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A NonLinear Observer of an Electrical
Transformer: A Bond Graph Approach
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Abstract— A bond graph model of an electrical transformer
including the nonlinear saturation is presented. A nonlinear
observer for the transformer based on multivariable circle
criterion in the physical domain is proposed. In order to show
the saturation and hysteresis effects on the electrical transformer,
simulation results are obtained. Finally, the paper describes that
convergence of the estimates to the true states is achieved.
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I. INTRODUCTION

TRANSFORMERS make large power systems possible. To
transmit hundreds of megawatts of power efficiently over

long distances. The main uses of electrical transformers are for
changing the magnitude of an AC voltage providing electrical
isolation, and matching the load impedance to the source [1].

On the other hand, a bond graph is a model of a dynamic
system where a collection of components interact with each
other through energy ports. A bond graph consist of subsys-
tems linked by lines to show the energetic connections. It can
represent a variety of energy types and can describe how the
power flows through the system [2], [3].

Also, the principle of observability intuitively establishes
the possibility to rebuilt the state variables from the measured
outputs and given inputs. With observability conditions, the
observation problem consists in seeking a state estimation by
means of an auxiliary dynamic system, the observer [4].

Some papers have been published applying bond graph to
construct an observer. In [5] proposes a control in bond graph
using state estimated feedback for MIMO LTI systems. In [6]
a bond graph approach to built reduced order observers for
LTI systems is described. This approach uses the bicausality
concept to simplify the construction and the calculation of the
observer. A bond graph representation of model-based control,
which allows the design of controllers in the physical domain
is described in [7].

In other wise many papers have been published on ob-
servers, for example [8] gives an approach to estimate the state
of a nonlinear system from the point of view of differential
algebra. However, in [9] and [10] globally convergent ob-
servers are designed for a class of systems with multivariable
nonlinearities.

According with transformers, in [11] a magnetic circuit
model of power transformer which takes into account the non-
linear hysteresis phenomenon is analyzed. However, this paper
uses a special nonlinear function to introduce the hysteresis. In
[13] a bond graph model of a transformer based on a nonlinear
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conductive magnetic circuit is described. Here, the state space
nonlinear magnetic model has to be known.

Therefore, in this paper a bond graph model of a transformer
with two windings is proposed. Also, a basic electromagnetic
model for the magnetizing branch of a transformer with two
or three windings in the physical domain is described. This
magnetizing branch consists of a resistor and inductance.
However, in order to introduce the magnetic saturation a
nonlinear function is used.

The outline of the paper is as follows: Section II gives some
basic elements of the modelling in bond graph. Section III
summarizes the model of a two winding transformer including
the flux linkage and voltage equations. Section IV describes
the observers design for a class of nonlinear system with mul-
tivariable nonlinearities. A bond graph model of a transformer
with two windings considering the nonlinear core is proposed
in section V. A nonlinear observer in the physical domain is
presented in section VI. A bond graph of the complete system
formed by the transformer and the observer is proposed in
section VII. Finally, section VIII gives the conclusions.

II. MODELLING IN BOND GRAPH

The bond graph methodology allows to model a system
in a simple and direct manner. Using fields and junction
structures, one may conveniently study systems containing
complex multiport components using bond graphs. In fact,
bond graphs with fields prove to be a most effective way to
handle the modeling of complex multiport systems [2].

Consider the following scheme of a multiport LTI system
which includes the key vectors of Fig. 1 [2], [14].

Fig. 1. Key vectors of a bond graph.

In Fig. 1, ( ), ( ) ( ) and ( ) denote the
source, the energy storage, the energy dissipation and the
detector fields, and (0 1 ) the junction structure with
transformers, , and gyrators, .

The state < and < are composed of energy
variables and associated with and elements in integral
and derivative causality, respectively, < denotes the plant
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input, < the plant output, < the co-energy vector,
< the derivative co-energy and < and

< are a mixture of and showing the energy exchanges
between the dissipation field and the junction structure.

