
International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:2, No:8, 2008

569

Abstract—L-system is a tool commonly used for modeling and

simulating the growth of fractal plants. The aim of this paper is to
join some problems of the computational geometry with the fractal
geometry by using the L-system technique to generate fractal plant in
3D. L-system constructs the fractal structure by applying rewriting
rules sequentially and this technique depends on recursion process
with large number of iterations to get different shapes of 3D fractal
plants. Instead, it was reiterated a specific number of iterations up to
three iterations. The vertices generated from the last stage of the L-
system rewriting process are used as input to the triangulation
algorithm to construct the triangulation shape of these vertices. The
resulting shapes can be used as covers for the architectural objects
and in different computer graphics fields. The paper presents a
gallery of triangulation forms which application in architecture
creates an alternative for domes and other traditional types of roofs.

Keywords—Computational geometry, Fractal geometry, L-
system, Triangulation.

I. INTRODUCTION
OWADAYS, a lot of researches are directed to generate
2D and 3D fractal objects. The Euclidean-geometry

methods are adequate for describing manufactured objects:
those that have smooth surfaces and regular shapes. But
natural objects, such as mountains, clouds and plants, have
irregular or fragmented features, and Euclidean methods do
not realistically model these objects. Natural objects can be
realistically described with fractal-geometry methods, where
procedures rather than equations are used to model objects [1].
Fractal geometry is one of the youngest theories of
contemporary mathematics, which developed thanks to the
advance of computer technology [2]. A fractal is generally "a
rough or fragmented geometric shape that can be subdivided
into parts, each of which is (at least approximately) a reduced-
size copy of the whole," a property called self-similarity. The
term was suggested by Benoit Mandelbrot in 1975 and was
derived from the Latin fractus meaning "broken" or
"fractured" [3]. The most common techniques used for
generating fractals are iterated function system (IFS) where a
fractal object is generated by applying a specified
transformation function to point within a region of space and

Y. M. Abd El-Latif, Phd Computer Science, Faculty of Science, Ain Shams

University, Cairo, Egypt. (e-mail: Y.AbdEllatif@Gmail.com).
F. S.Abousaleh,, was with Zagazig University, Cairo, Egypt. She has a

scholarship with Faculty of Science, Ain Shams University (e-mail:
fatma_said6@yahoo.com).

Daoud S. S., Faculty of Science, Ain Shams University, Cairo, Egypt. (e-
mail: sameh_daoud2003@yahoo.com).

L-system (Lindenmayer system) which represents the fractal
structure of plants using grammatical expressions. Starting
with an initial structure, L-system constructs the fractal
structure by applying rewriting rules sequentially [8].

Computational geometry is the study of efficient algorithms
to solve geometric problems, such as: given N points in the
plane or in the space, how the smallest convex hull that
encloses all the points is computed, given N points in a plane,
what is fastest way to find the nearest neighbor of a point,
given N straight lines, how to find the lines which intersect
with each other [4] and the triangulation problem given N
points in the plane how they can be joined by nonintersecting
straight line segments so that every region internal to the
convex hull is a triangle. It is noticed that Computational
geometry and computer graphics both consider geometric
phenomena as they relate to computing. Computational
geometry provides a theoretical foundation involving the
study of algorithms and data structures for doing geometric
computations. Computer graphics concerns the practical
development of the software, hardware and algorithms
necessary to create graphics (i.e. to display geometry) on the
computer screen [10]. In this study, it was shown how
computer graphics and computational geometry interact.

The paper is organized as follows. Section II, reviews some
of the prior researches in generating fractal objects and their
relations to computational geometry. Section III, gives a brief
summary of the L-system in two dimensions with some
examples. Section IV, it was explained how L-systems can be
extended to three dimensions, and a proposed algorithm was
introduced with simple analysis to its complexity. Some
experimental results with discussions are given in sections V.
Finally, in section VI, a conclusion and some directions for
future work were given.

