
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

2008

Abstract—Testing is an activity that is required both in the

development and maintenance of the software development life cycle

in which Integration Testing is an important activity. Integration

testing is based on the specification and functionality of the software

and thus could be called black-box testing technique. The purpose of

integration testing is testing integration between software

components. In function or system testing, the concern is with overall

behavior and whether the software meets its functional specifications

or performance characteristics or how well the software and

hardware work together. This explains the importance and necessity

of IT for which the emphasis is on interactions between modules and

their interfaces. Software errors should be discovered early during

IT to reduce the costs of correction. This paper introduces a new type

of integration error, presenting an overview of Integration Testing

techniques with comparison of each technique and also identifying

which technique detects what type of error.

Keywords—Integration Error, Integration Error Types,

Integration Testing Techniques, Software Testing

I. INTRODUCTION

NTEGRATION Testing (IT) is an important part of the testing

process in software industry. In function or system testing,

the concern is with overall behavior and whether the software

meets its functional specifications or performance

characteristics or how well the software and hardware work

together. This explains the importance and necessity of IT for

which the emphasis is on interactions between modules and

their interfaces. Test cases are specifically selected to test

these interfaces rather than the functionality of the modules.

Software errors should be discovered early during IT to

reduce the costs of correction. Nowadays many organizations

have found more benefit in building teams of developers and

testers to perform IT [1]. It is aimed at exposing problems that

possibly arise when two components are combined. Typical

problems identified in IT are improper call or return

sequences, inconsistent data validation criteria and

inconsistent handling of data objects.

The goal [1] of IT is to put the units in their intended

environment and exercise their interactions as completely as

possible. Regardless of what approach is used for integration,

incremental or otherwise, at some point during development,

P. Prema (Research Scholar) is with the Department of Computer

Applications, National Institute of Technology, Tiruchirapalli, 620015, India

(e-mail: mrgprem@ yahoo.com).

B. Ramadoss (Professor) is with the Department of Computer Applications,

National Institute of Technology, Tiruchirapalli, 620015, India (e-mail:

brama@nitt.edu).

it is necessary to exercise the connections between units and it

is useful to have one or more quantitative criteria to evaluate

how well an interface has been exercised. Sometimes unit

testing techniques are applied during IT that suffers two

problems [2]. First, the unit testing techniques are usually too

expensive to be practically applied during integration, and

second, there is no reason to believe that they will find the

kinds of faults that appear during integration. Some software

faults cannot be detected during unit testing; these are often

faults in the interfaces between units. Thus, specific tests must

be designed to deduct integration faults. IT refers to testing

interfaces between components to assure that they have

consistent assumptions and communicate correctly [3].

As in [4] Chan and Chen presented an overview of research

work on IT for object-oriented programs. Jin, Offutt [5] had

applied coupling-based IT to moderately-sized software

systems. The results were compared with the category-

partition method on their effectiveness in detecting faults,

which found that the coupling-based testing technique

detected more faults with fewer test cases than category-

partition.

Haley and Zweben [6] had identified and classified IE into

two categories namely computational and domain IE. Later

on, Delamaro, Maldonado, and Mathur [1] classified IE into

three categories.

In section II a new type of integration error is introduced.

Section III presents an overview of IT techniques. Section IV

makes a comparison and discussion of IT techniques with

regard to types of error detected. Section V presents the

summary of this paper.

II. INTEGRATION ERROR

An error is a mistake of commission or omission that the

developer makes. An error causes a defect. In software

development one error may cause one or more defects in

requirements, designs, programs, or tests. When an incorrect

value is passed through a unit connection, then an Integration

Error (IE) occurs.

Based on Haley et.al., [6] and Delamaro et. Al., [1]

observations and further analysis, IE can be classified into

four categories, thus introducing a new type of IE namely the

Type 4 error. These categories are described as follows.

Consider P as a program and t as a test case for P. Suppose

that in P there are units A and B such that A makes calls to B.

