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Abstract—L-system is a tool commonly used for modeling and 

simulating the growth of fractal plants. The aim of this paper is to 
join some problems of the computational geometry with the fractal 
geometry by using the L-system technique to generate fractal plant in 
3D. L-system constructs the fractal structure by applying rewriting 
rules sequentially and this technique depends on recursion process 
with large number of iterations to get different shapes of 3D fractal 
plants. Instead, it was reiterated a specific number of iterations up to 
three iterations. The vertices generated from the last stage of the L-
system rewriting process are used as input to the triangulation 
algorithm to construct the triangulation shape of these vertices. The 
resulting shapes can be used as covers for the architectural objects 
and in different computer graphics fields. The paper presents a 
gallery of triangulation forms which application in architecture 
creates an alternative for domes and other traditional types of roofs. 
 

Keywords—Computational geometry, Fractal geometry, L-
system, Triangulation.  

I. INTRODUCTION 
OWADAYS, a lot of researches are directed to generate 
2D and 3D fractal objects. The Euclidean-geometry 

methods are adequate for describing manufactured objects: 
those that have smooth surfaces and regular shapes. But 
natural objects, such as mountains, clouds and plants, have 
irregular or fragmented features, and Euclidean methods do 
not realistically model these objects. Natural objects can be 
realistically described with fractal-geometry methods, where 
procedures rather than equations are used to model objects [1]. 
Fractal geometry is one of the youngest theories of 
contemporary mathematics, which developed thanks to the 
advance of computer technology [2]. A fractal is generally "a 
rough or fragmented geometric shape that can be subdivided 
into parts, each of which is (at least approximately) a reduced-
size copy of the whole," a property called self-similarity. The 
term was suggested by Benoit Mandelbrot in 1975 and was 
derived from the Latin fractus meaning "broken" or 
"fractured" [3]. The most common techniques used for 
generating fractals are iterated function system (IFS) where a 
fractal object is generated by applying a specified 
transformation function to point within a region of space and 
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L-system (Lindenmayer system)  which represents the fractal 
structure of plants using grammatical expressions. Starting 
with an initial structure, L-system constructs the fractal 
structure by applying rewriting rules sequentially [8].  

Computational geometry is the study of efficient algorithms 
to solve geometric problems, such as: given N points in the 
plane or in the space, how the smallest convex hull that 
encloses all the points is computed, given N points in a plane, 
what is fastest way to find the nearest neighbor of a point, 
given N straight lines, how to find the lines which intersect 
with each other [4] and the triangulation problem given N 
points in the plane how they can be joined by nonintersecting 
straight line segments so that every region internal to the 
convex hull is a triangle. It is noticed that Computational 
geometry and computer graphics both consider geometric 
phenomena as they relate to computing. Computational 
geometry provides a theoretical foundation involving the 
study of algorithms and data structures for doing geometric 
computations. Computer graphics concerns the practical 
development of the software, hardware and algorithms 
necessary to create graphics (i.e. to display geometry) on the 
computer screen [10]. In this study, it was shown how 
computer graphics and computational geometry interact. 

The paper is organized as follows. Section II, reviews some 
of the prior researches in generating fractal objects and their 
relations to computational geometry. Section III, gives a brief 
summary of the L-system in two dimensions with some 
examples. Section IV, it was explained how L-systems can be 
extended to three dimensions, and a proposed algorithm was 
introduced with simple analysis to its complexity. Some 
experimental results with discussions are given in sections V. 
Finally, in section VI, a conclusion and some directions for 
future work were given.  