II. PRIOR RESEARCH
One of the basic methods of generating fractal objects is

Lindenmayer system called L-system for short [2]. L-Systems
were invented by Aristid Lindenmayer in the 1968 [5].
Lindenmayer noticed that complex biological plants and
structures had recursive patterns and could be compactly
represented through simple grammars (strings of text), called
L-Systems. Lindenmayer published a book, The Algorithmic
Beauty of Plants [6], where he displays the raw power of these
simple L-Systems by producing beautifully magnificent plants
and structures [7]. The framework of L-system consists of an
initial structure and rewriting rules (or generating rules). The
essence of development is parallel replacement using the

A New Vision of Fractal Geometry with
Triangulation Algorithm

Yasser M. Abd El-Latif, Fatma S.Abousaleh, and Daoud S. S.

N

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:2, No:8, 2008

570

rewriting rules. Starting from the initial structure, L-system
replaces each part of the current structure by applying the rule
sequentially [8]. Along with the development of the theory,
the L-system has been enriched with geometric aspects and
has become a universal tool not only for modeling plants, but
also for creating fractals which shape is a function of time.

Another idea, besides the rule of rewriting, of L-system is a
method of notation the fractal's structure, based on graphical
interpretation of a string of characters. This method is known
in literature under the name of the turtle graphics, whose
creator was Seymour Papert. The main idea of the turtle
graphics is graphical interpretation of a string of characters in
the form of commands given to a specially trained turtle. The
method's tool is the turtle's tail which draws straight lines on
the plane according to the received commands [2].

Computing The Delaunay triangulation is one of the most
famous computational geometry problems. The Delaunay
triangulation was invented in 1934 by, and named after, the
Russian mathematician Boris Nikolaevich Delaunay (1890-
1980). It has a lot of applications in science and computer
graphics. It is often used in the graphic representation of
geometrically irregularly distributed data—thinks weather
maps or altitude maps. Its 3D-variant is important in creating
virtual worlds for video games, among many other things
[11]. Triangulation involves creating from the sample points a
set of non-overlapping triangularly bounded facets, the
vertices of the triangles are the input sample points. There are
a number of triangulation algorithms that may be advocated,
the more popular algorithms are the radial sweep method and
the Watson algorithm which implement Delaunay
triangulation. The Delaunay triangulation is closely related
geometrically to the Direchlet tesselation also known as the
Voronoi diagram [12]. The Voronoi diagram of a set S = {p1,
p2, … , pn} of points in the plane, called sites, is a partitioning
of the plane into n convex regions, one per site. Each Voronoi
region Vi contains all points in the plane closer to pi than to
any other site. The straight line dual of the Voronoi diagram,
obtained by adding a line segment between each pair of sites
of S whose Voronoi regions share an edge, is called the
Delaunay triangulation. Given the Voronoi diagram of a set of
sites, V(S), the Delaunay triangulation of those sites, D(S), can
be obtained in O(n) time and vice versa [13].

One of the new research based on L-System made by Piotr
Furmanek in which he present a modification of L-system to
generate 3D fractal plant which could be applied as the
supporting construction for polyhedral covers of architectural
objects [2]. “Fractal geometry and its applications in the field
of construction” is another new research. This research project
aims to translate virtual fractal models into physically built
architectural objects. The considered fractal models are based
on iterative algorithms, which were developed at the LIRIS
for the creation of virtual images. The physical objects will
aim for an application in the field of construction on the scale
of architecture and design objects. Fractal objects will be
designed and built as bearing shell structures, irregular three
dimensional polygonal structures [9].

III. L-SYSTEMS
The basic idea of the L-system is a rule of rewriting, also

called a rule of replacing. Its operation can be presented in
terms of intuition by means of the following example [2]:

Consider a string built of elements ‘a’ and ‘b’, which can
occur many times in the string. Each element is associated
with one rewriting rule P. The notation P: a→b means that
element ‘a’ is replaced with element ‘b’, and the notation P:
a→ab means that element ‘b’ is replaced with two element
string ‘ab’. The rewriting process starts from distinguished
string called the axiom ω. Assumptions constructed in this
way make it possible to generate the following example string
of elements [6].