Let SI(B) be the n-tuple of values passed to B and SO(B) the n-

tuple of values returned by B. When executing P on test case

A New Type of Integration Error and its

Influence on Integration Testing Techniques

P. Prema, and B. Ramadoss

I

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

2009

Fig. 1 Types of IE

 t, an IE is identified in a call to B from A when:

Type 1 error: Upon entering B, SI(B) does not have the

expected values and these values cause an erroneous

output (a failure) before returning from B.

Type 2 error: Upon entering B, SI(B) does not have the

expected values and these values lead to an incorrect

SO(B), which in turn causes an erroneous output (a

failure) after returning from B.

Type 3 error: Upon entering B, SI(B) has the expected

values, but incorrect values in SO(B) are produced inside

B and these incorrect values influence an erroneous

output (a failure) after returning from B.

Type 4 error: Upon entering B, SI(B) has the expected

values and these values cause an erroneous output (a

failure) before returning from B.

The above first three types do not specify the location of the

fault responsible for causing incorrect outputs, they simply

considers the existence of incorrect values entering or exiting

a unit call, which is not so in the Type 4 error. In Type 4 error,

when SI(B) has the expected values, a fault in B produces an

erroneous output before returning from B. In this case, there is

no error propagation through the connection A-B. This type of

error is expected and to have already been detected during unit

testing.

A Type 1 error occurs when an actual parameter or a global

variable is passed from the calling unit incorrectly to the

called unit and that unit produces an incorrect output. The

flow in this case is shown in Fig. 1a. In a Type 2 error, there is

an incorrect value entering the called unit and an incorrect

value leaving that unit. This leads to an incorrect output in the

calling unit (see Fig. 1b). A Type 3 error has one or more

incorrect values leaving the called unit. In this case, a unit is

called with correct input parameters but performs an incorrect

computation which results in an incorrect return value which

in turn leads to an incorrect output. This situation is illustrated

in Fig. 1c. Type 4 error occurs, when an actual parameter or a

global variable is passed from a calling unit to the called unit

and that unit produces an incorrect output. The flow in this

case is shown in Fig. 1d.

In Table I, the types of IE have been illustrated. In this if

SI(B) and SO(B) are correct, output (B) are correct. This

produces no error. If SI(B) is incorrect and SO(B) is correct

then output(B) is correct, this situation should not happen in

IT (shown in bold in Table I).

Finally, the n-tuples SI(B) and SO(B) depend partly on the

program language. For example, in C language a unit is a

function and n-tuples SI(B) and SO(B) can be defined as:

SI(B): The n-tuple of input values in a call to a

function B is determined by

- the input parameters used in the

function call and

- the global variables used in B

SO(B): The n-tuple of output values in a call to a

function B is determined by

- the output parameters used in the

function call,

- the global variables used in B, and

- the values returned by B

Incorrect

(c) Type 3 error

(b) Type 2 error

A

B

A

Incorrect

B

Correct

SI(B)Correct

SI(B)

Incorrect

SO(B)

Incorect

(a) Type 1 error

A

B

Incorrect

SI(B)

A

B

Incorrect

SO(B)Incorrect

SI(B)

(d) Type 4 error

Incorrect

Output

Output

Output

Output

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

2010

TABLE I

TYPES OF IE

S.No SI(B) SO(B) Output (B) Type of Error

1 C C C no error

2 C C I 4

3 C I I 4

4 C I C 3

5 I C C should not

happen

6 I C I 1

7 I I I 1

8 I I C 2

 C: Correct I: Incorrect

In addition, more than one IE can be associated with (or

caused by) a single fault. For example, consider a program P

with three units A, B, and C such that A calls B and, upon

returning from B, calls C. Suppose that in unit B sends an

incorrect value x to C i.e., x SO(B) which is a part of SI(C).

Suppose that due to x, C produces an incorrect output. Thus, a

fault in B produced a Type 1 error in the connection A-C and

a Type 3 error in the connection A-B (see Fig. 2a).

