International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:2, No:6, 2008

A New Type of Integration Error and its
Influence on Integration Testing Techniques

P. Prema, and B. Ramadoss

Abstract—Testing is an activity that is required both in the
development and maintenance of the software development life cycle
in which Integration Testing is an important activity. Integration
testing is based on the specification and functionality of the software
and thus could be called black-box testing technique. The purpose of
integration testing is testing integration between software
components. In function or system testing, the concern is with overall
behavior and whether the software meets its functional specifications
or performance characteristics or how well the software and
hardware work together. This explains the importance and necessity
of IT for which the emphasis is on interactions between modules and
their interfaces. Software errors should be discovered early during
IT to reduce the costs of correction. This paper introduces a new type
of integration error, presenting an overview of Integration Testing
techniques with comparison of each technique and also identifying
which technique detects what type of error.

Keywords—Integration ~ Error, Integration Error
Integration Testing Techniques, Software Testing

Types,

I. INTRODUCTION

INTEGRATION Testing (IT) is an important part of the testing
process in software industry. In function or system testing,
the concern is with overall behavior and whether the software
meets its functional specifications or performance
characteristics or how well the software and hardware work
together. This explains the importance and necessity of IT for
which the emphasis is on interactions between modules and
their interfaces. Test cases are specifically selected to test
these interfaces rather than the functionality of the modules.
Software errors should be discovered early during IT to
reduce the costs of correction. Nowadays many organizations
have found more benefit in building teams of developers and
testers to perform IT [1]. It is aimed at exposing problems that
possibly arise when two components are combined. Typical
problems identified in IT are improper call or return
sequences, inconsistent data validation criteria and
inconsistent handling of data objects.

The goal [1] of IT is to put the units in their intended
environment and exercise their interactions as completely as
possible. Regardless of what approach is used for integration,
incremental or otherwise, at some point during development,

P. Prema (Research Scholar) is with the Department of Computer
Applications, National Institute of Technology, Tiruchirapalli, 620015, India
(e-mail: mrgprem@ yahoo.com).

B. Ramadoss (Professor) is with the Department of Computer Applications,
National Institute of Technology, Tiruchirapalli, 620015, India (e-mail:
brama@nitt.edu).

it is necessary to exercise the connections between units and it
is useful to have one or more quantitative criteria to evaluate
how well an interface has been exercised. Sometimes unit
testing techniques are applied during IT that suffers two
problems [2]. First, the unit testing techniques are usually too
expensive to be practically applied during integration, and
second, there is no reason to believe that they will find the
kinds of faults that appear during integration. Some software
faults cannot be detected during unit testing; these are often
faults in the interfaces between units. Thus, specific tests must
be designed to deduct integration faults. IT refers to testing
interfaces between components to assure that they have
consistent assumptions and communicate correctly [3].

As in [4] Chan and Chen presented an overview of research
work on IT for object-oriented programs. Jin, Offutt [5] had
applied coupling-based IT to moderately-sized software
systems. The results were compared with the category-
partition method on their effectiveness in detecting faults,
which found that the coupling-based testing technique
detected more faults with fewer test cases than category-
partition.

Haley and Zweben [6] had identified and classified IE into
two categories namely computational and domain IE. Later
on, Delamaro, Maldonado, and Mathur [1] classified IE into
three categories.

In section II a new type of integration error is introduced.
Section III presents an overview of IT techniques. Section IV
makes a comparison and discussion of IT techniques with
regard to types of error detected. Section V presents the
summary of this paper.

II. INTEGRATION ERROR

An error is a mistake of commission or omission that the
developer makes. An error causes a defect. In software
development one error may cause one or more defects in
requirements, designs, programs, or tests. When an incorrect
value is passed through a unit connection, then an Integration
Error (IE) occurs.