A short list of commands by means of which the simplest
fractals using the turtle graphics method can be created as
follows [2]:
F Move forward a step of constant length >0 draw a line

segment from the previous to the new position.
f Move forward a step of constant length >0 without

drawing a line.
+ Turn left by constant angel δ.
– Turn right by constant angel δ.
[Meeting this command causes that the turtle's current

state is remembered.
] Meeting this command makes the turtle come back to the

state before the symbol [.
[…] Between these symbols occur commands defining the

construction of the branches.
These notations can be illustrated by the following simple

example. Fig. 1 displays the L-system processes, which are
created as using the rewriting rule below:

Axiom ω : F
Rewriting rule FFFFFFP][][: −+→ (1)
Parameters + – : δ = 30o

Fig. 1 L-system generating a fractal resembling a weed

IV. OUR PROPOSED ALGORITHM
Turtle interpretation of L-systems can be extended to three

dimensions. The key concept is to represent the current
orientation of the turtle in space by three vectors H, L, U,

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:2, No:8, 2008

571

indicating the turtle’s heading, the direction to the left, and the
direction up. These vectors have unit length, are perpendicular
to each other, and satisfy the equation H×L = U. Fig. 2
illustrates these vectors in three dimensions. Rotations of the
turtle are then expressed by the equation

RULHULH ⎥⎦
⎤

⎢⎣
⎡=⎥⎦

⎤
⎢⎣
⎡ ′′′

→→→→→→

 (2)

where R is a 3×3 rotation matrix. Specifically, rotations by

angle α about vectors U, L and H are represented by the
matrices [6]:

RU (α) =

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

100
0cossin
0sincos

αα
αα

RL (α) =

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −

αα

αα

cos0sin
010

sin0cos
 (3)

RH (α) =

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

αα
αα

cossin0
sincos0
001

Fig. 2 Controlling the turtle in three dimensions

It should be noted that the commands given to the turtle

concern the orientation connected with the local co-ordinate
system in which the turtle moves and which moves along with
the turtle. For the needs of this study it has been assumed that
initially, the turtle's head is turned upwards, thus the command
F means movement upwards, and commands & or ^ mean an
inclination by angle α [2]. The algorithm can be described as
follows:
Input: the parameters of 3D L-system (axiom, rewriting rules,
number of iterations and orientation angels).
Output: the 3D fractal plant (obtained from the given L-
system and the 3D triangulation algorithm of the vertices
obtained from the last stage of the rewriting process).
begin
 n = number of iterations
 k = length of the initial axiom
 for i = 1 to n
 begin

for j = 1 to k
replace the character with index j in the axiom by
the corresponding rewriting rule.

k = length of the axiom result from the previous step
end

 for i = 1 to k
 begin
 c = character with index i in the axiom
 switch (c)
 case 'F'

move forward a step of constant length a>0
draw a line segment from the previous to the
new position

 case ‘f’
move forward a step of constant length a>0
without drawing a line

 case '+'
Turn left by angle α, using rotation matrix
RU(α)

 case '-'
Turn right by angle α, using rotation matrix
RU(-α)

 case '&'
pitch up by angel α, using rotation matrix
RL(α)

 case '^'
pitch down by angel α, using rotation matrix
RL(-α)

 case '\'
roll left by angel α, using rotation matrix
RH(α)

 case '/'
roll right by angel α, using rotation matrix
RH(-α)

 case '*'
pitch up by angel β, using rotation matrix
RL(β)

 case '%'
pitch down by angel β, using rotation matrix
RL(-β)

 case '~'
roll left by angel β, using rotation matrix
RH(β)

 case '?'
roll right by angel β, using rotation matrix
RH(-β)

 case '$'
pitch up by angel γ, using rotation matrix
RL(γ)

 case '@'
pitch down by angel γ, using rotation matrix
RL(-γ)

 case '!'
roll left by angel γ, using rotation matrix
RH(γ)

 case '#'
roll right by angel γ, using rotation matrix
RH(-γ)

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:2, No:8, 2008

572

 case '['
meeting this command causes the turtle's
current state is remembered

 case ']'
meeting this command makes the turtle
come back to the state before the symbol [

 otherwise
return (error)

 end
A [m, 3] = m by 3 array of the m vertices obtained from
the last stage of the rewriting process.
Apply The Delaunay triangulation algorithm to the
vertices in A.

end

The analysis of the time complexity of the proposed
algorithm is given as follows. The key of the algorithm is to
construct the connectivity of the output vertices correctly and
to accomplish this task efficiently. For any given example let k
is the length of the longest rule in the example. Then at most

)(nkO is needed to calculate the final string of the axiom

where n is the number of iterations,)(nkO to draw the fractal
plant according to the resulting final string of the axiom. Now
since, the Delaunay triangulation algorithm needs

)log(nnO in time in the worst case [13], then

)log(nn kkO in time is needed to compute the triangulation
of the vertices obtained from the last stage of the rewriting
process. Hence the total run time of our algorithm is)(nkO

+)(nkO +)log(nn kkO ≈)log(nn kkO .

