear model matrix of explanatory variables W = (w1, …, 
wM)T which is assumed to have full column rank t < M-1. 
Elements of this matrix are determined according to linear 
constraints on the parameter vector θ. Columns of W are 
linearly independent of the M x 1 column vector (1, …, 1)T. 

[1] defined the family of power-divergence measures, 
),ˆ( )(θppλI as below. 
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where T
Mpp )ˆ,...,ˆ(ˆ 1=p , with 

n
sNps =ˆ . The minimum power-

divergence estimator, as the value minimizing ),ˆ( )(θppλI  
with respect to θ , is defined by  
 

 ),ˆ(minargˆ )(
Θ

θppθ
θ

λλ II

∈
≡ .  (5) 

To deal with the large weight that power-divergence 
measures put on empty cells, [2] have proposed an empty cell 
penalty for ),ˆ( )(θppλI  in multinomial models and defined the 
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family of penalized power-divergence measures as given by  
Eq.(6); 
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    (6)  

which is comprised of two parts; the part for the nonempty 
cells and the part for the empty cells. w is the penalty put on 
empty cells. Eq. (6) is for the λ values not equal to 0 or -1. For 
λ = 0 and λ = -1, only the part for the nonempty cells in Eq. 
(6) will be replaced by the corresponding power-divergence 
measures given in Eq. (4). The penalized minimum power-
divergence estimator can be defined by  
 

                          ),ˆ(minargˆ )(
Θ

θppθ
θ

wP P
w

λλ
∈

≡ . (7) 

 
Note that reweighting empty cells will not alter the asymptotic 
properties of the corresponding estimator [3]. It should be 
noted that for the values of λ ≤ -1, ),ˆ( )(θppλI  can not be 
defined even if there is only one empty cell. But, this is not the 

case for ),ˆ( )(θppwPλ  since empty cells component does not 
depend on λ. As mentioned by [2], the disproportionately 
large weight that power-divergence measures put on empty 
cells causes the unfortunate trade-off between robustness and 
small sample efficiency properties of the minimum power-
divergence estimators. As seen from the simulation results, 
this also affects the small sample properties of the ordinary 
power-divergence test statistics which are based on power-
divergence measures and developed by [4] for testing a nested 
sequence of log-linear models. In this study, the new family of 
penalized power-divergence test statistics has been defined to 
deal with this problem. The aim is to show that penalization 
improves the exact sizes of ordinary power-divergence test 
statistics. The rest of the paper is laid out as follows: After 
giving the brief description of the ordinary and penalized 
power-divergence test statistics in Section two, the simulation 
results will be presented in Section three. 

II. ORDINARY AND PENALIZED POWER-DIVERGENCE TEST 
STATISTICS  

To test nested sequence of log-linear models  
 

 Hnull : HL+1: p = p(θ ); θ ∈ ΘL+1  
against 

                         Halt : HL: p = p(θ ); θ ∈ ΘL                            (8) 

where L = 1, ..., m-1, m ≤ t < M-1 and  Θm ⊂ Θm-1⊂ … ⊂ Θ1 ≡ 
Θ⊆Rt (t<M-1) with dm<dm-1< … <d1 = t where dL=dim(ΘL) for 
L = 1,2, …, m, [4] have suggested the following family of test 
statistics: 

        })ˆ,ˆ()ˆ,ˆ({2)( )()1()(
, 212121

)(-)( LILIL IInOS λλ
+

λλλλ = θppθpp          (9) 

where )1(
2

ˆ +
λ

LIθ  and )(
2

ˆ LI
λθ  are the minimum power-

divergence estimators as defined by Eq.(5) under the models 
of HL+1 and HL , respectively. When )(

, 21
)( LOS λλ  > c, Hnull is 

rejected, where c is specified so that the size of the test is α; 
 
                α=> +λλ ))(( 1

)(
, 21

L
L HcOSP ; α ∈ (0, 1).                (10) 

 
[4] have shown that under multinomial sampling with 
probabilities belonging to a log-linear model and Hnull = HL+1, 
the test statistics )(

, 21
)( LOS λλ  converges in distribution to a chi-

squared distribution with degrees of freedom dL – dL+1; L = 1, 
..., m-1. Hence, 
 
 )1(2

1
α−χ=

+− LL ddc ,  (11) 

 
where ppP ff =χ≤χ ))(( 22 . )(

, 21
)( LOS λλ gives the well known 

likelihood ratio test statistic when λ1 = λ2 = 0. It should be 
pointed out that the nonnegativity of )(