II. PRIOR RESEARCH 
One of the basic methods of generating fractal objects is 

Lindenmayer system called L-system for short [2]. L-Systems 
were invented by Aristid Lindenmayer in the 1968 [5]. 
Lindenmayer noticed that complex biological plants and 
structures had recursive patterns and could be compactly 
represented through simple grammars (strings of text), called 
L-Systems. Lindenmayer published a book, The Algorithmic 
Beauty of Plants [6], where he displays the raw power of these 
simple L-Systems by producing beautifully magnificent plants 
and structures [7]. The framework of L-system consists of an 
initial structure and rewriting rules (or generating rules). The 
essence of development is parallel replacement using the 
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rewriting rules. Starting from the initial structure, L-system 
replaces each part of the current structure by applying the rule 
sequentially [8]. Along with the development of the theory, 
the L-system has been enriched with geometric aspects and 
has become a universal tool not only for modeling plants, but 
also for creating fractals which shape is a function of time.  

Another idea, besides the rule of rewriting, of L-system is a 
method of notation the fractal's structure, based on graphical 
interpretation of a string of characters. This method is known 
in literature under the name of the turtle graphics, whose 
creator was Seymour Papert. The main idea of the turtle 
graphics is graphical interpretation of a string of characters in 
the form of commands given to a specially trained turtle. The 
method's tool is the turtle's tail which draws straight lines on 
the plane according to the received commands [2].  

Computing The Delaunay triangulation is one of the most 
famous computational geometry problems. The Delaunay 
triangulation was invented in 1934 by, and named after, the 
Russian mathematician Boris Nikolaevich Delaunay (1890-
1980). It has a lot of applications in science and computer 
graphics. It is often used in the graphic representation of 
geometrically irregularly distributed data—thinks weather 
maps or altitude maps. Its 3D-variant is important in creating 
virtual worlds for video games, among many other things 
[11]. Triangulation involves creating from the sample points a 
set of non-overlapping triangularly bounded facets, the 
vertices of the triangles are the input sample points. There are 
a number of triangulation algorithms that may be advocated, 
the more popular algorithms are the radial sweep method and 
the Watson algorithm which implement Delaunay 
triangulation. The Delaunay triangulation is closely related 
geometrically to the Direchlet tesselation also known as the 
Voronoi diagram [12]. The Voronoi diagram of a set S = {p1, 
p2, … , pn} of points in the plane, called sites, is a partitioning 
of the plane into n convex regions, one per site. Each Voronoi 
region Vi contains all points in the plane closer to pi than to 
any other site. The straight line dual of the Voronoi diagram, 
obtained by adding a line segment between each pair of sites 
of S whose Voronoi regions share an edge, is called the 
Delaunay triangulation. Given the Voronoi diagram of a set of 
sites, V(S), the Delaunay triangulation of those sites, D(S), can 
be obtained in O(n) time and vice versa [13].  

One of  the new research based on L-System made by Piotr 
Furmanek in which he present a modification of L-system to 
generate 3D fractal plant which could be applied as the 
supporting construction for polyhedral covers of architectural 
objects [2]. “Fractal geometry and its applications in the field 
of construction” is another new research. This research project 
aims to translate virtual fractal models into physically built 
architectural objects. The considered fractal models are based 
on iterative algorithms, which were developed at the LIRIS 
for the creation of virtual images. The physical objects will 
aim for an application in the field of construction on the scale 
of architecture and design objects. Fractal objects will be 
designed and built as bearing shell structures, irregular three 
dimensional polygonal structures [9].  

III. L-SYSTEMS 
The basic idea of the L-system is a rule of rewriting, also 

called a rule of replacing. Its operation can be presented in 
terms of intuition by means of the following example [2]: 

Consider a string built of elements ‘a’ and ‘b’, which can 
occur many times in the string. Each element is associated 
with one rewriting rule P. The notation P: a→b means that 
element ‘a’ is replaced with element ‘b’, and the notation P: 
a→ab means that element ‘b’ is replaced with two element 
string ‘ab’. The rewriting process starts from distinguished 
string called the axiom ω. Assumptions constructed in this 
way make it possible to generate the following example string 
of elements [6]. 