V. EXPERIMENTAL RESULTS AND DISCUSSIONS
Based on the proposed algorithm, the following examples

illustrate the successive steps of the algorithm:

Example 1
ω : F(a)
P : F(a) F(a)[^F(0.5a)][&F(0.5a)][/ F(0.5a)][\ F(0.5a)]
& ^ = 50o
 \ / = 50o
n = 3

It is noticed that depending on the accepted formula of the

L-System, examples of different triangulation shapes can be
obtained. Selected examples are presented in Table 1. Results
are shown in Figures 4-15

 (c)

(b)

(a)

Fig. 3 (a) The fractal plant generated from the L-System of
 Example 1 renders as lines.
 (b)Covering the resulting fractal plant with
 triangulation shape.
 (c) The resulting triangulation shape

Example 2
ω : F(a)
P : F(a) F(a)[F(0.5a)][^F(0.5a)][&F(0.5a)][/ F(0.5a)][\
 F(0.5a)]
 & ^ = 30o
 \ / = 30o
 n = 3

(a)

(b)

(c)
Fig. 4 (a) The fractal plant generated from the L-System of

 Example 2 renders as lines.
 (b) Covering the resulting fractal plant with
 triangulation shape.
 (c) The resulting triangulation shape

Example 3
ω : F(a)
 P : F(a) F(a)[F(0.5a)][^F(1/3a)][&F(1/3a)][/ F(1/3a)][\
 F(1/3a)]
 & ^ = 70o

 \ / = 70o
 n = 3

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:2, No:8, 2008

573

(a)

(b)

(c)

Fig. 5 (a) The fractal plant generated from the L-System of
 Example 3 renders as lines
 (b) Covering the resulting fractal plant with
 triangulation
 (c) The resulting triangulation shape

Example 4
ω : X
 P : F(a) B(0.5a)[^F(0.5a)][&F(0.5a)][/ F(0.5a)][\ F(0.5a)]
 X A(0.5a)[^F(a)][&F(a)][/ F(a)][\ F(a)]
 & ^ = 30o
 \ / = 30o
 n = 3

(a)

(b)

(c)
 Fig. 6 (a) The fractal plant generated from the L-System of
 Example 4 renders as lines
 (b) Covering the resulting fractal plant with
 Triangulation
 (c) The resulting triangulation shape

Example 5
ω : X
P : F(a) B(0.5a)[^F(0.5a)][&F(0.5a)][/ F(0.5a)][\ F(0.5a)]
 S B(0.5a) [^F(1/3a)][&F(1/3a)][/ F(1/3a)][\ F(1/3a)]
 X A(a) [^S] [&S][/ F(a)][\ F(a)]
 & ^ = 30o

 \ / = 30o
 n = 3

(a)

(b)

(c)
 Fig. 7 (a) The fractal plant generated from the L-System of
 Example 5 renders as lines
 (b) Covering the resulting fractal plant with
 triangulation
 (c) The resulting triangulation shape

Example 6
 ω : X
 P : F(a) B(0.5a)[^F(0.5a)][&F(0.5a)][/ F(0.5a)][\F(0.5a)]
 S C(1/3a)[^F(0.5a)][&F(0.5a)][/ F(0.5a)][\ F(0.5a)]
 X A(a)[^S][&S][/ F(a)][\ F(a)]
 & ^ = 30o
 \ / = 30o
 n = 3

(a)

(b)

(c)

 Fig. 8 (a) The fractal plant generated from the L-System of
 Example 6 renders as lines
 (b) Covering the resulting fractal plant with
 triangulation
 (c) The resulting triangulation shape