Similarly, in unit B return an incorrect value x SO(B)

which is a part of SI(C) and due to x, C returns an incorrect

output. Thus, a fault in B produced a Type 3 error in the

connection A-B and a Type 2 error in the connection A-C (see

Fig. 2b). If unit A sends an incorrect value x to B i.e., x

SI(B), unit B return an incorrect value x SO(B) which is a

part of SI(C). Suppose due to x, C produces an incorrect

output. Thus, a fault in B produced a Type 2 error in the

connection A-B and a Type 1 error in the connection A-C (see

Fig. 2c).

Similarly, if unit A send an incorrect value x to B i.e., x

SI(B), unit B return an incorrect value x SO(B) which is a

part of SI(C) and due to x, C returns an incorrect output. Thus,

a fault in B produced a Type 2 error in the connection A-B

and the connection A-C (see Fig. 2d). This single fault with

more IE is given in Table II. In all other situations, B and C

are independent. That is there is no relationship between B

and C.

From the above situations, it is concluded that, if the value

sent by A is correct or incorrect, it should produce only Type

1 or Type 2 error after returning from unit B. In this situation

the value send to A should be incorrect. If the error is of Type

1, then we can identify the error early. Because before

returning from that unit it shows the output as incorrect. But if

the error is Type 2, it is difficult to identify the error before

returning from that unit as only the errors can be identified

when the program executes the result.

 Fig. 2 Single fault with more types of IE

A

CB

A

CB

Incorrect

 SO(B)

Correct

 SI(B)

Correct

SI(B)

Incorrect

 SI(C)

A

B C

(b) Type 3, Type 2 Error

Incorrect

 SO(B)
Incorrect

 SI(C)

Incorrect

 SO(C)

Incorrect

 SI(C)Incorrect

 SO(B)
Incorrect

 SI(B)

(c) Type 2, Type 1 Error

(a) Type 3, Type 1 Error

A

CB

Incorrect

SI(B)

Incorrect

 SO(B) Incorrect

 SI(C)

Incorrect

 SO(C)

(d) Type 2 Error

Incorrect

Incorrect

Incorrect

Incorrect

Output

Output

Output

Output

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

2011

TABLE II

SINGLE FAULT WITH MORE TYPE OF IE

S.No SI(B) SO(B) Output (B) SI(C) SO(C) Output (C) Error Type

1 C I C I I I 3, 1

2 C I C I C I 3, 1

3 C I C I I C 3, 2

4 I I C I I I 2, 1

5 I I C I C I 2, 1

6 I I C I I C 2, 2

 C: Correct I: Incorrect

III. APPROACHES FOR IT

This section reviews the following IT techniques namely

Interface mutation based IT, coupling-based criteria for IT,

data flow based IT, and Classification-Tree based IT.

A. Interface Mutation (IM) Based IT

IM is a mutation-based interprocedural criterion. It is an

extension [1] of Mutation Testing (MT) and is applicable, by

design, to software systems composed of interaction units.

Both are powerful method for finding errors in software

programs [7] and IM is used to evaluate how well the

interactions between various units have been tested. The

development of IM was motivated by the need to assess test

sets for subsystems which come about due to the integration

of two or more units. Applying IM, the syntactic changes are

made only at the interface related points or connections

between units. An IM operator is intended to mutate the

program in ways analogous to the errors that may be

committed by a programmer during program development.

Once the mutants are generated, the next steps in IM are: to

execute the mutants, to evaluated test set adequacy, and to

decide mutant equivalence.

MT is complicated and time-consuming to perform without

an automated tool. UNIX sort [1] utility was seeded with

several integration errors and then tested with IM. This

approach is used to reducing the cost of MT. Alternative IM

criteria using different sets of IM operators were also

evaluated. While comparing the error revealing effectiveness

of these IM based test sets with same size randomly generated

test sets, in most cases IM-based test sets are superior. The

results suggest that IM offers viable test adequacy criteria for

use at the integration level. PROTEUM/IM tool supports the

application of IM criterion and exploration of alternative

mutation criteria [8] at the IT phase.