 
 

A short list of commands by means of which the simplest 
fractals using the turtle graphics method can be created as 
follows [2]: 
F Move forward a step of constant length >0 draw a line 

segment from the previous to the new position. 
f Move forward a step of constant length >0 without 

drawing a line. 
+  Turn left by constant angel δ. 
–  Turn right by constant angel δ. 
[ Meeting this command causes that the turtle's current 

state is remembered. 
] Meeting this command makes the turtle come back to the 

state before the symbol [. 
[…] Between these symbols occur commands defining the 

construction of the branches. 
These notations can be illustrated by the following simple 

example. Fig. 1 displays the L-system processes, which are 
created as using the rewriting rule below: 

Axiom                     ω : F 
Rewriting rule         FFFFFFP ][][: −+→       (1) 
Parameters               + – : δ = 30o    
 

 
 

Fig. 1 L-system generating a fractal resembling a weed 

IV. OUR PROPOSED ALGORITHM 
Turtle interpretation of L-systems can be extended to three 

dimensions. The key concept is to represent the current 
orientation of the turtle in space by three vectors H, L, U, 



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:2, No:8, 2008

571

 

 

indicating the turtle’s heading, the direction to the left, and the 
direction up. These vectors have unit length, are perpendicular 
to each other, and satisfy the equation H×L = U. Fig. 2 
illustrates these vectors in three dimensions. Rotations of the 
turtle are then expressed by the equation 

 

RULHULH ⎥⎦
⎤

⎢⎣
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⎤
⎢⎣
⎡ ′′′

→→→→→→

           (2) 

 
where R is a 3×3 rotation matrix. Specifically, rotations by 

angle α about vectors U, L and H are represented by the 
matrices [6]: 
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Fig. 2 Controlling the turtle in three dimensions 

 
It should be noted that the commands given to the turtle 

concern the orientation connected with the local co-ordinate 
system in which the turtle moves and which moves along with 
the turtle. For the needs of this study it has been assumed that 
initially, the turtle's head is turned upwards, thus the command 
F means movement upwards, and commands & or ^ mean an 
inclination by angle α [2]. The algorithm can be described as 
follows:  
Input: the parameters of 3D L-system (axiom, rewriting rules, 
number of iterations and orientation angels).             
Output: the 3D fractal plant (obtained from the given L-
system and the 3D triangulation algorithm of the vertices 
obtained from the last stage of the rewriting process). 
begin  
          n = number of iterations         
          k = length of the initial axiom 
          for i = 1 to n 
          begin  

for j = 1 to k 
replace the character with index j in the axiom by 
the corresponding rewriting rule. 

k = length of the axiom result from the previous step 
end 

          for i = 1 to k 
          begin 
                 c = character with index i in the axiom  
                 switch (c) 
                 case 'F'  

move forward a step of constant length a>0 
draw a line segment from the previous to the 
new position  

                 case ‘f’  
move forward a step of constant length a>0 
without drawing a line 

                 case '+' 
Turn left by angle α, using rotation matrix 
RU(α) 

                 case '-'  
Turn right by angle α, using rotation matrix 
RU(-α) 

                 case '&' 
pitch up by angel α, using rotation matrix 
RL(α) 

                 case '^' 
pitch down by angel α, using rotation matrix 
RL(-α) 

                 case '\' 
roll left by angel α, using rotation matrix  
RH(α) 

                 case '/' 
roll right by angel α, using rotation matrix  
RH(-α) 

                 case '*' 
pitch up by angel β, using rotation matrix 
RL(β) 

                 case '%' 
pitch down by angel β, using rotation matrix 
RL(-β) 

                 case '~' 
roll left by angel β, using rotation matrix  
RH(β) 

                 case '?' 
roll right by angel β, using rotation matrix  
RH(-β) 

                case '$' 
pitch up by angel γ, using rotation matrix 
RL(γ) 

                 case '@' 
pitch down by angel γ, using rotation matrix 
RL(-γ) 

                 case '!' 
roll left by angel γ, using rotation matrix  
RH(γ) 

                 case '#' 
roll right by angel γ, using rotation matrix  
RH(-γ) 
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                 case '[' 
meeting this command causes the turtle's 
current state is remembered 

                 case ']' 
meeting this command makes the turtle 
come back to the state before the symbol [ 

                 otherwise 
return (error) 

        end 
A [m, 3] = m by 3 array of the m vertices obtained from 
the last stage of the rewriting process. 
Apply The Delaunay triangulation algorithm to the 
vertices in A. 