Based on Haley etal, [6] and Delamaro et. Al., [1]
observations and further analysis, IE can be classified into
four categories, thus introducing a new type of IE namely the
Type 4 error. These categories are described as follows.
Consider P as a program and t as a test case for P. Suppose
that in P there are units A and B such that A makes calls to B.
Let Si(B) be the n-tuple of values passed to B and So(B) the n-
tuple of values returned by B. When executing P on test case

2008

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:2, No:6, 2008

Incorrect
Si(B)

Output

(a) Type 1 error

Incorrect
--------- >

COHC\ Incorrect
Si(B) So(B)

(c) Type 3 error

Incorrect
Incorrect So(B)
Si(B)

(b) Type 2 error

(d) Type 4 error

Fig. 1 Types of IE

t, an IE is identified in a call to B from A when:
Type 1 error: Upon entering B, S;(B) does not have the
expected values and these values cause an erroneous
output (a failure) before returning from B.

Type 2 error: Upon entering B, S;(B) does not have the
expected values and these values lead to an incorrect
So(B), which in turn causes an erroneous output (a
failure) after returning from B.

Type 3 error: Upon entering B, Si(B) has the expected
values, but incorrect values in So(B) are produced inside
B and these incorrect values influence an erroneous
output (a failure) after returning from B.

Type 4 error: Upon entering B, Si(B) has the expected
values and these values cause an erroneous output (a
failure) before returning from B.

The above first three types do not specify the location of the
fault responsible for causing incorrect outputs, they simply
considers the existence of incorrect values entering or exiting
a unit call, which is not so in the Type 4 error. In Type 4 error,
when Si(B) has the expected values, a fault in B produces an
erroneous output before returning from B. In this case, there is
no error propagation through the connection A-B. This type of
error is expected and to have already been detected during unit
testing.

A Type 1 error occurs when an actual parameter or a global
variable is passed from the calling unit incorrectly to the
called unit and that unit produces an incorrect output. The
flow in this case is shown in Fig. la. In a Type 2 error, there is
an incorrect value entering the called unit and an incorrect

value leaving that unit. This leads to an incorrect output in the
calling unit (see Fig. 1b). A Type 3 error has one or more
incorrect values leaving the called unit. In this case, a unit is
called with correct input parameters but performs an incorrect
computation which results in an incorrect return value which
in turn leads to an incorrect output. This situation is illustrated
in Fig. 1c. Type 4 error occurs, when an actual parameter or a
global variable is passed from a calling unit to the called unit
and that unit produces an incorrect output. The flow in this
case is shown in Fig. 1d.

In Table I, the types of IE have been illustrated. In this if
Si(B) and Sp(B) are correct, output (B) are correct. This
produces no error. If Sy(B) is incorrect and So(B) is correct
then output(B) is correct, this situation should not happen in
IT (shown in bold in Table I).

Finally, the n-tuples S;(B) and So(B) depend partly on the
program language. For example, in C language a unit is a
function and n-tuples S;(B) and So(B) can be defined as:

= Si(B): The n-tuple of input values in a call to a
function B is determined by
- the input parameters used in the
function call and
- the global variables used in B

= So(B): The n-tuple of output values in a call to a
function B is determined by
- the output parameters used in the
function call,
- the global variables used in B, and
- the values returned by B

2009

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:2, No:6, 2008

TABLEI
TYPES OF IE
SNo S(B) So(B) Output (B) Type of Error
1 C C C no error
2 C C I 4
3 C 1 I 4
4 C 1 C 3
5 I C C should not
happen
6 I C I 1
7 I 1 I 1
8 I 1 C 2

C: Correct I: Incorrect

In addition, more than one IE can be associated with (or
caused by) a single fault. For example, consider a program P
with three units A, B, and C such that A calls B and, upon
returning from B, calls C. Suppose that in unit B sends an
incorrect value x to C i.e., x € So(B) which is a part of S;(C).
Suppose that due to x, C produces an incorrect output. Thus, a
fault in B produced a Type 1 error in the connection A-C and
a Type 3 error in the connection A-B (see Fig. 2a).

