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Abstract—This paper presents a new algorithm which yields a 

nonlinear state estimator called iterated unscented Kalman filter. This 
state estimator makes use of both statistical and analytical 
linearization techniques in different parts of the filtering process. It 
outperforms the other three nonlinear state estimators: unscented 
Kalman filter (UKF), extended Kalman filter (EKF) and iterated 
extended Kalman filter (IEKF) when there is severe nonlinearity in 
system equation and less nonlinearity in measurement equation. The 
algorithm performance has been verified by illustrating some 
simulation results. 
 

Keywords—Extended Kalman Filter, Iterated EKF, Nonlinear 
state estimator, Unscented Kalman Filter. 

I. INTRODUCTION 
CCURATE estimation of state variables of systems is 
important for fault detection and control applications. 

However, estimation in nonlinear systems is not easy to deal 
with. The optimal (Bayesian) solution to the problem requires 
propagation of description of full probability density function 
(pdf) [1]. This solution is general and includes factors such as 
multimodality, asymmetries, and discontinuities. However, 
since the form of pdf is not restricted, it cannot, in general, be 
represented using finite number of parameters. Therefore, any 
practical estimator must use an approximation of some kinds. 
Many different types of approximations have been developed; 
unfortunately, most are either computationally unmanageable 
or require special assumptions about the form of the process 
and observation models that cannot be satisfied in practice. 
For these and other reasons, the KF remains the most widely 
used estimation algorithm. 

The most common application of the KF to nonlinear 
systems is in the form of extended KF (EKF) [2, 3]. EKF was 
first used by Wu et al. to find the 3D location. Exploiting the 
assumption that all transformations are quasi-linear, the EKF 
simply linearizes all nonlinear transformations and substitutes 
Jacobian matrices for the linear transformations in the KF 
equations. In addition, EKF is very convenient and fast for 
real-time processing and quite straightforward to implement if 
a priori information of the measurement and process noise 
covariance matrices are available. Linearization in EKF  
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introduces errors in the corresponding state estimations. The 
linearization is performed usually by Taylor expansion and the 
error is due to neglecting higher order terms. For reducing this 
error, using second-order EKF is proposed [2]. However, this 
method has a burden computation in problems with large 
measurement dimensions. Another approach to reduce this 
error is the measurement (and/or system) relinearization about 
a reference trajectory in the state space [4, 5]. This method is 
called Iterated Extended Kalman Filter (IEKF) and suits the 
cases in which the nonlinearity is only in the measurement 
equation [5]. Although the EKF maintains the elegant and 
computationally efficient recursive update form of the KF, it 
suffers a number of serious limitations: 1) Linearized 
transformations are only reliable if the error propagation can 
be well approximated by a linear function. If this condition 
does not hold, the linearized approximation can be extremely 
poor. At best, this undermines the performance of the filter. At 
worst, it causes its estimates to diverge altogether. However, 
determining the validity of this assumption is extremely 
difficult because it depends on the transformation, the current 
state estimate, and the magnitude of the covariance. 2) It only 
works well if the various random vectors are approximately 
Gaussian distributed. For complicated densities, the 
expectation covariance representation does not suffice. 3) 
Linearization can be applied only if the Jacobian matrix exists. 
However, this is not always the case. Some systems contain 
discontinuities, others have singularities and in others the 
states themselves are inherently discrete. 4) In some 
applications, it is too difficult to find the Jacobian matrix 
analytically. In these cases, numerical approximations of the 
Jacobian matrix are needed. However, this introduces other 
types of problems because now the influence of having 
approximations rather than the true values is involved.  5) The 
convergence of the standard EKF is very dependent on the 
choice of initial state estimate and tuning of filter parameters 
is crucial to success of the estimates. 6) In the EKF, the 
Kalman gain matrix depends on the data. With that, the 
stability of the filter is not assumed anymore. Moreover, it is 
very hard to analyze the behavior of the filter. 7) The EKF 
does not guarantee unbiased estimates. In addition, the 
calculated error covariance matrices do not necessarily 
represent the true error covariance. The analysis of these 
effects is also hard to deal with.  