, 21
)( LOS λλ  does not hold 

when 21 λ≠λ  [4]. The large weight put on empty cells by the 
family of power-divergence measures effects the exact size 
properties of )(

, 21
)( LOS λλ for testing the nested sequence of log-

linear models given with Eq.(8). To deal with this problem, 
the following family of penalized power-divergence test 
statistic has been proposed.  
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where )1(
2

ˆ +
λ

LPw
θ  and )(

2
ˆ LPw

λθ  are the penalized minimum 

power-divergence estimators as defined by (7) under the 
models of HL+1 and HL, respectively. As mentioned by [2], the 
family of penalized power-divergence test statistics has the 
same asymptotic distribution with the family of ordinary 
power-divergence measures since they differ only in empty 
cells. Hence, only the small and moderate sample exact size 
properties of )(

, 21
)( LOS λλ and )(

, 21
)( LwPS λλ have been studied via 

simulation study. The next section gives the results. 

III. SIMULATION STUDY 
In the simulation study, the case of 2 x 2 x 2 contingency 

tables has been considered, so M = 8. To distinguish the 
categorical variables, separate indices have been used for each 
variable. Let X, Y and Z be three categorical response 
variables having I, J and K levels, respectively. pijk (θ ) = P(X 
= i, Y = j, Z = k), i = 1, 2; j = 1,2; k = 1,2 is a probability 
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distribution of the responses (X, Y, Z) of a subject randomly 
chosen from a population. The hypotheses considered are;  

 
H1: pijk(θ ) = exp[u+θ 1(i)+θ 2(j)+θ 3(k)+θ 12(ij)+θ 13(ik) +θ 3(jk)] 
H2: pijk(θ ) = exp[u+θ1(i)+θ2(j)+θ 3(k)+θ 12(ij)+θ 13(ik)] 
H3: pijk(θ ) = exp[u+θ1(i)+θ2(j)+θ3(k)+θ12(ij)] 
H4: pijk(θ ) = exp[u+θ1(i)+θ2(j)+θ 3(k)] 
 
for i, j, k = 1, 2 with the following linear constraints on the 
parameters; 
 

    0 
2

1
)3(

2

1
)2(

2

1
)1( ∑∑∑

===
===

k
k

j
j

i
i θθθ , 0 

1
)12(

1
)12( == ∑∑

==

2

j
ij

2

i
ij θθ , 

                   (13) 

         0
1

)13(
1

)13( == ∑∑
==

2

k
ik

2

i
ik θθ , ∑∑

==
=

2

k
jk

2

j
jk θθ

1
)23(

1
)23( . 

 
Since the conclusions are the same for testing H3 versus H2 

and H2 versus H1, only the results for testing H4 versus H3 are 
given because of the space considerations. exp[θ1(1)] = 
exp[θ2(1)] = exp[θ3(1)] = 5/6 and exp[θ1(1)] = exp[θ2(1)] = 
exp[θ3(1)] = 3/4 are the moderate and big main effects 
considered for this study, respectively. The big interaction 
effect exp[θ12(11)] = 3/4 has been chosen. Overall mean effect 
parameter u is calculated as given by (3). 

Let p0 ∈ H4 ∈ Hnull and p1∈ H3 ∈ Halt. By this simulation 
study, the following exact probabilities will be obtained: 
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Five different penalization values (w) are chosen: 0, 0.25, 

0.5, 0.75 and 1. As mentioned above, the nonnegativity of 
)(
, 21

)( lOS λλ  does not hold when 21 λ≠λ . Thus, only the 

combinations with λ=λ=λ 21  have been considered. For 
convenience, only one subscript λ will be used with test 
statistic instead of two λs for the rest of the paper. For 

)3()( λOS , λ values have been chosen as -0.9, -0.8, -0.7, -0.6,  

-0.5, 0, 2/3, 1. One of the advantages of )()( LwPS λ over its 
ordinary counterparts is its being able to be defined for λ ≤ -1. 
Hence λ = -1, -1.5 and -2 are also considered for )3()( λ

wPS . 
Sample sizes considered for this simulation study are n = 25, 
35, 45, 55. Exact probability estimations given with Eq.(14) 
are obtained using 10000 simulations from the multinomial 
distributions with (n, p0). All calculations have been done 
using Mathematica 5.2. The aims are: 1) To show the effects 