B. Coupling-Based Criteria (CBC) for IT

Coupling [2] is a testing of connections between

components during software integration. It provides the

summary information about design and structure of the

software and on the dataflow between the program units. Jin

and Offult [2] had classified coupling between two units into

twelve levels. These levels are not needed for testing, so it can

be combined and classified into four unordered types: call

coupling, parameter coupling, shared data coupling and

external device coupling. CBC for IT requires that the

program execute from definitions of actual parameters through

calls to uses of the formal parameters. Therefore different

coupling paths are defined. Coupling coverage analysis tool

[3] can be used to support integration testing of software

components.

Coupling [2] between two units measures the dependency

relations between two units by reflecting the interactions

between units. Faults in one unit may affect the coupled unit

[9]. Each connection between program units is covered. These

criteria have expected to be used both to guide the testers

during IT. Coupling coverage analysis tool [3] can be used to

support IT of software components, and satisfies part of the

USA’s Federal Aviation Authority’s (FAA) requirements for

structural coverage analysis of software.

C. Data-Flow (DF) based IT

DF testing [10, 11] has been used to test whether the

program variables are appropriately created and used. Def-use

pairs are determined by solving the data flow problem of

reaching definitions. The testing of large programs usually

takes place at several levels. The individual program units are

tested first in isolation during unit testing. Then, their

interfaces are tested during one or more integration steps [12].

Each step requires the computation of the def-use pairs that

cross the most recently integrated procedure interfaces to

establish the new test requirements. Exhaustively re-

computing reaching definitions and def-use a pair at the

beginning of each integration step is inefficient and may easily

result in overly high analysis times.