The relations of the storage and dissipation field are,

= (1)
= (2)
= (3)

The relations of the junction structure are [2], [14],

˙
=

11 12 13 14

21 22 23 0

31 32 33 0
˙

= 14 (4)

The entries of take values inside the set
{0 ±1 ± ± } where and are transformer and
gyrator modules; 11 and 22 are square skew-symmetric
matrices and 12 and 21 are matrices each other negative
transpose. The state equation is,

˙ = + (5)
= + (6)

where

= 1 ( 11 + 12 21) (7)
= 1 ( 13 + 12 23) (8)
= ( 31 + 32 21) (9)
= 33 + 32 23 (10)

being

= + 14
1

14 (11)
= ( 22)

1 (12)

It is very common in electrical power systems to use the
electrical current as state variable of this manner taking the
derivative of (1) and (5), we have

˙ = + (13)
= + (14)

where

= 1 (15)
= (16)
= 1 (17)

Next section summarizes the basic elements of an electrical
transformer.

III. MODEL OF A TWO-WINDING TRANSFORMER

Charles P. Steinmetz (1865-1923) developed the circuit
model that is universally used for the analysis of iron core
transformers at power frequencies. His model has many ad-
vantages over those resulting from straightforward application
of linear circuit theory, primarily because the iron core exhibits

saturation and hysteresis and is thus definitely nonlinear [1].
However it is good idea to consider transformers first from the
point of view of basic linear circuit theory to better appreciate
the Steinmetz model.

A. Flux Linkage Equations
Consider the magnetic coupling between the primary and

secondary windings of a transformer shown in Fig. 2 [12].

Fig. 2. Magnetic coupling of a two-winding transformer.

The total flux linked by each winding may be divided into
two components: a mutual component, , that is common to
both windings, and a leakage flux components that links only
the winding itself. In terms of these flux components, the total
flux by each of the windings can be expressed as,

1 = 1 + (18)

2 = 2 + (19)

where 1 and 2 are the leakage flux components of windings
1 and 2, respectively. Assuming that 1 turns of winding 1
effectively link and 1, the flux linkage of winding 1 is
defined by,

1 = 1 1 = 1 ( 1 + ) (20)

the leakage and mutual fluxes can be expressed in terms of
the winding currents using the magneto-motive forces (mmfs)
and permeances. So, the flux linkage of winding 1 is,

1 = 1 [ 1 1 1 + ( 1 1 + 2 2) ] (21)

where 1 =
1

1 1
and =

1 1 + 2 2
.

Similarly, the flux linkage of winding 2 can be expressed
as,

2 = 2 ( 2 + ) (22)

and using mmfs and permeances for this winding,

2 = 2 [ 2 2 2 + ( 1 1 + 2 2) ] (23)

The resulting flux linkage equations for the two magnet-
ically coupled windings, expressed in terms of the winding
inductances are,

1

2

¸
= 11 12

21 22

¸
1

2

¸
(24)

where 11 and 22 are the self-inductances of the windings,
and 12 and 21 are the mutual inductances between them.

Note that the self-inductance of the primary can be divided
into two components, the primary leakage inductance, 1 and
the primary magnetizing inductance, 1 which are defined
by,

11 = 1 + 1 (25)
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where 1 =
2
1 1 and 1 =

2
1 1 .

Likewise, for winding 2

22 = 2 + 2 (26)

where 2 =
2
2 2 and 2 =

2
2 2 .

Finally, the mutual inductance is given by,

12 = 1 2 2 (27)
21 = 1 2 1 (28)

Taking the ratio of 2 a 1,

2 =
2

2
=

2 12

1
= 2

2 =

μ
2

1

¶2
1 (29)

B. Voltage Equations
The induced voltage in winding 1 is given by,

1 =
1
= 11

1
+ 12

2 (30)

replacing 11 by 1 + 1 and 12 2 by 2 1 2 1 we
obtain

1 = 1
1
+ 1

( 1 + ( 2 1) 2) (31)

Similarly, the induced voltage of winding 2 is written by,

2 = 2
2
+ 2

( 2 + ( 1 2) 1) (32)

Finally, the terminal voltage of a winding is the sum of
the induced voltage and the resistive drop in the winding, the
complete equations of the two windings are,

1

2

¸
= 1 1

2 2

¸
+ 1 + 1

1
1

2 2 + 2

¸ 1

2

(33)
where = 1 2.