of main effects on 
)3()(OS

n
α and 

)3()( wPS
n

α , 2) To determine the 

test statistic with closest 
)3()(iS

n
α for i = O, Pw, to the nominal 

size of 0.05 for each sample size. Results are given at the end 
of the paper. Tables I-VI and Tables VII-XII give the exact 
sizes of the test statistics for moderate and big main effects, 

respectively. As it is seen from Tables I and VII, 
)3()(OS

n
α for 

λ < 0 are not even close to 0.05 especially for n = 25 and n = 
35. However, penalization seems to improve the exact sizes of 
these test statistics. Moreover, exact sizes of )3()( λOS for λ < 0 
get bigger as main effects get bigger whereas it turns the 
otherwise for their penalized counter parts. There is no 

obvious pattern for 
)3()(OS

n
α for λ ≥ 0 in terms of main effect 

changes while 
)3()( wPS

n
α for λ ≥ 0 and w = 1 are bigger for big 

main effects than for moderate main effects. However, as w 

decreases 
)3()( wPS

n
α for λ ≥ 0 start to get smaller for big main 

effects. In general, departure of 
)3()( wPS

n
α  from 0.05 is bigger 

for big main effects for negative values of λ with bigger 
departure for λ ≤ -1 and w ≤ 0.5, especially for small samples. 

Figs. 1a and 1b illustrate the (
)3()(iS

n
α -0.05) for i = O, Pw for n 

= 35 with moderate and big main effects, respectively. Lines 
represent the λ values, and penalization values are replaced on 
x-axes. w = 2 represents the no penalization case, i.e. ordinary 
power-divergence case, for each λ. It is easily seen that as w 

decreases 
)3()( wPS

n
α for all λ get smaller for big main effects 

resulting with bigger departure from 0.05 than moderate main 
effects. As mentioned this difference is bigger for λ ≤ -1 and 
w ≤ 0.5. The best penalization value is given in circle for each 
λ. When best penalization value is checked for )3()( λOS , for 
both main effects and for each sample size in terms of 
closeness to the 0.05, it is seen that w = 0.75 and w = 1 seem 
better for )3()( λOS for λ > 0. On the other hand, w needed 
decreases as n increases for λ ≤ 0 for moderate main effects. 
Moreover, there seems no difference between moderate and 
big main effects in terms of penalization value needed for n = 
25 and n = 55. However for n = 35 and n = 45, w needed 
increases for λ < 0 as main effects get bigger. The best test 

statistics with smallest ⏐
)3()(iS

n
α - 0.05⏐ for i = O, Pw are given 

in bold for each sample sizes on Tables I-XII. Table XIII 
summarizes these test statistics. It seems that as sample size 
gets larger, penalization value needed decreases and λ 
increases and after n = 45 )1(

0
0)(PS  performs best in terms of 

exact size for moderate main effects. While there seems no 
obvious pattern for big main effects as it is for moderate main 
effects, w tends to increase for small samples and then it 
decreases as n increases, and penalized power-divergence test 
statistic with λ = 0 performs better. 
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TABLE XIII 

THE TEST STATISTICS WITH SMALLEST ⏐
)3()(iS

n
α - 0.05⏐ 

WITH MODERATE MAIN EFFECTS 
n = 25 n = 35 n = 45 n = 55 

)3(
2

1)( −PS  )3(
9.0

5.0 )( −PS  )3(
0

0)(PS  )3(
0

0)(PS  

WITH BIG MAIN EFFECTS 
n = 25 n = 35 n = 45 n = 55 

)3(
0

75.0 )(PS  )3(
5.1

1)( −PS  )3(
5.1

75.0 )( −PS  )3(
0

5.0 )(PS  

 

In conclusion, even though the likelihood ratio test statistic 
( )3(

0)(OS ) is the mostly used test statistic for testing nested 
log-linear models, it does not perform well in the case of 
empty cells for the 2 x 2 x 2 contingency tables. But, 
penalization improves the exact sizes of this test statistic and 
its penalized counter parts perform better among other test 
statistics as sample size increases for both main effects. 
Penalization has also great effect on the exact sizes of 
ordinary power-divergence test statistics for λ < 0 such that 
penalized ones for λ < -0.8 perform better for small sample 
sizes for both main effects. 
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Fig. 1(a) ( )3()(iS
nα  - 0.05) of test statistics vs penalization values for 

n = 35 with moderate main effects 
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Fig. 1 (b) (
)3()(iS

nα  - 0.05) of test statistics vs penalization values for  
n = 35 with big main effects 
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EXACT SIZES OF TEST STATISTICS FOR MODERATE MAIN EFFECTS 