Duesterwald et al., [13] defined Demand-Driven Analyzer

(DDA) as a more efficient analysis approach for data flow

based IT. They compared its performance of (i) a traditional

exhaustive analyzer and (ii) an incremental analyzer. Demand-

driven algorithm is the context of bottom-up IT. In the

traditional analysis approach, the computation of data flow at

one point requires data flow computations at all program

points. It reduces the cost of IT through demand-driven

analysis design. Incremental analysis avoids re-computation

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

2012

C
T

-
 D

er
iv

e
te

st
 c

as
es

 f
ro

m
 t

h
e

sp

ec
if

ic
at

io
n

-
B

as
ed

 o
n

 t
h

e
id

ea
 o

f

p
ar

ti
ti

o
n

te

st
in

g

-
B

la
ck

-b
o

x
 t

es
ti

n
g

-
C

la
ss

if
ic

at
io

n
 i

s
th

e
m

aj
o

r

en

ti
ty

 o
f

th
e

sy
st

em
 a

n
d

 s
u

b

en

ti
ty

 i
s

th
e

cl
as

s

-
Id

en
ti

fy
 c

la
ss

if
ic

at
io

n
s

-
d
ec

o
m

p
o

se
 t

h
em

 i
n
to

eq

u
iv

al
en

ce
 c

la
ss

es

-c
o

n
st

ru
ct

 t
h

e
cl

as
si

fi
ca

ti
o

n
-

tr
ee

-
g
en

er
at

e
te

st
 c

as
es

 f
ro

m
 t

h
e

C

la
ss

if
ic

at
io

n
-t

re
e

-
C

T
E

-
te

st
 d

at
a

-
te

st
ed

 d
at

a

-
el

im
in

at
e

so
m

e
in

v
al

id
 t

es
t

ca
se

s

-
T

o
 r

ed
u

ce
 n

u
m

b
er

 o
f

te
st

ca
se

s

-
H

ig
h

 c
h

an
ce

 –
 1

,
3

-
L

o
w

 c
h

an
ce

 –
 2

,
4

C
B

C

-
p

ro
v

id
e

in
fo

rm
at

io
n

 a
b

o
u

t
d

es
ig

n

an

d
 s

tr
u

ct
u

re
 o

f
th

e
so

ft
w

ar
e

-
g

o
al

 i
s

te
st

in
g
 o

f
co

n
n

ec
ti

o
n

s

b

et
w

ee
n

 c
o

m
p

o
n

en
ts

 d
u

ri
n

g

so

ft
w

ar
e

in
te

g
ra

ti
o

n

-
b

la
ck

-b
o

x
 t

es
ti

n
g

 t
ec

h
n

iq
u

e

-
d

ec
id

e
w

h
et

h
er

 s
o

ft
w

ar
e

h
as

 b
ee

n

ad

eq
u

at
el

y
 t

es
te

d
 f

o
r

a
sp

ec
if

ic

te

st
in

g
 c

ri
te

ri
a

-
m

ap
 t

h
e

p
ar

am
et

er
 v

ar
ia

b
le

s

b

et
w

ee
n

 u
n

it
s

-
ap

p
ly

 d
at

a
fl

o
w

 a
n

al
y

si
s

to
 e

ac
h

u

n
it

-
fi

n
d

 t
h

e
re

q
u

ir
em

en
ts

 o
f

te
st

ca
se

s

an

d
 u

si
n

g
 d

y
n

am
ic

 a
n

al
y

si
s

g

en
er

at
e

te
st

 c
as

es

-
C

o
u

p
li

n
g

 c
o

v
er

ag
e

an
al

y
si

s
to

o
l

-
p

ar
am

et
er

s/
 a

rg
u

m
en

ts
/

v
ar

ia
b

le
s,

al

l-
co

u
p

li
n

g
-u

se
s

cr
it

er
ia

,
ch

o
ic

es

-
te

st
 s

et
s,

 t
es

te
d

 d
at

a

-
d

et
ec

t
m

o
re

 f
au

lt
s

w
it

h
 f

ew
er

 t
es

t

ca

se
s,

-
h

el
p

th

e
te

st
er

s
to

 f
in

d
 a

 r
at

io
n

al
,

m

at
h

em
at

ic
al

 –
 b

as
ed

 p
o

in
t

at

w

h
ic

h
 t

o
 s

to
p

 t
es

ti
n

g

-
fa

u
lt

s
in

 o
n

e
u

n
it

 m
ay

 a
ff

ec
t

th
e

co
u

p
le

d
 u

n
it

-
H

ig
h

 c
h

an
ce

 –
 1

,
3

,
4

-
L

o
w

 c
h

an
ce

 –

2

D
F

-
st

at
ic

 a
n

al
y

si
s

fo
r

co
m

p
u

ti
n

g

th
e

d
ef

-

u

se
 p

ai
rs

-
u

se
d

 t
o
 t

es
t

w
h
et

h
er

 t
h

e

p
ro

g
ra

m

v

ar
ia

b
le

s
ar

e
ap

p