Next section describes the design of an observer for systems
with multivariable monotone nonlinearities.

IV. NONLINEAR OBSERVER

This section describes a nonlinear observer design with mul-
tivariable nonlinearities. This design represents the observer
error system as the feedback interconnection of a linear system
and a state-dependent sector nonlinearity [9].

Firstly, this observer uses the multivariable nonlinearities
(·) : < < which satisfy a multivariable analog of the

monotonicity property:

+

μ ¶
0 < (34)

With this property, the state nonlinearity that arises in the
observer error system a multivariable sector condition

For our observer design, we consider the plant

˙ = + ( ) + (35)
=

where < is the state, < is the measured output,
< is the control input, and the multivariable nonlinearity

(·) : < < satisfies (34)
With this assumption, our observer has the same form as in

[16]:
·
ˆ = ˆ+ ( ˆ )+ ( ˆ + ( ˆ ))+ (36)

Our task is to determine the observer matrices < ×

and < × to make the observer error = ˆ approach
zero. From (35) and (36), the dynamics of the observer error
= ˆ are governed by

˙ = ( + ) + [ ( ) ( )] (37)

where
= = ˆ + ( ˆ ) (38)

We begin the observer design by representing the observer
error system (37) as the feedback interconnection of a linear
system and multivariable sector nonlinearity. To this end,
we view ( ) ( ) as a function of and =
= ( + ) ; that is, a state-dependent multivariable

nonlinearity in :

( ) = ( ) ( ) (39)

Substituting (39), we rewrite the observer error system (37)
as

˙ = ( + ) + ( ) (40)
= ( + )

To show that ( ) satisfies a multivariable sector prop-
erty, we make use the Mean Value Theorem [9], and rewrite
( ) as

( ) = ( ) ( )

=

Z 1

0

¸
= + ( )

( )

=

Z 1

0

¸
=

(41)

Thus, from property (34),

( ) =
1

2

Z 1

0

Ã ¸
+

¸ !
=

0

(42)
Thanks to this sector property, asymptotic stability is guar-

anteed from the circle criterion if the linear system with input
= ( ) and output is SPR, that is, if a matrix
= 0, and a constant 0 can be found such that

[9]

( + ) + ( + ) + + ( + )
+ ( + ) 0

¸
0

(43)
Thus, the observer design for system (35) consists on

solving (43), which is LMI in = 0, and
0.

Next section proposes a two windings transformer including
the linear and nonlinear core in the physical domain.
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V. BOND GRAPH OF A TWO WINDINGS TRANSFORMER
WITH CORE

The final concept involved in the Steinmetz transformer
model is a scheme for handling the nonlinearity of the core
and the core losses. The Steinmetz model approaches the
problem of representing core excitation by first dividing it
into two parts: magnetization and core losses [1]. In order to
consider the core losses of a transformer a bond graph model
is presented in Fig. 3

Fig. 3. Bond graph of a complete transformer.

The key vectors of the bond graph of Fig. 3 are,

=
2

6

9

; ˙ =
2

6

9

; =
2

6

9

(44)

=
3

5

11

; =
3

5

11

; = 1

10

¸

the constitutive relations of the fields are,

= { 1 2 } (45)

=

½
1

1

1

2

1
¾

(46)

and the junction structure is given by

12 = 12 =
1 0 1
0 1 1

0 0 1
; 13 =

1 0
0 1
0 0

11 = 22 = 23 = 0 (47)

By substituting (45) (46) and (47) into (7) and 8 the state
space representation of the transformer is,

=

( 1+ )

1 1 1

2

( 1+ 2 )
1 2

=
1
1

0 0

0 1
2

0

¸
(48)

The incorporation of nonlinear effects such as magnetic
saturation and hysteresis is achieved in the transformer model
with the appropriate modification of the inductance in the
bond graph of Fig. 8