Recently, the Unscented Transform has been used in the 
EKF framework [6, 7] and the resulting filter is referred to as 
the Unscented Kalman Filter (UKF). It uses the intuition that 
it is easier to approximate a probability distribution function 
than to approximate an arbitrary nonlinear function or 
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transformation. Thus the state distributions are approximated 
by the Gaussian density, which is represented by a set of 
deterministically chosen sample points. The idea of nonlinear 
filtering using the Gaussian representation of the posterior 
density via a set of deterministically chosen sample points has 
been proposed by several authors [8, 9]. The whole class of 
nonlinear filters (including UKF) is referred to as the linear 
regression Kalman filter, because they are all based on 
statistical linearization rather than analytical linearization (as 
the EKF). The statistical linearization is performed via the 
linear regression through the regression (sample) points. 
These sample points (Sigma points) completely capture the 
true mean and covariance of the Gaussian density. When 
propagated through nonlinear systems, they capture the true 
mean and covariance accurately to the second order (Taylor 
series expansion) of any nonlinearity [6].  

UKF yields performance equivalent to the Kalman Filter for 
linear systems, yet generalizes elegantly to nonlinear systems 
without the linearization steps required for the EKF. The UKF 
consistently achieves a better level of accuracy than the EKF 
in systems with severe nonlinearities. Remarkably, the 
computational complexity of the UKF is in the same order as 
that of the EKF. Lefebvre et al. [10] have studied several 
modifications of Kalman Filters for nonlinear systems. They 
categorize all the different versions of Kalman Filters such as 
Central Difference Filter (CDF), Unscented Kalman Filter 
(UKF), and Divided Difference Filter (DDI) as linear 
regression Kalman Filters (LRKF) and compare them to EKF 
and IEKF [4, 11]. They mention that EKF and IEKF are 
generally better than LRKF for systems with no severe 
nonlinearities, yet they require a careful tuning. An interesting 
result of their study is that IEKF outperforms EKF, because it 
uses the measurements to linearize the measurement function, 
whereas in EKF and LRKF the measurement is not used [10]. 

In this paper, an iterated unscented Kalman filter is 
developed which is new in its kind. It achieves better 
performance than the other three estimators (EKF, IEKF and 
UKF) when there is severe nonlinearity in system equation 
and softer nonlinearity in measurement equation. In this 
method, we have used the statistical linearization for the 
prediction step and the analytical linearization for the update 
step of filtering. We demonstrate the performance benefits in 
two examples and argue that the ease of implementation and 
more accurate estimation features of the new filter recommend 
its use over the EKF and IEKF in almost all applications.          

II. BACKGROUNDS  
The Unscented Kalman Filter (UKF) is a straightforward 

extension of the Unscented Transform (UT) to the recursive 
state estimation. The UT is a method for calculating the 
statistics of a random variable that undergoes a nonlinear 
transformation. The UKF uses the intuition that it is easier to 
approximate a probability distribution function rather than to 
approximate an arbitrary nonlinear function or transformation. 
Following this intuition, a set of points, called sigma points, 

are generated whose sample mean and sample covariance are: 
)(x̂ kk , the state estimation at kth iteration, and )(P kk , the 

state covariance matrix, respectively. The nonlinear function 
is applied to each of these points in turn to yield a transformed 
sample, and the predicted mean and covariance are calculated 
from the transformed sample.  

Although this superficially resembles a Monte Carlo 
method, the samples are not drawn at random. Rather, the 
samples are deterministically chosen so that they capture 
specific information about the distribution. In general, this 
intuition can be applied to capture many kinds of information 
about many types of distributions. Here, we consider the 
special case of capturing the mean and covariance of an 
assumed Gaussian distribution. 

The n-dimensional random variable )(x k  with mean 

)(x̂ kk  and covariance matrix )(P kk  is approximated by 
2n+1 weighted samples or sigma points selected by the 
algorithm [6]:  
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where κ  is a scaling parameter such that 0≠+ nκ  and 

( )
i

kkn )(P)(, κκ +ℜ∈  is the ith row or column of the 

matrix square root of  )(P)( kkn κ+ , and iW  is the weight 
that is associated with the ith point. The weights are 

normalized; that is, satisfy 12
0 =∑ =

n
i iW . 