ro

p
ri

at
el

y

cr
ea

te
d

 a
n

d

u

se
d

-
w

h
it

e-
b

o
x

 t
es

ti
n

g
 t

ec
h
n
iq

u
e

-
te

st
 t

h
e

in
d

iv
id

u
al

 p
ro

g
ra

m

u
n
it

s

-
d

u
ri

n
g

 i
n

te
g

ra
ti

o
n

 s
te

p
 t

es
t

th
e

in

te
rf

ac
es

-
se

le
ct

 t
h

e
se

ts
 o

f
d

ef
-u

se
 p

ai
rs

in
 a

p

ro
g

ra
m

-
cr

ea
te

 t
es

t
re

q
u

ir
em

en
ts

-
P

ro
to

ty
p

e
te

st
in

g
 t

o
o

l

-
P

ro
g

ra
m

,
D

ef
-u

se
 p

ai
rs

,
T

es
t

d
at

a
ex

ec
u

ti
o

n
 p

at
h

-
 t

es
t

ca
se

,
d
ef

-u
se

 p
ai

rs
,

te
st

re

q
u

ir
em

en
ts

-
it

 i
s

fa
st

er
 t

h
an

 e
x

h
au

st
iv

e

an
al

y
si

s

-
re

d
u

ce
 t

h
e

co
st

,
av

o
id

 t
h

e
sh

o
rt

co
m

in
g

s
o

f
p

re
v

io
u

sl
y

 a
n

al
y

si
s

ap
p

ro
ac

h
es

-
H

ig
h

 c
h

an
ce

 –
 1

,
2

-
L

o
w

 c
h

an
ce

 –
 3

,
4

IM

-
 W

h
it

e
b

o
x

 a
n

d
 e

rr
o

r
b

as
ed

 t
es

ti
n

g

 t

ec
h
n
iq

u
e

-
IM

 i
s

an
 e

x
te

n
si

o
n
 o

f
M

T

-
In

 M
T

 o
n
e

ta
k
es

 a
 p

ro
g
ra

m
 a

n
d

cr

ea
te

 m
an

y
 m

u
ta

n
ts

 b
y

 a
p

p
ly

in
g

si

m
p

le
 c

h
an

g
es

 t
o

 t
h

e
p

ro
g

ra
m

-
IM

 h
as

 b
ee

n
 p

ro
p

o
se

d
 a

s
a

cr
it

er
ia

fo

r
th

e
as

se
ss

m
en

t
o

f
th

e
ad

eq
u

ac
y

o

f
te

st
s

g
en

er
at

ed
 d

u
ri

n
g

 I
T

-
T

o
 s

el
ec

t
an

d
 g

en
er

at
e

a
se

t
o
f

m

u
ta

n
ts

-
T

o
 e

x
ec

u
te

 t
h

e
m

u
ta

n
ts

-
T

o
 e

v
al

u
at

e
te

st
 s

et
 a

d
eq

u
ac

y

-
T

o
 d

ec
id

e
m

u
ta

n
t

eq
u

iv
al

en
ce

-
P

R
O

T
E

U
M

/I
M

-
P

ro
g

ra
m

,
m

u
ta

ti
o

n
 o

p
er

at
o

rs
,

te
st

d

at
a,

 t
es

t
ca

se
s,

 v
ar

ia
b

le
s

-
M

u
ta

n
ts

,
T

es
te

d
 d

at
a,

 T
es

t
se

ts
,

M

u
ta

ti
o

n
 s

co
re

-
co

m
p

ar
e

th
e

er
ro

r
re

v
ea

li
n
g

 e
ff

ec
ti

v
en

es
s

o
f

IM
 b

as
ed

 t
es

t
se

ts

w
it

h
 s

am
e

si
ze

 r
an

d
o

m
ly

 g
en

er
at

ed

te
st

 s
et

s,
 i

n
 m

o
st

 c
as

es
 I

M
 b

as
ed

 t
es

t

se
ts

 a
re

 s
u

p
er

io
r

-
 R

ed
u

ce
 c

o
st

-
H

ig
h

 c
h

an
ce

 –
 1

,
2

,
3

-
L

o
w

 c
h

an
ce

 –
 4

O
v

er
v

ie
w

T
es

t
P

ro
ce

d
u

re

S
u

p
p

o
rt

 T
o
o
l

In
p

u
t

O
u

tp
u

t

E
ff

e
ct

iv
en

es
s

E
ff

o
r
t

/
C

o
st

T
y
p

es
 o

f
E

rr
o
r

D
et

ec
te

d

T
A

B
L

E
II

I

C
O

M
P

A
R

IS
O

N
S

 A
N

D
 D

IS
C

U
S

S
IO

N
S

 O
F

IT
T

E
C

H
N

IQ
U

E
S

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

2013

by performing the appropriate updates of a previously

computed solution and also used in IT to extend the solution

after each integration step with newly established reaching

definition. It avoids the shortcomings of previously analysis

approaches. Exhaustive information propagation is entirely

avoided and replaced with a goal-oriented search. Unlike

incremental analysis, using DDA for IT does not require the

storage of reaching definition solutions between integration

steps.