TABLE I  
)3()(OS

n
α  

 λ  
n 1 2/3 0 -0.5 -0.6 -0.7 -0.8 -0.9 

25 0.0372 0.0428 0.0604 0.0938 0.1113 0.1406 0.1990 0.2895 
35 0.0401 0.0435 0.0539 0.0747 0.0857 0.1025 0.1311 0.1783 
45 0.0439 0.0478 0.0561 0.0686 0.0734 0.0823 0.0943 0.1103 
55 0.0434 0.0462 0.0527 0.0617 0.0639 0.0689 0.0751 0.0815 

TABLE II  
)3(1)(PS

n
α  

 λ  
n 1 2/3 0 -0.5 -0.6 -0.7 -0.8 -0.9 -1.0 -1.5 -2.0 
25 0.0576 0.0592 0.0604 0.0570 0.0563 0.0554 0.0554 0.0548 0.0543 0.0523 0.0493 
35 0.0492 0.0508 0.0539 0.0561 0.0570 0.0564 0.0567 0.0566 0.0571 0.0578 0.0573 
45 0.0481 0.0509 0.0561 0.0596 0.0605 0.0618 0.0619 0.0625 0.0624 0.0677 0.0677 
55 0.0447 0.0471 0.0527 0.0573 0.0582 0.0588 0.0591 0.0598 0.0601 0.0640 0.0655 

TABLE III  
)3(75.0 )(PS

n
α  

 λ  
n 1 2/3 0 -0.5 -0.6 -0.7 -0.8 -0.9 -1.0 -1.5 -2.0 

25 0.0477 0.0483 0.0485 0.0469 0.0466 0.0458 0.0453 0.0444 0.0438 0.0423 0.0365 
35 0.0455 0.0468 0.0510 0.0526 0.0533 0.0529 0.0533 0.0539 0.0542 0.0543 0.0518 
45 0.0464 0.0492 0.0547 0.0583 0.0591 0.0604 0.0606 0.0611 0.0608 0.0646 0.0641 
55 0.0438 0.0463 0.0523 0.0569 0.0577 0.0579 0.0582 0.0589 0.0593 0.0628 0.0642 

TABLE IV  
)3(5.0 )(PS

n
α  

 λ  
n 1 2/3 0 -0.5 -0.6 -0.7 -0.8 -0.9 -1.0 -1.5 -2.0 

25 0.0372 0.0381 0.0396 0.0375 0.0374 0.0368 0.0368 0.0367 0.0365 0.0334 0.0276 
35 0.0401 0.0417 0.0459 0.0484 0.0492 0.0493 0.0498 0.0499 0.0505 0.0502 0.0472 
45 0.0439 0.0472 0.0530 0.0566 0.0574 0.0584 0.0585 0.0591 0.0588 0.0631 0.0622 
55 0.0434 0.0459 0.0516 0.0562 0.0571 0.0575 0.0577 0.0585 0.0589 0.0625 0.0634 

TABLE V  
)3(25.0 )(PS

n
α  

 λ  
n 1 2/3 0 -0.5 -0.6 -0.7 -0.8 -0.9 -1.0 -1.5 -2.0 

25 0.0265 0.0278 0.0321 0.0313 0.0313 0.0308 0.0306 0.0304 0.0300 0.0279 0.0223 
35 0.0366 0.0381 0.0427 0.0455 0.0464 0.0464 0.0469 0.0476 0.0482 0.0477 0.0439 
45 0.0420 0.0451 0.0511 0.0547 0.0555 0.0569 0.0571 0.0576 0.0573 0.0614 0.0611 
55 0.0424 0.0449 0.0508 0.0554 0.0563 0.0567 0.0570 0.0577 0.0581 0.0615 0.0625 

TABLE VI  
)3(0 )(PS

n
α  

 λ  
n 1 2/3 0 -0.5 -0.6 -0.7 -0.8 -0.9 -1.0 -1.5 -2.0 

25 0.0207 0.0234 0.0285 0.0287 0.0288 0.0284 0.0284 0.0282 0.0279 0.0264 0.0214 
35 0.0336 0.0362 0.0413 0.0446 0.0458 0.046 0.0467 0.0471 0.0477 0.0476 0.0441 
45 0.0410 0.0443 0.0506 0.0545 0.0555 0.0568 0.057 0.0576 0.0575 0.0618 0.0616 
55 0.0421 0.0446 0.0507 0.0555 0.0564 0.0568 0.0571 0.0578 0.0583 0.0617 0.0628 
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TABLE VII  
)3()(OS

n
α  

 λ  
n 1 2/3 0 -0.5 -0.6 -0.7 -0.8 -0.9 

25 0.0364 0.0440 0.0665 0.1023 0.1233 0.1589 0.2152 0.3251 
35 0.0393 0.0426 0.0543 0.0797 0.0952 0.1227 0.1628 0.2437 
45 0.0419 0.0452 0.0550 0.0728 0.0854 0.1004 0.1268 0.1665 
55 0.0448 0.0472 0.0547 0.0688 0.0756 0.0852 0.1022 0.1262 