III. THE NEW FILTER: ITERATED UNCENTED KALMAN FILTER  
The set of samples chosen by (1) have the same sample 

mean, covariance, and all higher odd-ordered central moments 
as the distribution of )(x k . The matrix square root and κ  
affect the forth and higher order sample moments of the sigma 
points [7].  

Consider the following nonlinear filtering problem defined 
by 
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where )(x k  is the vector state of the system at time step k, 
)(w k  is the vector noise process caused by disturbances and 

modeling errors, )(z k  is the observation vector, and )(v k  is 
the additive measurement noise. It is assumed that the noise 
vector )(w k and )(v k  are zero mean and  
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The assumption is that the posterior density at time k is 

Gaussian, i.e. )P,x̂;x()zx( kkkkNkkp = . The first step is to 

represent this density function by a set of 2n sample points 

)( kkiχ  and their weights nii
kW 2,...,0, = . Each sigma point 

is instantiated through the process model to yield a set of 
transformed sample   
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The prediction step is then performed as follows:    
    ∑

=
+=+

n

i

i
kk

i
k χWkk

2

0
1)1(x̂                                (4)                                                      

and the predicted covariance matrix is computed as 
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The mean vector and covariance matrix are calculated using 
standard vector and matrix operations which means the 
algorithm is suitable for any choice of process model. The 
implementation is convenient because it is not required to 
evaluate the Jacobians, which are needed in an EKF. The 
method has a further advantage that it yields more accurate 
predictions than those determined through analytical 
linearization [6, 7]  

The second step is an update step. The knowledge gained 
from observing the measurement )(z k  is used to refine the 
density function. Using the Bayes theorem on the conditional 
density for memoryless sensory systems yields  
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where )(z k  is the set of received observations from )1(z  up 
to )(z k  and c is a normalization constant 
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The approximation is made such that both predicted state 
and the measurement noise are considered to be normally 
distributed. Thus, the posterior probability density 

))(Z)(x( kkp , which is the product of two Gaussian, is also a 
Gaussian. Therefore, the MMSE estimate coincides with the 
MAP estimate and the task is now to find the maximum 
of ))(Z)(x( kkp . Equivalently, we can maximize its 
logarithm. After the elimination of the irrelevant constants and 
factors, it all boils down to minimization the following 
function 
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For brevity, the following notations have been used: 
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The strategy of finding minimum is to use Newton-Raphson 
iteration starting from )1(x̂0x kk += . In the l-th iteration 

step, we have already an estimate 1x −l  obtained from the 

previous step. We expand )x(f  to a second order Taylor 
series approximation: 
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where x/ ∂∂f  is the gradient and 2x/2 ∂∂   is the Hessian 

of )x(f . The estimate lx  is the minimum of the 

approximation. It is found by equating the gradient of the 
approximation to zero. Differentiation of (8) gives 
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The Jacobian and Hessian of )x(f , in explicit form, are 
obtained from (7) as 

     

l
T
lp

l

l
T
lplp

l

f

f

HCHC
x

)x(

))x(h-z(CH)xx(C
x

)x(

1
v

1
2

1
2

1
1

v1
11

−−−

−
−

−
−−

+=
∂

∂

−−=
∂

∂

       (10)                   

 

 



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:2, 2007

375

 

 

where )1x(HH −= ll  is the Jacobian matrix of  )x(h  

evaluated at 1x −l  .  
Substitution of (10) in (9) yields the following iteration 

scheme:  
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The required number of further iterations depends on how 

fast )(klx  converges. It is common practice to fix the 
number of iterations to some practical number L. The final 
result is set to the last iteration, i,e,  Lkk xx =)(ˆ . 

The factor ( ) 11
v

1 HCHC −−− + l
T
lp  in (11) can be regarded as 

the error covariance matrix associated with )(ˆ kkx  

        ( ) 11
v
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T
lpkk                              (12)                                           

This insight gives another connection to the last term in 
(11) because, in fact, the term 1

vCH)(P −T
lkk  can be regarded 

as the Kalman gain matrix lK  during the l-th iteration. 