Similarly, in unit B return an incorrect value x € So(B)
which is a part of S(C) and due to x, C returns an incorrect
output. Thus, a fault in B produced a Type 3 error in the

Incorrect

Correct
Si(C)

Si(B)
Incorrect
So(B)

c. .| Incorrect__
Output
(a) Type 3, Type 1 Error
I Incorrect
ncorrect S(C)
So(B)

Incorrect
Si(B)

(c) Type 2, Type 1 Error

connection A-B and a Type 2 error in the connection A-C (see
Fig. 2b). If unit A sends an incorrect value x to B ie., x €
Si(B), unit B return an incorrect value x € So(B) which is a
part of Sy(C). Suppose due to x, C produces an incorrect
output. Thus, a fault in B produced a Type 2 error in the
connection A-B and a Type 1 error in the connection A-C (see
Fig. 2¢).

Similarly, if unit A send an incorrect value x to B i.e., x €
Si(B), unit B return an incorrect value x € So(B) which is a
part of S;(C) and due to x, C returns an incorrect output. Thus,
a fault in B produced a Type 2 error in the connection A-B
and the connection A-C (see Fig. 2d). This single fault with
more IE is given in Table II. In all other situations, B and C
are independent. That is there is no relationship between B
and C.

From the above situations, it is concluded that, if the value
sent by A is correct or incorrect, it should produce only Type
1 or Type 2 error after returning from unit B. In this situation
the value send to A should be incorrect. If the error is of Type
1, then we can identify the error early. Because before
returning from that unit it shows the output as incorrect. But if
the error is Type 2, it is difficult to identify the error before
returning from that unit as only the errors can be identified
when the program executes the result.

Incorrect
So(C)

Incorrect
So(B)

Si(B)

(b) Type 3, Type 2 Error
Incorrect

So(©)

Incorrect

S«(B)

(d) Type 2 Error

Fig. 2 Single fault with more types of IE

2010

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:2, No:6, 2008

TABLEII
SINGLE FAULT WITH MORE TYPE OF IE
S.No Si(B) So(B) Output (B) Si(C) So(C) Output (C) Error Type
1 C 1 C I I I 3,1
2 C I C 1 C I 3,1
3 C I C I I C 3,2
4 I I C I I I 2,1
5 I I C I C I 2,1
6 I I C 1 1 C 2,2

C: Correct I: Incorrect

III. APPROACHES FOR IT

This section reviews the following IT techniques namely
Interface mutation based IT, coupling-based criteria for IT,
data flow based IT, and Classification-Tree based IT.

A. Interface Mutation (IM) Based IT

IM is a mutation-based interprocedural criterion. It is an
extension [1] of Mutation Testing (MT) and is applicable, by
design, to software systems composed of interaction units.
Both are powerful method for finding errors in software
programs [7] and IM is used to evaluate how well the
interactions between various units have been tested. The
development of IM was motivated by the need to assess test
sets for subsystems which come about due to the integration
of two or more units. Applying IM, the syntactic changes are
made only at the interface related points or connections
between units. An IM operator is intended to mutate the
program in ways analogous to the errors that may be
committed by a programmer during program development.
Once the mutants are generated, the next steps in IM are: to
execute the mutants, to evaluated test set adequacy, and to
decide mutant equivalence.

MT is complicated and time-consuming to perform without
an automated tool. UNIX sort [1] utility was seeded with
several integration errors and then tested with IM. This
approach is used to reducing the cost of MT. Alternative IM
criteria using different sets of IM operators were also
evaluated. While comparing the error revealing effectiveness
of these IM based test sets with same size randomly generated
test sets, in most cases IM-based test sets are superior. The
results suggest that IM offers viable test adequacy criteria for
use at the integration level. PROTEUM/IM tool supports the
application of IM criterion and exploration of alternative
mutation criteria [8] at the IT phase.