Example 7
 ω : [F(a)][B(a)]
 P : F(a) F(a)[^F(0.5a)][&F(0.5a)][/ F(0.5a)][\ F(0.5a)]
 B(a) B(a)[^F(0.5a)][&F(0.5a)][/ F(0.5a)][\ F(0.5a)]
 & ^ = 30o
 \ / = 30o
 n = 3

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:2, No:8, 2008

574

Example 8
 ω : [F(a)][B(a)] [C(a)][D(a)]
 P : F(a) F(a)[^F(0.5a)][&F(0.5a)][/ F(0.5a)][\ F(0.5a)]
 B(a) B(a)[^F(0.5a)][&F(0.5a)][/ F(0.5a)][\ F(0.5a)]
 C(a) C(a)[^F(0.5a)][&F(0.5a)][/ F(0.5a)][\ F(0.5a)]
 D(a) D(a)[^F(0.5a)][&F(0.5a)][/ F(0.5a)][\ F(0.5a)]
 & ^ = 30o
 \ / = 30o
 n = 3

(a)

(b
)

(c)

Fig. 10 (a) The fractal plant generated from the L-System of
 Example 8 renders as lines
 (b) Covering the resulting fractal plant with
 triangulation
 (c) The resulting triangulation shape

Example 9
 ω : F(a)
 P : F(a) F(a)[^G(0.5a)][&G(0.5a)][/ G(0.5a)][\ G(0.5a)]
 G(0.5a) G(0.5a)[*B(0.25a)] [%B(0.25a)]
 [~B(0.25a)][?B(0.25a)]
 B(0.25a) B(0.25a)[$S(1/8a)][@S(1/8a)][! S(1/8a)][#
 S(1/8a)]
 & ^ = 600

 \ / = 600

 * % = 600
 ~ ? = 600

 $ @ = 20o

 ! # = 20o
 n = 3

Example 10
 ω : B(2a)[@F(a)][$F(a)][!F(a)][#F(a)]
 P : F(a) F(a)[^F(0.5a)][&F(0.5a)][/ F(0.5a)][\ F(0.5a)]
 & ^ = 30o , \ / = 30o
 @ $ =50o , ! # =50o
 n = 2

(a)

(b)

(c)

Fig. 12 (a) The fractal plant generated from the L-System of
 Example 10 renders as lines
 (b) Covering the resulting fractal plant with
 triangulation
 (c) The resulting triangulation shape

Example 11
 ω : F(a)
 P : F(a) F(a)[F(0.5a)][^F(1/3a)][&F(1/3a)][/ F(1/3a)][\
 F(1/3a)]
 & ^ =120o , \ / = 120o , n = 2

(a)

(b)

(c)

Fig. 13 (a) The fractal plant generated from the L-System
 of Example 11 renders as lines
 (b) Covering the resulting fractal plant with
 triangulation
 (c) The resulting triangulation shape

(a)

(b)

(c)
 Fig. 9 (a) The fractal plant generated from the L-System of
 Example 7 renders as lines
 (b) Covering the resulting fractal plant with
 triangulation
 (c) The resulting triangulation shape

(a)

(b)

(c)
Fig. 11 (a) The fractal plant generated from the L-System of

 Example 9 renders as lines
 (b) Covering the resulting fractal plant with
 triangulation
 (c) The resulting triangulation shape

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:2, No:8, 2008

575

Example 12
 ω : F(a)
 P : F(a) F(a)[^F(0.5a)][&F(0.5a)][/ F(0.5a)][\ F(0.5a)]
 & ^ =120o

 \ / = 120o

 n = 2

(a)

(b)

(c)

Fig. 14 (a) The fractal plant generated from the L-System of
 Example 12 renders as lines
 (b) Covering the resulting fractal plant with
 triangulation
 (c) The resulting triangulation shape

Example 13
ω : F(a)
 P : F(a) F(a)[^F(0.5a)][&F(0.5a)][/ F(0.5a)][\ F(0.5a)]
 & ^ = 30o
 \ / = 30o
 n = 3

(a)

(b)

(c)

Fig. 15 (a) The fractal plant generated from the L-System of
 Example13 renders as lines
 (b) Covering the resulting fractal plant with
 triangulation
 (c) The resulting triangulation shape