D. Classification-Tree (CT) based IT

In CT Method, disjoint and complete classifications are

formed and represented as a tree. It is an extension of

Category Partition method [14, 15] and both have been

proposed for deriving test cases from the specification. These

two methods are based on the idea of partition testing [16, 17].

The tree is used to derive test cases from the specification.

CTM is based on the idea of partition testing. Classification is

the major entity (main problem) of the system. Classification

contains a set of classes that share a common structure and

common behavior. The sub entity of the classification is the

class, which represents some specific input value. Each class

may be subdivided into subclasses. The terminal class (class

without any subclasses) includes input data that can be used as

test input. Classification can be used to identify the overall

idea of the system. A test method [18] is used to identify test

cases from the combination of system specification and COTS

specification based on the CTM.

To identifying test cases [18], first form a classification-tree

based on the system specification and then form another

classification-tree based on the COTS specification. By

overlapping these two classifications, develop a combined

classification tree, which provides meaningful terminal classes

that can be used for identifying test cases. This test method

can generate both valid and invalid test cases. The advantage

of CTM is that, by organizing classifications and classes in the

form of a tree and their hierarchical relations are made more

explicit. Classification Tree Editor (CTE) [19] is used to

support this CTM. It enables the tester to work interactively

on the tree.

IV. COMPARISONS AND DISCUSSIONS OF IT TECHNIQUES

This section compares the IT techniques with their

overview, test procedure, support tool, input, output,

effectiveness, effort/cost, and types of error detected (see

Table III). This table also introduces, which IT technique

detects what type of error with their performance. In Table III,

CT has a higher chance to detect Type 1 and Type 3 error than

Type 2 or Type 4 error. For example, if the input has the

correct value but it produces an incorrect output then it gives

an invalid test case. This type of error occurs many times and

it is easy to identify so there is a high chance for detecting

Type 4 error.

Similarly, in CBC, there is a higher chance to detect Type

1, Type 3, and Type 4 errors than Type 2 error. In DFT there

is a higher change to detect Type 1 and Type 2 errors than

Type 3 or Type 4 error. In IM there is a higher chance to

detect Type 1, Type 2 and Type 3 errors than Type 4 error.

From these comparisons and discussions the testers can easily

identify which technique is useful for their need to identify

faults early.

V. CONCLUSION

This paper introduced a new type of IE, namely the Type 4

error. This Type 4 error can specify the location of the fault

which is responsible for causing incorrect outputs. This paper

proposes an overview of IT techniques in the comparisons and

discussions of which technique detect what type of error. This

paper is very useful to practitioners who are performing

integration testing on software development. Future work

includes evaluation of the relative strengths and weakness of

the IT techniques with an example based on type of IE

detected.

REFERENCES

[1] M. E. Delamaro, J. C. Maldonado, and A. P. Mathur, “Interface

mutation: an approach for integration testing,” IEEE Transactions on

Software Engineering, vol.27, no. 3, pp. 228-247, March 2001.

[2] Z. Jin, and J. Offutt. “Coupling-based criteria for integration testing,”

The Journal of Software Testing, Verification, and Reliability, vol.8, no.

3, pp. 133-154, September 1998.

[3] A. J. Offutt, A. Abdurazik, and R. T. Alexander. “An analysis tool for

coupling-based integration testing,” The Sixth IEEE International

Conference on Engineering of Complex Computer Systems (ICECCS

’00), Japan, September 2000, pp. 172–178.

[4] W. K. Chan, T.Y. Chen, and T. H. Tse, “An overview of integration

testing techniques for object-oriented programs,” Proceedings of the 2nd

ACIS Annual International Conference on Computer and Information

Science (ICIS), Michigan, 2002.

[5] Z. Jin, A. Offutt, “Integration testing based on software couplings,”

Proceedings of the Tenth Annual Conference on Computer Assurance,

USA, June 1995, pp. 13-23.