end 
    

The analysis of the time complexity of the proposed 
algorithm is given as follows. The key of the algorithm is to 
construct the connectivity of the output vertices correctly and 
to accomplish this task efficiently. For any given example let k 
is the length of the longest rule in the example. Then at most 

)( nkO  is needed to calculate the final string of the axiom 

where n is the number of iterations, )( nkO to draw the fractal 
plant according to the resulting final string of the axiom. Now 
since, the Delaunay triangulation algorithm needs 

)log( nnO  in time in the worst case [13], then 

)log( nn kkO  in time is needed to compute the triangulation 
of the vertices obtained from the last stage of the rewriting 
process. Hence the total run time of our algorithm is )( nkO  

+ )( nkO  + )log( nn kkO  ≈ )log( nn kkO . 

V. EXPERIMENTAL RESULTS AND DISCUSSIONS 
Based on the proposed algorithm, the following examples 

illustrate the successive steps of the algorithm: 
 
Example 1 
ω : F(a)  
P : F(a)           F(a)[^F(0.5a)][&F(0.5a)][/ F(0.5a)][\ F(0.5a)] 
& ^ = 50o 
 \ / = 50o 
n = 3 

 
 
It is noticed that depending on the accepted formula of the 

L-System, examples of different triangulation shapes can be 
obtained. Selected examples are presented in Table 1. Results 
are shown in Figures 4-15 
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(b) 

 

 
(a) 

Fig. 3 (a) The fractal plant generated from the L-System of   
               Example 1 renders as lines. 
          (b)Covering the resulting fractal plant with  
               triangulation shape. 
          (c) The resulting triangulation shape 

 

Example 2 
ω : F(a)  
P : F(a)         F(a)[F(0.5a)][^F(0.5a)][&F(0.5a)][/ F(0.5a)][\        
                     F(0.5a)] 
 & ^ = 30o 
 \ / = 30o   
 n = 3 

 
 

 

 
(a) 

 

 
(b) 

 
 
 
 

 
 
 
 

(c) 
Fig. 4 (a) The fractal plant generated from the L-System of  

                  Example 2 renders as lines. 
              (b) Covering the resulting fractal plant with   
                   triangulation shape. 
              (c) The resulting triangulation shape 
 
 
 
Example 3 
ω : F(a)  
 P : F(a)           F(a)[F(0.5a)][^F(1/3a)][&F(1/3a)][/ F(1/3a)][\ 
                         F(1/3a)] 
 & ^ = 70o 

  \ / = 70o 
  n = 3 
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(a) 

 

 
(b) 

 
 
 
 

 
 

(c) 

Fig. 5 (a) The fractal plant generated from the L-System of  
                  Example 3  renders as lines 
             (b)  Covering the resulting fractal plant with   
                    triangulation 
             (c) The resulting triangulation shape 
 
 
Example 4 
ω :  X  
 P : F(a)       B(0.5a)[^F(0.5a)][&F(0.5a)][/ F(0.5a)][\ F(0.5a)] 
         X           A(0.5a)[^F(a)][&F(a)][/ F(a)][\ F(a)]         
 & ^ = 30o 
  \ / = 30o 
  n = 3 
 
 

 

(a) 

 

(b) 

 
 
 

 
 
 

(c) 
  Fig. 6 (a) The fractal plant generated from the L-System of 
                  Example 4  renders as lines 
            (b) Covering the resulting fractal plant with   
                  Triangulation 
            (c) The resulting triangulation shape 
 