B. Coupling-Based Criteria (CBC) for IT

Coupling [2] is a testing of connections between
components during software integration. It provides the
summary information about design and structure of the
software and on the dataflow between the program units. Jin
and Offult [2] had classified coupling between two units into
twelve levels. These levels are not needed for testing, so it can
be combined and classified into four unordered types: call
coupling, parameter coupling, shared data coupling and

external device coupling. CBC for IT requires that the
program execute from definitions of actual parameters through
calls to uses of the formal parameters. Therefore different
coupling paths are defined. Coupling coverage analysis tool
[3] can be used to support integration testing of software
components.

Coupling [2] between two units measures the dependency
relations between two units by reflecting the interactions
between units. Faults in one unit may affect the coupled unit
[9]. Each connection between program units is covered. These
criteria have expected to be used both to guide the testers
during IT. Coupling coverage analysis tool [3] can be used to
support IT of software components, and satisfies part of the
USA’s Federal Aviation Authority’s (FAA) requirements for
structural coverage analysis of software.

C. Data-Flow (DF) based IT

DF testing [10, 11] has been used to test whether the
program variables are appropriately created and used. Def-use
pairs are determined by solving the data flow problem of
reaching definitions. The testing of large programs usually
takes place at several levels. The individual program units are
tested first in isolation during unit testing. Then, their
interfaces are tested during one or more integration steps [12].
Each step requires the computation of the def-use pairs that
cross the most recently integrated procedure interfaces to
establish the new test requirements. Exhaustively re-
computing reaching definitions and def-use a pair at the
beginning of each integration step is inefficient and may easily
result in overly high analysis times.

Duesterwald et al., [13] defined Demand-Driven Analyzer
(DDA) as a more efficient analysis approach for data flow
based IT. They compared its performance of (i) a traditional
exhaustive analyzer and (ii) an incremental analyzer. Demand-
driven algorithm is the context of bottom-up IT. In the
traditional analysis approach, the computation of data flow at
one point requires data flow computations at all program
points. It reduces the cost of IT through demand-driven
analysis design. Incremental analysis avoids re-computation

2011

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942
Vol:2, No:6, 2008

¥ 7 — 9oueyd MO - 7 —9dueyd MO - ¥ ‘¢ —ooueyd MO - ¥ — 9oUBYd MO - PadNRQ
€ ‘1 —9oueyo Y31y - ¥ € ‘T —2oueyd y3Iy - T ‘1 —9ooueyd Y3y - € ‘7 ‘1 — 2oueyd Y31y - Joxxyg yo sadA
sayoeoxdde
Sased jun pa[dnoo sisA[eue A[snoraaid jo s3uroo
159} JO IOqUINU 99NPAL O, -) 109JJ ABWU JIUN QUO UI S)[NeJ - | 1I0YS OU} PIOAR SO0 Y} 9INPAI - 1500 2onpay - 150D / 31013
Sunsay dois 03 yorym Jouradns are s)os
1e Jurod peseq — [eoneWdY)EW 159} Paseq JA] S9SeO Jsoul Ul ‘S)as 359}
‘[euonjel € pulj 03 s10)s9)) djoy - PareIouds AJWopue 9ZIS SWeS YIm
SosED ‘sosB sisATeue S195 159} Paseq JA] JO SSOUOANIIJJO
159] PI[BAUI QWIOS 9JBUIWI]d - | 1S9) JOMIJ UM S}NeJ dIOW J09)ap - 9ATISNEYXD UBY[) IOISe] SI J1 - SureaAas 10119 oy} dredwoo - SSIUIANIYH
sjuawaIInbax 9109s uoneIN
eJep pajsa) - BJep PoIs) ‘s)as 189 - 1593 ‘sared osn-Jop ‘osed 159y - ‘5195 1S9 [, “e1ep PoISa, ‘SyuBINA - ndinQ
S901019 ‘eLIgYIY sasn-Surjdnod-[re yred uonnooxa eyep SO[qELIBA ‘SOSEO 1S9) ‘Bjep
BIEp 1S9} - | ‘s9[qereA /syuowngie /siojourered - 1597, ‘sared asn-joq ‘wrerdoid - 159} ‘s10jerodo uonenw ‘werdord - nduy
qLD - 1003 sisAJeue 9310409 Furjdno) - 1003 3unsay adKy0j01(- INI/INNF1L0Yd - 1001, 310ddng