In Fig. 4 the saturation curve is illustrated and this curve is
approximated with the equation [15],

=
1
tan

μ ¶
(49)

where = 0 3215 and = 0 8642

Fig. 4. Saturation curve of equation (49)

In other wise the magnetization inductance of the trans-
former is defined by

= =
1 + 2 2

(50)

and substituting into (48) we have

˙ = ˘ + + ( ) (51)

where

˘ =

( 1+ )

2 1 1

2

( 2+
2)

2 2

(52)

( ) =

μ
1
2
3 +

1
2
2
3

3
3

¶
(53)

also

=
£
0 0

¤
(54)

( ) = 1
2
3 +

1
2
2
3

3
3 (55)

and

= =
£
1 1 1

¤ 1

2

3

(56)

therefore

+

μ ¶
= 2 2

3 0 < (57)

The numerical values of the parameters of the bond graph
of Fig. 3 are 1 = 11 05 , 2 = 11 05 , = 0 3215;
= 0 8642; 1 = 5 8 , 2 = 5 8 = 100 , = 10,
= 4 and 1 = 120 sin (377 ) and considering a linear

performance of the core, the Fig. 4 shows the simulation of
this transformer.

If we introduce (49) to the bond graph model of Fig.
3, the nonlinear phenomena is incorporated. Fig. 5 shows
the saturation performance in the bond graph model of the
transformer.
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Fig. 5. Nonlinear performance of the transformer of Fig. 3

The hysteresis losses and the nonlinear magnetizing induc-
tance performance of the proposed bond graph model is shown
in Fig. 6.

Fig. 6. Hysteresis curve of the transformer.

The primary and secondary current of the bond graph model
of the transformer are shown in Fig. 7. Note that the stauration
and hysteresis affects both electrical currents on the electrical
transformer.

Fig. 7. Primary and secondary current of a transformer with
nonlinear core.

Next section presents a general scheme to obtain an observer
in the physical domain.

VI. AN OBSERVER BASED ON A BOND GRAPH

A direct graphical technique to obtain the observer of a
system represented by bond graph is presented. It is important
to note that the magnetizing inductance is a nonlinear function
described by (50). Thus, the proposed observer is a nonlinear
system. The general structure of the complete system is shown
in Fig. 8.

Fig. 8. Block diagram of an obsever in the physical domain.

The objective to represent the model and the observer in
block diagrams is to obtain the complete system in terms of
the junction structure matrices. This let us to know, the change
of due to the observer with the purpose the assign the gains
of the observer.

The structure of the observer is given by,

·
ˆ
ˆ

ˆ

= ˆ

ˆ
ˆ

·
ˆ

+ ˜ (58)

The state space representation of the observer is,
·
ˆ = ˆˆ + ˆ + ˜ (59)
ˆ = ˆˆ + (60)

where

ˆ = 1
³

1̂1 + ˆ
12
ˆ

2̂1

´
ˆ (61)

ˆ = 1
³

1̂3 + ˆ
12
ˆ

2̂3

´
(62)

ˆ =
³
ˆ
31 + ˆ

32
ˆ

2̂1

´
(63)

being
ˆ =

³
ˆ
22

´ 1

(64)

In order to obtain the mathematical model of the observer
in terms of the co-energy states, ,̂ from (13) to (17) can be
applied.

A nonlinear observer based on bond graph for the electrical
transformer is proposed in next section.

VII. AN OBSERVER FOR THE TRANSFORMER IN THE
PHYSICAL DOMAIN

The observer design using bond graph allows to know the
relation between the plant and the observer in an easy way.

From (57) the monotonicity property of the electrical
transformer is satisfied. Hence, a nonlinear observer for the
transformer can be applied. Fig. 9 shows the modelling in
bond graph of the nonlinear observer.
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Fig. 9. Observer for the transformer in the physical domain.

The nonlinear section for the observer on the bond graph by
using modulated gyrators : 31 and : 32 with
active bonds 37 and 38 is introduced.