 
Example 5 
ω : X   
P : F(a)        B(0.5a)[^F(0.5a)][&F(0.5a)][/ F(0.5a)][\ F(0.5a)] 
       S         B(0.5a) [^F(1/3a)][&F(1/3a)][/ F(1/3a)][\ F(1/3a)]         
       X        A(a) [^S] [&S][/ F(a)][\ F(a)]         
 & ^ = 30o 

  \ / = 30o 
  n = 3 
 

 

 
(a) 

 

 
(b) 

 
 
 
 

 
 
 

(c) 
  Fig. 7 (a) The fractal plant generated from the L-System of    
                  Example 5 renders as lines 
            (b) Covering the resulting fractal plant with  
                  triangulation 
            (c) The resulting triangulation shape 

 
 

Example 6 
 ω : X  
 P : F(a)        B(0.5a)[^F(0.5a)][&F(0.5a)][/ F(0.5a)][\F(0.5a)] 
       S          C(1/3a)[^F(0.5a)][&F(0.5a)][/ F(0.5a)][\ F(0.5a)]         
       X          A(a)[^S][&S][/ F(a)][\ F(a)]         
  & ^ = 30o 
  \ / = 30o  
   n = 3 
 

 

 
(a) 

 

 
(b) 

 
 
 

 
 
 
 

 
(c) 

 Fig. 8 (a) The fractal plant generated from the L-System of   
                Example 6 renders as lines 
           (b) Covering the resulting fractal plant with    
                triangulation 
           (c) The resulting triangulation shape 

 
 
Example 7 
 ω : [F(a)][B(a)] 
 P : F(a)           F(a)[^F(0.5a)][&F(0.5a)][/ F(0.5a)][\ F(0.5a)] 
      B(a)           B(a)[^F(0.5a)][&F(0.5a)][/ F(0.5a)][\ F(0.5a)]         
  & ^ = 30o 
  \ / = 30o 
   n = 3 
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Example 8 
 ω : [F(a)][B(a)] [C(a)][D(a)] 
 P : F(a)          F(a)[^F(0.5a)][&F(0.5a)][/ F(0.5a)][\ F(0.5a)] 
      B(a)          B(a)[^F(0.5a)][&F(0.5a)][/ F(0.5a)][\ F(0.5a)]         
     C(a)           C(a)[^F(0.5a)][&F(0.5a)][/ F(0.5a)][\ F(0.5a)] 
     D(a)          D(a)[^F(0.5a)][&F(0.5a)][/ F(0.5a)][\ F(0.5a)]              
 & ^ = 30o 
  \ / = 30o 
  n = 3 

 
 

(a) 

 

(b
) 

 
 
 

 
 
 

(c) 

Fig. 10 (a) The fractal plant generated from the L-System of  
                   Example 8 renders as lines 
              (b)  Covering the resulting fractal plant with   
                     triangulation 
              (c) The resulting triangulation shape 

 
 
Example 9 
 ω : F(a) 
 P : F(a)          F(a)[^G(0.5a)][&G(0.5a)][/ G(0.5a)][\ G(0.5a)] 
     G(0.5a)         G(0.5a)[*B(0.25a)] [%B(0.25a)]  
                        [~B(0.25a)][?B(0.25a)]          
     B(0.25a)         B(0.25a)[$S(1/8a)][@S(1/8a)][! S(1/8a)][# 
                            S(1/8a)] 
  & ^ = 600 

  \ / = 600 

  * % = 600 
  ~ ? = 600 

  $ @ = 20o 

  ! # = 20o 
   n = 3 
 
 
 

 
Example 10 
 ω : B(2a)[@F(a)][$F(a)][!F(a)][#F(a)] 
 P : F(a)            F(a)[^F(0.5a)][&F(0.5a)][/ F(0.5a)][\ F(0.5a)] 
 & ^ = 30o , \ / = 30o  
  @ $ =50o , ! # =50o 
      n = 2 
 
 

 
(a) 

 

 
(b) 

 

 

 

 
 

 

(c) 