TABLE VIII  
)3(1)(PS

n
α  

 λ  
n 1 2/3 0 -0.5 -0.6 -0.7 -0.8 -0.9 -1.0 -1.5 -2.0 
25 0.0662 0.0659 0.0665 0.0605 0.0598 0.0591 0.0574 0.0563 0.0551 0.0522 0.0447 
35 0.0534 0.0540 0.0543 0.0523 0.0521 0.0523 0.0523 0.0516 0.0512 0.0510 0.0484 
45 0.0518 0.0530 0.0550 0.0544 0.0545 0.0545 0.0549 0.0545 0.0546 0.0568 0.0561 
55 0.0505 0.0516 0.0547 0.0580 0.0590 0.0601 0.0608 0.0613 0.0614 0.0641 0.0637 

TABLE IX  
)3(75.0 )(PS

n
α  

 λ  
n 1 2/3 0 -0.5 -0.6 -0.7 -0.8 -0.9 -1.0 -1.5 -2.0 
25 0.0516 0.0515 0.0500 0.0478 0.0469 0.0469 0.0450 0.0440 0.0429 0.0364 0.0289 
35 0.0479 0.0480 0.0474 0.0459 0.0456 0.0459 0.0457 0.0450 0.0447 0.0432 0.0388 
45 0.0463 0.0480 0.0493 0.0489 0.0494 0.0495 0.0497 0.0494 0.0498 0.0499 0.0479 
55 0.0477 0.0488 0.0520 0.0546 0.0555 0.0567 0.0575 0.0580 0.0583 0.0598 0.0592 

TABLE X  
)3(5.0 )(PS

n
α  

 λ  
n 1 2/3 0 -0.5 -0.6 -0.7 -0.8 -0.9 -1.0 -1.5 -2.0 
25 0.0364 0.0372 0.0388 0.0350 0.0337 0.0338 0.0332 0.0322 0.0315 0.0260 0.0191 
35 0.0393 0.0402 0.0417 0.0413 0.0411 0.0409 0.0413 0.0407 0.0403 0.0374 0.0322 
45 0.0419 0.0433 0.0457 0.0453 0.0458 0.0459 0.0463 0.0462 0.0463 0.0463 0.0430 
55 0.0448 0.0460 0.0500 0.0527 0.0537 0.0548 0.0554 0.0559 0.0561 0.0572 0.0556 

TABLE XI 
)3(25.0 )(PS

n
α  

 λ  
n 1 2/3 0 -0.5 -0.6 -0.7 -0.8 -0.9 -1.0 -1.5 -2.0 
25 0.0225 0.0241 0.0270 0.0253 0.0251 0.0252 0.0246 0.0240 0.0235 0.0195 0.0139 
35 0.0322 0.0328 0.0348 0.0349 0.0348 0.0348 0.0351 0.0347 0.0341 0.0331 0.0280 
45 0.0370 0.0393 0.0428 0.0431 0.0435 0.0435 0.0442 0.0442 0.0445 0.0439 0.0407 
55 0.0427 0.0441 0.0480 0.0515 0.0525 0.0535 0.0541 0.0547 0.0548 0.0558 0.0541 

TABLE XII  
)3(0 )(PS

n
α  

 λ  
n 1 2/3 0 -0.5 -0.6 -0.7 -0.8 -0.9 -1.0 -1.5 -2.0 
25 0.0169 0.0191 0.0241 0.0239 0.0240 0.0250 0.0244 0.0238 0.0232 0.0187 0.0122 
35 0.0301 0.0312 0.0345 0.0356 0.0352 0.0356 0.0358 0.0357 0.0355 0.0343 0.0292 
45 0.0347 0.0372 0.0412 0.0415 0.0419 0.0423 0.0430 0.0434 0.0437 0.0443 0.0415 
55 0.0417 0.0433 0.0473 0.0512 0.0522 0.0536 0.0543 0.0548 0.0551 0.0560 0.0546 

 