In order to prove that the complete bond graph of Fig. 9
represents a system with multivariable monotone nonlineari-
ties, the mathematical model is obtained. Thus, the key vectors
for the transformer is given by (44) and for the observer are,

ˆ =
35

53

48

;
·
ˆ =

35

53

48

; ˆ =
35

53

48

ˆ =

34

50

45

39

; ˆ =

34

50

45

39

;
= 2

6

¸

ˆ = 35

53

¸ (65)

the constitutive relations of the elements are,

=

½
1

1

1

1

1
¾

(66)

= { 1 2 } (67)

and the junction structure is,

ˆ
11 =

11 12 0

21 22 0

31 32 0
; ˆ13 =

1 0
0 1
0 0

ˆ
12 =

1 0 1 0
0 1 1 1
0 0 1 0

; ˆ31 =
1 0 0
0 1 0

¸

ˆ
22 = 2̂3 = 3̂2 = ˆ

33 = 0 (68)

From (61) (62) (66) (67) and (68) the state space
representation is,

ˆ =

11

1
+ 11

1

1
+ 12

1
1

2
+ 21

22

2
+ 22

1

2

+ 31
1

+ 32

=
1 0
0 1
0 0

; ˜ =
11 12 0

21 22 0
31 32 0

(69)

where 11 = 1 + ; 22 = 2 + + ;

11 = 11 1; 12 = 12 1; 21 = 21 2;

22 = 22 2; 31 = ( 31 + 1 ) ; 32 =
( 32 + 2 )

31 = ( 31 + 1 )

32 = ( 32 + 2 )

In order to verify that (69) is the same observer respect
(51). By substituting (50) into the third line of ˆ from (69)
we have,
·
ˆ3 =

¡
1̂ +

1
2̂ 3̂

¢
+

¡
1̂ +

1
2̂ 3̂

¢
ˆ23+

(70)
where

= ( 31 + 1 )
( 1̂ 1)

+( 32 + 2 )
( 2̂ 2)

(71)
and using one more time (50) into (71) we obtain,

= 1 ( 1̂ 1) + 31 ( 1̂ 1) ˆ
2
3 +

2 ( 2̂ 2) + 32 ( 2̂ 2) ˆ
2
3 (72)

Finally, from (36) the original observer gains are

=
11 12

21 22

31 32

; =
£

1 2

¤
(73)

Therefore, the relations between the graphical gains in bond
graph and the original gains for the observer are: 11 =

11 · 1; 12 = 12 · 1; 21 = 21 · 2; 22 = 22 · 2;

31 = 31; 32 = 32 ; 1 = 1
31
2 and 2 =

2
32
2 .

By substituting the values of the parameters of the complete
system according with (35), we have,

=
362515 83 3619909 502 361990 9502
3619909 502 36208669 68 3619909 502
14396 7595 143967 595 14396 7595

=
90 49 0
0 0
0 0

; =
1 0 0
0 1 0

¸

=
£
1 0 1 1

¤
; =

£
0 0 10752 09

¤
The linear matrix inequality LMI must be feasible (43),

which guarantees a strict positive real (SPR) property for the
linear part of the observer error system, for this system, we
obtain

=
404427 404427 0 000566
404427 404427 1 0 000836
0 000566 0 000836 0 000093

=
104334 8 1035963 5
104334 8 1035963 5
2306330 8 22903046 7

; =
5 09
0 79

¸

with = 100
The performance of the electrical transformer with the

transformer is shown in Fig. 10 and 11 Fig. 10 illustrates the
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primary current on the transformer, 2 and on the observer,
35.

Fig. 10. Primary currents on the transformer and on the observer.

The secondary currents on the transformer, 6 and on the
observer, 53 are shown in Fig. 11.

Fig. 11. Secondary currents on the transformer and on the observer.

Therefore, the convergency of the estimates respect the
true states of the electrical transformer including nonlinear
saturation and hysteresis is guaranteed.

VIII. CONCLUSIONS

A bond graph model of a power transformer incorporating
the nonlinear saturation is presented. In order to prove the
results the graphical simulations are shown. A nonlinear
observer for the electrical transformer in the physical domain
is designed. The convergence of the estimates and the states
of the transformer by using simulation is described.
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