Fig. 12 (a) The fractal plant generated from the L-System of  
                   Example 10 renders as lines 
              (b)  Covering the resulting fractal plant with   
                          triangulation 
              (c) The resulting triangulation shape 

 
Example 11 
 ω : F(a) 
 P : F(a)        F(a)[F(0.5a)][^F(1/3a)][&F(1/3a)][/ F(1/3a)][\  
                     F(1/3a)] 
 & ^ =120o  ,  \ / = 120o , n = 2 
 

   

 
(a) 

 

 
 

(b) 

 

 

 

 
 

(c) 

Fig. 13 (a) The fractal plant generated from the L-System  
                  of Example 11 renders as lines 
             (b) Covering the resulting fractal plant with   
                  triangulation 
             (c) The resulting triangulation shape 

 

 
(a) 

 

 
(b) 

 
 
 

 
 

 
 

(c) 
  Fig. 9 (a) The fractal plant generated from the L-System of  
                  Example 7 renders as lines 
            (b)  Covering the resulting fractal plant with   
                   triangulation 
            (c) The resulting triangulation shape 

 

(a) 

 

(b) 

 
 

 
 
 

(c) 
Fig. 11 (a) The fractal plant generated from the L-System of  

                     Example 9 renders as lines 
               (b)  Covering the resulting fractal plant with   
                       triangulation 
               (c) The resulting triangulation shape 
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Example 12 
 ω : F(a) 
 P : F(a)           F(a)[^F(0.5a)][&F(0.5a)][/ F(0.5a)][\ F(0.5a)] 
 & ^ =120o 

  \ / = 120o 

  n = 2 
 

 
(a) 

 
(b) 

 

 

 

 
 

(c) 

Fig. 14 (a) The fractal plant generated from the L-System of  
                   Example 12 renders as lines 
              (b)  Covering the resulting fractal plant with   
                    triangulation 
              (c) The resulting triangulation shape 

 
Example 13 
ω : F(a)  
 P : F(a)         F(a)[^F(0.5a)][&F(0.5a)][/ F(0.5a)][\ F(0.5a)] 
 & ^ = 30o 
 \ / = 30o  
  n = 3 

 
 

 
(a) 

 

 
(b) 

 
 
 

 
 
 

(c) 

Fig. 15 (a) The fractal plant generated from the L-System of  
                   Example13 renders as lines 
              (b)  Covering the resulting fractal plant with   
                     triangulation 
              (c) The resulting triangulation shape 

 

VI. CONCLUSION AND FUTURE WORK 
   L-system is a tool commonly used for modeling and 
simulating the growth of plants [8]. In this paper, a tree 
modeling system based on L-system was proposed that allows 
the user to control the overall appearance, the depth of 
recursions, the length of branches and the rotation angels(for 
each iteration). Also, the triangulation shape can be controlled 
according to the resulting tree model. It is shown that changes 
in initial conditions when reiterated could cause big changes 
in the resulting triangulation shape. As shown in Example1 
and Example13 change in the rotation angel causes big 
changes in the resulting triangulation shape. 

   Fractals have been used with varying success in a wide 
range of scientific fields such as medicine, biological systems, 
astrophysics, computer and video games and recently in 
architecture. The proposed algorithm was built on the 
symmetric construction of the tree branches. It is hoped in the 
future work that the construction of tree branches becomes 
randomly.  
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TABLE I 
 RESULTS OF FIGURES 4-15 

Figure 
Number Faces Vertices Edges 

Run 
Time in 

Sec. 

Number of 
Iterations 

3 110 64 172 3.1040 3 
4 212 125 335 6.5700 3 
5 244 125 367 7.7510 3 
6 98 64 160 3.8060 3 
7 110 64 172 3.9360 3 
8 102 64 164 3.8160 3 
9 222 128 348 5.5280 3 
10 474 256 728 7.8810 3 
11 106 64 168 3.5050 3 
12 102 64 164 4.2860 2 
13 36 25 59 3.0950 2 
14 22 16 36 2.0930 2 
15 98 64 160 3.6350 3 