[6] A. Haley and S. Zweben, “Development and application of a white box

approach to integration testing,” The Journal of Systems and Software,

vol.4, pp. 309-315, 1984.

[7] R.A. DeMillo, R.J. Lipton, and F.G. Sayward, “Hints on test data

selection: help for the practicing programmer,” Computer, vol.11, no.4,

April 1978.

[8] A.J. Offutt, G. Rothermel, and C. Zapf, “An experimental evaluation of

selective mutation,” Proceedings of the 15th International Conference

on Software Engineering, May 1993, pp. 100-107.

[9] L.L. Constantine, and E. Yourdon, Structural Design. NJ: Prentice-Hall,

Englewood Cliffs, 1979.

[10] S. Rapps, and E. Weyuker. “Selecting software test data using data flow

information,” IEEE Transactions on Software Engineering, vol.11, no.4,

pp. 367-375, April 1985.

[11] P.G. Frankl and E.J. Weyuker. “An applicable family of data flow

testing criteria,” IEEE Transactions on Software Engineering, vol. 14,

no.10, pp. 1483-1498, October 1988.

[12] M. Harrold, and M. Soffa, “Interprocedural data flow testing,”

Proceedings of the ACM SIGSOFT '89 Third Symposium on Software

Testing, Analysis, and Verification, vol.14, no.8, November 1989.

[13] E. Duesterwald, R. Gupta, and M. L. Soffa, “A demand-driven analyzer

data flow testing at the integration level,” International Conference on

Software Engineering, 1996, pp. 575-584.

[14] M. Grochtmann, and K. Grimm, “Classification trees for partition

testing,” Software Testing, Verification & Reliability, John Wiley &

Sons, Ltd, vol.3, no.2, pp. 63-82, 1993.

[15] D. J. Richardson, and L. A. Clarke, “Partition analysis: a method

combining testing and verification,” IEEE Transactions on Software

Engineering, vol. 11, no. 12, pp. 1477-1490, 1985.

[16] M. J. Balcer, W. Hasling, and T. Ostrand, “Automatic generation of test

scripts from formal test specifications,” Proceedings of the 3rd ACM

Annual Symposium on Software Testing, Analysis and Verification,

ACM Press, IEEE-CS, SIGSOFT, 1989, pp. 210-218.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

2014

[17] T. J. Ostrand, and M. J, Balcer, “The category-partition method for

specifying and generating functional tests,” Communications of the

ACM, vol.31, no. 6, pp. 676-686, 1988.

[18] H. Leung, and P. Paramasivam, “Testing COTS with classification-tree

method,” IASTED International Conference on Software Engineering

and Applications (SEA), ACTA Press, L.A., U.S.A, November 2003, pp.

270-276.

[19] H. Singh, M. Conrad, and S. Sadeghipour, “Test data design based on Z

and the classification-tree method,” Proceedings of First IEEE

International Conference on Formal Engineering Methods, 1997.

Paramasivam Prema received her M.C.A degree from The University of

Madras in the year 1999. She has more than seven years of experience in

academic / research and industry. She is currently doing Ph.D in department of

Computer Applications, National Institute of Technology, Tiruchirapalli. Her

current research area includes Software Testing and Software Quality.

Balakrishnan Ramadoss received the M.Tech degree in Computer science

and Engineering in 1995 from the Indian Institute of Technology, Delhi. The

Ph.D degree in Applied Mathematics in 1983 from Indian Institute of

Technology, Powai. Currently he is working as a Professor of Computer

Applications at National Institute of Technology, Tiruchirapalli. His current

research area includes: Software Testing Methodologies, Software Metrics,

Data Warehouse – EAI, Data Mining, WBL, and XML. He is a recipient of

Best Teacher Award at National Institute of Technology, Tiruchirapalli,

during 2006-2007. He is a Life Member (LM) of ISTE, New Delhi, Life

Member (LM), Computer Society of India.