2213-UONBIIJISSE]D)

o) WO} SSBD 159) AJeIoUaT -

Qa1

-UOTJBOIJISSE[O AT} JONISU0O-
Sasse[d oous[eAmba

ojur woy) asodwrooap -

SUOT)EOIJISSL[O AJIIUap] -

SOSBD 159 9JBIOUST
sIsAJeue orweukp 3uisn pue
S9sBD
159 Jo syuowraIrnbar oy puyy -
jun
[oea 03 SIsA[eue mo[J eiep Ajdde -
SHUN U9IM}9q
so[qereA 1ojouwrered o) deur -

syuowaIInbal 1s93 918AI0 -
wesdoxd

' Ul

sared asn-Jop Jo s)os Y} 30998 -
SooEJIoUL

93 3593 dogs uorjesdojur Jurmp -

syun

weidoid [enpiarpur oy 593 -

doud[eAmba JueINW APIOAP O -

Koenbope jos 1591 9jenjeAd O], -

SJUBINUW 91} 9JNIIXS O], -
sjuenw

JO 39S © 9JeI0UudT pue 109]9S 0], -

anpadod IS L

SSe[o oy} ST AIud
qns pue wa)sAs oy} Jo Anud
Jolew ay) SI UONELOIJISSE])) -
Sunse) xog-yoelq -
3unso)
uonned
JO ©OPI 9y} UO paseq -
uoneoy13ds
oU} WOIJ SISBI J59) AL -

BLISNIO FU1ISo)

o1j10ads © 10J pase) A[arenbope
Ud9q Sy AIBMIJOS IAIYM IPIOJP -
anbruyo2) Sursa) xoq-yoe[q -

uoneI3oul a1em)jos

Suump syusuoduwod usomiaq
SUOI}09UU0D JO FUNS} SI [BO3T -

QIBMIJOS O} JO OINJONI)S pue
u31sop Jnoqe uorewriojur apraoid -

anbruyod) Surnse) xoq-oyym -
pasn

pue pajearo
A1orerdoidde are sajqerrea

werdoxd

oy} J9YIoyM JS9) 0} pasn -
sired asn

Jopay)

Sunndwoo 10§ s1sA[eue onye)s -

1] Sump poje1dudsd s)so) Jo
Koenbape 2y Jo JUSWISSISSE A} 10J
BLIOLIO B sk pasodoid usaq sey JA] -

weidoxd oy 03 saueyd odwrs
SuiA[dde Aq syueinw Auew 9jeaId
pue werdoxd e saye) duo TN U] -
LA JO UOISU9IXd ue SI JA] -
onbruyo9)
3uns9) paseq 0110 PUB X0q NYM -

MIIAIIAQD

LD

24D

d4d

I

SHNOINHOAL LI 40 SNOISSNISI(J ANV SNOSIIVANOD)

nra1gavy

2012

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:2, No:6, 2008

by performing the appropriate updates of a previously
computed solution and also used in IT to extend the solution
after each integration step with newly established reaching
definition. It avoids the shortcomings of previously analysis
approaches. Exhaustive information propagation is entirely
avoided and replaced with a goal-oriented search. Unlike
incremental analysis, using DDA for IT does not require the
storage of reaching definition solutions between integration
steps.