VI. CONCLUSION AND FUTURE WORK
 L-system is a tool commonly used for modeling and
simulating the growth of plants [8]. In this paper, a tree
modeling system based on L-system was proposed that allows
the user to control the overall appearance, the depth of
recursions, the length of branches and the rotation angels(for
each iteration). Also, the triangulation shape can be controlled
according to the resulting tree model. It is shown that changes
in initial conditions when reiterated could cause big changes
in the resulting triangulation shape. As shown in Example1
and Example13 change in the rotation angel causes big
changes in the resulting triangulation shape.

 Fractals have been used with varying success in a wide
range of scientific fields such as medicine, biological systems,
astrophysics, computer and video games and recently in
architecture. The proposed algorithm was built on the
symmetric construction of the tree branches. It is hoped in the
future work that the construction of tree branches becomes
randomly.

REFERENCES
[1] D. Hearn and M.P. Baker, Computer Graphics. C version, 2nd ed, CA: A

Viacom Company Upper Saddle River, New Jersey 07458, 1997, pp.
362-363.

[2] P. Furmanek, "POLYHEDRAL COVERS BASED ON L-SYSTEM
FRACTAL CONSTRUCTION," The Journal of Polish Society for
Geometry and Engineering Graphics, vol. 14, 2004, pp. 40-47.

[3] From Wikipedia and the free encyclopedia, "Fractal".
Online: http://en.wikipedia.org/wiki/Fractal

[4] S. Sarkar, “Introduction to Computation Geometry,” Spring 2008.
Online: http://figment.csee.usf.edu/~sarkar/ComputationalGeometry/

[5] A. Lindenmayer, “Mathematical models for cellular interaction in
development,” parts I and Π, Journal of Theoretical Biology, vol. 18,
1968, pp.280-315.

[6] P. Prusinkiewicz and A. Lindenmayer, The algorithmic beauty of plants.
New York: Springer-Verlag, 1990, ch. 1.

[7] B. D. Farkas, N. Romanyshyn, and P. Clary, "L- Systems Construction
Kit". Online:
http://l3d.cs.colorado.edu/~ctg/classes/ttt2005/projectreports/Lsystemrep
ort2.pdf

[8] T. Ijiri, S. Owada, and T. Igarashi, “The Sketch L-System: Global
Control of Tree Modeling Using Free-form Strokes,” Smart Graphics
(2006), pp. 138-146.

[9] P. Buser, E. Tosan, and Y. Weinand, "Fractal Geometry and its
applications in the field of construction," summer 2005.
Online:http://fractals-ibois.epfl.ch/wiki/images/105c06_project_plan.pdf

[10] D. P. Dobkin, "Computational Geometry and Computer Graphics," in
Proc. IEEE, vol. 80, Issue 9, Sep. 1992, pp. 1400 – 1411.

[11] S. Priester, “Delaunay Triangles,” July 19, 2005.
Online:http://www.codeguru.com/Cpp/data/mfc_database/misc/article.p
hp/c8901/

[12] P. Bourke, "Triangulate Efficient Triangulation Algorithm Suitable for
Terrain Modelling" or "An Algorithm for Interpolating Irregularly-
Spaced Data with Applications in Terrain Modelling," presented at the
1989 Pan Pacific Computer Conference, Beijing, China.

[13] G. Leach, "Improving Worst-Case Optimal Delaunay Triangulation
Algorithms," In 4th Canadian Conference on Computational Geometry,
Canada, June 15, 1992.

TABLE I
 RESULTS OF FIGURES 4-15

Figure
Number Faces Vertices Edges

Run
Time in

Sec.

Number of
Iterations

3 110 64 172 3.1040 3
4 212 125 335 6.5700 3
5 244 125 367 7.7510 3
6 98 64 160 3.8060 3
7 110 64 172 3.9360 3
8 102 64 164 3.8160 3
9 222 128 348 5.5280 3
10 474 256 728 7.8810 3
11 106 64 168 3.5050 3
12 102 64 164 4.2860 2
13 36 25 59 3.0950 2
14 22 16 36 2.0930 2
15 98 64 160 3.6350 3