 

IV. SIMULATION RESULTS 
This section applies the proposed new algorithm to two 

tracking problems and compares their performance against 
those of the UKF, IEKF, and EKF algorithms presented as 
what follows:    

 
Example 1: Consider the state estimation problem that can be 
assumed as a target which is tracked through linear dynamic 
system equations and there is some nonlinearity in its 
measurement equation as follows   
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where the sampling time is considered to be sT 05.0= . 
)(w k  is the Gaussian vector noise process due to 

disturbances and modeling errors with covariance matrix 
I01.0wC = , )(kz  is the received observation data at time 

instant k, and )(kv  is additive measurement Gaussian noise 
with variance 100 . It is assumed that the noise vectors )(w k  
and )(kv  are zero mean independent noises. From the linear 

state equations, one may assume that 1x  and 2x can be 
interpreted as the target position and the target velocity 
respectively.  

100 Monte Carlo runs are carried out and the average is 
represented by the root mean square error (RMSE) criterion as 
a measure of the performance in this simulation: 

∑
=

−=
m

i

i
kkm

kRMSE
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2)ˆ(1)( xx  ,      10,...,2,1=k ; 100=m  

where i
kx̂  denotes the state estimate vector of the ith Monte 

Carlo run for the kth sample. It is also obvious that the target 
is tracked for 100 data samples.  

Figs. 1 and 2 show the corresponding state estimation error 
performances for four tracking methods, the new filter, UKF, 
IEKF, and EKF.  

 

 
Fig. 1 Position estimation RMSE (example 1) 

 
Because of the linearity behavior of the state dynamic 

equations, the error performances are all around 310−  and 
actually, these values are very low in comparison with the 
ones that would be obtained from other problems with some 
nonlinearity in state dynamics. It is because the conditions 
presented here are near to the optimality conditions of the 
Kalman filter, i.e. linearity of system equations with existence 
of additive Gaussian noises. 

 

 
Fig. 2 Velocity estimation RMSE (example 1) 

 
As it is seen from Fig. 1, although IEKF has gained the best 

error performance of all the other filters, the difference 
between the IEKF error performances and the one achieved 
from the new proposed filter is of negligible value and in 
brief, we may argue that they both have gained almost the 
same error performances. This argument seems to be true as it 
is illustrated in Fig. 2. Here, the new proposed filter has 
gained the best error performance of all the others if we are to 
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review the results in detail.  
 

Example 2: In this example, we are to examine the 
performance of the new proposed filter in dealing with the 
existence of some nonlinearity in both state dynamic 
equations and measurement equations. Consider the following 
state estimation problem: 
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where )(1 kw , )(2 kw and )(kv  are zero mean independent 

additive Gaussian noise processes with  
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Using the RMSE criterion as a measure of the performance, 
the superiority of the new iterated unscented Kalman filter is 
clearly represented in Fig. 3. 

As it is illustrated in Figs. 3 and 4, IEKF and EKF have 
achieved the worse error performances compared to the two 
other filters and the difference in results is significant. 

  

 
Fig. 3 RMSE in estimating 1x  (example 2) 

 
Fig. 4 RMSE in estimating 2x  (example 2) 

 

 
Fig. 4 RMSE in estimating 2x  (example 2) 

 
In general, the more severe the nonlinearity of the state 

dynamics is, the more error occurs in states estimation 
obtained by IEKF and EKF. The new iterated unscented 
Kalman filter (IUKF), and the UKF have shown better 
performances in presence of the severe nonlinearity in state 
equations. Considering Fig. 4, it is obvious that although 
IUKF converges more slowly than UKF, it achieves better 
steady state error performance.  

 
V. CONCLUSION 

A new iterated unscented Kalman filter (IUKF) has been 
proposed. The algorithm yields a filter which is more accurate 
than the unscented Kalman filter (UKF), iterated extended 
Kalman filter (IEKF), and extended Kalman filter (EKF) 
when there is severe nonlinearity in state dynamics and softer 
nonlinearity in measurement equations. Its performance and 
effectiveness is demonstrated by two numerical examples. The 
ease of implementation and more accurate estimation features 
of the new filter recommend its use over the EKF and IEKF in 
almost all nonlinear applications.   
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