D. Classification-Tree (CT) based IT

In CT Method, disjoint and complete classifications are
formed and represented as a tree. It is an extension of
Category Partition method [14, 15] and both have been
proposed for deriving test cases from the specification. These
two methods are based on the idea of partition testing [16, 17].
The tree is used to derive test cases from the specification.
CTM is based on the idea of partition testing. Classification is
the major entity (main problem) of the system. Classification
contains a set of classes that share a common structure and
common behavior. The sub entity of the classification is the
class, which represents some specific input value. Each class
may be subdivided into subclasses. The terminal class (class
without any subclasses) includes input data that can be used as
test input. Classification can be used to identify the overall
idea of the system. A test method [18] is used to identify test
cases from the combination of system specification and COTS
specification based on the CTM.

To identifying test cases [18], first form a classification-tree
based on the system specification and then form another
classification-tree based on the COTS specification. By
overlapping these two classifications, develop a combined
classification tree, which provides meaningful terminal classes
that can be used for identifying test cases. This test method
can generate both valid and invalid test cases. The advantage
of CTM is that, by organizing classifications and classes in the
form of a tree and their hierarchical relations are made more
explicit. Classification Tree Editor (CTE) [19] is used to
support this CTM. It enables the tester to work interactively
on the tree.

IV. COMPARISONS AND DISCUSSIONS OF IT TECHNIQUES

This section compares the IT techniques with their
overview, test procedure, support tool, input, output,
effectiveness, effort/cost, and types of error detected (see
Table III). This table also introduces, which IT technique
detects what type of error with their performance. In Table III,
CT has a higher chance to detect Type 1 and Type 3 error than
Type 2 or Type 4 error. For example, if the input has the
correct value but it produces an incorrect output then it gives
an invalid test case. This type of error occurs many times and
it is easy to identify so there is a high chance for detecting
Type 4 error.

Similarly, in CBC, there is a higher chance to detect Type
1, Type 3, and Type 4 errors than Type 2 error. In DFT there
is a higher change to detect Type 1 and Type 2 errors than
Type 3 or Type 4 error. In IM there is a higher chance to
detect Type 1, Type 2 and Type 3 errors than Type 4 error.

From these comparisons and discussions the testers can easily
identify which technique is useful for their need to identify
faults early.

V. CONCLUSION

This paper introduced a new type of IE, namely the Type 4
error. This Type 4 error can specify the location of the fault
which is responsible for causing incorrect outputs. This paper
proposes an overview of IT techniques in the comparisons and
discussions of which technique detect what type of error. This
paper is very useful to practitioners who are performing
integration testing on software development. Future work
includes evaluation of the relative strengths and weakness of
the IT techniques with an example based on type of IE
detected.

REFERENCES

[11 M. E. Delamaro, J. C. Maldonado, and A. P. Mathur, “Interface
mutation: an approach for integration testing,” IEEE Transactions on
Software Engineering, vol.27, no. 3, pp. 228-247, March 2001.

[2] Z. Jin, and J. Offutt. “Coupling-based criteria for integration testing,”
The Journal of Software Testing, Verification, and Reliability, vol.8, no.
3, pp. 133-154, September 1998.

[3] A.J. Offutt, A. Abdurazik, and R. T. Alexander. “An analysis tool for
coupling-based integration testing,” The Sixth IEEE International
Conference on Engineering of Complex Computer Systems (ICECCS
’00), Japan, September 2000, pp. 172-178.

[4] W. K. Chan, T.Y. Chen, and T. H. Tse, “An overview of integration
testing techniques for object-oriented programs,” Proceedings of the 2nd
ACIS Annual International Conference on Computer and Information
Science (ICIS), Michigan, 2002.

[5]1 Z. Jin, A. Offutt, “Integration testing based on software couplings,”
Proceedings of the Tenth Annual Conference on Computer Assurance,
USA, June 1995, pp. 13-23.

[6] A. Haley and S. Zweben, “Development and application of a white box
approach to integration testing,” The Journal of Systems and Software,
vol.4, pp. 309-315, 1984.

[71 R.A. DeMillo, R.J. Lipton, and F.G. Sayward, “Hints on test data
selection: help for the practicing programmer,” Computer, vol.11, no.4,
April 1978.

[8] A.J. Offutt, G. Rothermel, and C. Zapf, “An experimental evaluation of
selective mutation,” Proceedings of the 15th International Conference
on Software Engineering, May 1993, pp. 100-107.

[9] L.L. Constantine, and E. Yourdon, Structural Design. NJ: Prentice-Hall,

Englewood Cliffs, 1979.

S. Rapps, and E. Weyuker. “Selecting software test data using data flow

information,” IEEE Transactions on Software Engineering, vol.11, no.4,

pp. 367-375, April 1985.

P.G. Frankl and E.J. Weyuker. “An applicable family of data flow

testing criteria,” IEEE Transactions on Software Engineering, vol. 14,

no.10, pp. 1483-1498, October 1988.

[12] M. Harrold, and M. Soffa, “Interprocedural data flow testing,”
Proceedings of the ACM SIGSOFT '89 Third Symposium on Software
Testing, Analysis, and Verification, vol.14, no.8, November 1989.

[13] E. Duesterwald, R. Gupta, and M. L. Soffa, “A demand-driven analyzer

data flow testing at the integration level,” International Conference on

Software Engineering, 1996, pp. 575-584.

M. Grochtmann, and K. Grimm, “Classification trees for partition

testing,” Software Testing, Verification & Reliability, John Wiley &

Sons, Ltd, vol.3, no.2, pp. 63-82, 1993.

[15] D. J. Richardson, and L. A. Clarke, “Partition analysis: a method
combining testing and verification,” IEEE Transactions on Software
Engineering, vol. 11, no. 12, pp. 1477-1490, 1985.

[16] M. J. Balcer, W. Hasling, and T. Ostrand, “Automatic generation of test
scripts from formal test specifications,” Proceedings of the 3rd ACM
Annual Symposium on Software Testing, Analysis and Verification,
ACM Press, IEEE-CS, SIGSOFT, 1989, pp. 210-218.

[10

[11

[14

2013

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:2, No:6, 2008

[17] T. J. Ostrand, and M. J, Balcer, “The category-partition method for
specifying and generating functional tests,” Communications of the
ACM, vol.31, no. 6, pp. 676-686, 1988.

[18] H. Leung, and P. Paramasivam, “Testing COTS with classification-tree
method,” TASTED International Conference on Software Engineering
and Applications (SEA), ACTA Press, L.A., U.S.A, November 2003, pp.
270-276.

[19] H. Singh, M. Conrad, and S. Sadeghipour, “Test data design based on Z
and the classification-tree method,” Proceedings of First IEEE
International Conference on Formal Engineering Methods, 1997.

Paramasivam Prema received her M.C.A degree from The University of
Madras in the year 1999. She has more than seven years of experience in
academic / research and industry. She is currently doing Ph.D in department of
Computer Applications, National Institute of Technology, Tiruchirapalli. Her
current research area includes Software Testing and Software Quality.

Balakrishnan Ramadoss received the M.Tech degree in Computer science
and Engineering in 1995 from the Indian Institute of Technology, Delhi. The
Ph.D degree in Applied Mathematics in 1983 from Indian Institute of
Technology, Powai. Currently he is working as a Professor of Computer
Applications at National Institute of Technology, Tiruchirapalli. His current
research area includes: Software Testing Methodologies, Software Metrics,
Data Warehouse — EAI, Data Mining, WBL, and XML. He is a recipient of
Best Teacher Award at National Institute of Technology, Tiruchirapalli,
during 2006-2007. He is a Life Member (LM) of ISTE, New Delhi, Life
Member (LM), Computer Society of India.

2014

