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Abstract—In this paper, we consider the uniform asymptotic
stability, global asymptotic stability and global exponential stability
of the equilibrium point of discrete Hopfield neural networks with
delays. Some new stability criteria for system are derived by using
the Lyapunov functional method and the linear matrix inequality
approach, for estimating the upper bound of Lyapunov functional
derivative.
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I. INTRODUCTION

D
URING the past several years, the stability of a unique

equilibrium point of continuous-time delayed Hopfield

neural networks has received much attention due to its im-

portance in many applications such as associative memories,

pattern recognition, automatic control, static image processing,

combinatorial optimizations problems and other areas. Stabil-

ity results that impose constraint conditions on the network

parameters will be dependent of the intended applications in

investigating the stability properties of neural networks. So

far, many researchers have investigated the global asymptotic

stability and global exponential stability of continuous Hop-

field neural networks and obtained various results, we refer

the reader to [1-8]. In conducting numerical simulation of con-

tinuous neural network. Hence, stability for discrete Hopfield

neural networks has also received considerable attention from

many researchers, (see [9-14]).

In this paper, we consider a class of discrete-time HNN with

delays. Some new sufficient conditions for uniform asymptotic

stability, global asymptotic stability and global exponential

stability of the equilibrium point for such system are obtained

by means of using a Lyapunov functional and linear matrix

inequality. The conditions on global exponential stability are

simpler and less restrictive versions of some recent results.

This paper is organized as follows: In section 2 , a discrete

Hopfield neural networks is described. In addition, we present

some basic definition and lemma. New stability criteria for

discrete-time non-autonomous delayed Hopfield neural net-

works are derived in section 3. An example is presented to

illustrated the efficiency of the results in section 4. Finally,

some conclusions are drawn in section 5.
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II. PRELIMINARIES

The dynamic behavior of discrete Hopfield neural networks

can be described as follows






xi(n + 1) = ai(n)xi(n) +
m
∑

j=1

bij(n)fj(xj(n − κ)), n 6= nk

∆xi\n=nk
= xi(nk) − xi(nk − 1) = d

(i)
k (xi(nk − 1) − x̄i)

(1)

where d
(i)
k ∈ R for i ∈ {1, 2, ..., m}, n ∈ {0, 1, 2, ...}, m cor-

responds to the number of units in a neural network; x(n) =
[x1(n), ..., xm(n)]T ∈ R

m corresponds to the state vector;

f(x(n)) = [f1(x1(n)), ..., fm(xm(n))]T ∈ R
m denotes the

activation function of the neurons; f(x(n−κ)) = [f1(x1(n−
κ)), ...fm(xm(n−κ))]T ∈ R

m; A(n) = diag(ai(n)) (ai(n) ∈
]0, 1[) represents the rate with which the ith unit will reset its

potential to the resting state in isolation when disconnected

from the network and external inputs. B(n) = {bij(n)}
represents the delayed feedback matrix, κ is a positive integer

and denotes the transmission delay along the axon of the jth

unit.

The initial conditions associated with system (3) are of the

form

yi(l) = ϕi(l), i ∈ {1, 2, ..., m}, (2)

where l is an integer with l ∈ [−κ, 0].
Since x̄ is an equilibrium point of system (1), one can

derive from system (1) that the transformation yi = xi − x̄i

transforms such system into the following system:







yi(n + 1) = ai(n)yi(n) +
m
∑

j=1

bij(n)gj(yj(n − κ)), n 6= nk

yi(nk) = (1 + d
(i)
k ) · yi(nk − 1),

(3)

where gj(yj(n − κ)) = fj(x̄j + yj(n − κ)) − fj(x̄j).

In this paper, we will assume that the activation functions gi,

i = 1, 2, ..., m satisfy the following conditions

|gi(ξ1) − gi(ξ2)| ≤ Li|ξ1 − ξ2|, ∀ξ1, ξ2 ∈ R (4)

gi(0) = 0

and Dk = diag(1 + d
(1)
k , 1 + d

(2)
k , ..., 1 + d

(n)
k ).

Now, we define various types of stability for system (3) at its

equilibrium point, and we introduce lemmas used in our work.

Some definitions and lemmas of stability for system (3) at its

equilibrium point are introduced as follows:
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A. Definitions [1]

(i) If, for any k0 ≥ 0 and ǫ > 0, there exists a

δ1 = δ(k0, ǫ) > 0 such as

‖y(k0)‖ < δ(k0, ǫ) =⇒ ‖y(k)‖ < ǫ, ∀k ≥ k0

then system (3) is stable (in the Lyapunov sense) at the

equilibrium point.

(ii) If the system (3) is stable at the equilibrium point,

and if there exists a δ2 = δ(k0) > 0 such as

‖y(k0)‖ < δ(k0) =⇒ lim
k−→∞

y(k) = 0

then system (3) is asymptotically stable at the equilibrium

point.

(iii) The solution of system (3) is exponentially stable if for

all solution yi(n, ϕi) with initial condition yi(l) = ϕi(l),
∀l ∈ [−κ, 0] there exist two constants ǫ ∈]0, 1] and

M ≥ 1 such as : ‖y(n)‖ ≤ M‖φ‖ǫn, ∀n > 0, where

‖φ‖ = max
l∈[−κ,0]

{‖φ(l)‖}.

(iv) If δ1 in (i) ( or δ2 in (ii)) can be chosen independently

of k0, then the system is uniformly stable (or uniformly

asymptotically stable) at the equilibrium point.

(v) If δ2 in (ii) (or δ3 in (iii)) can be an arbitrarily large, finite

number, then the system is globally asymptotically stable (or

globally exponentially stable) at the equilibrium point.

We now need the following basic lemmas used in our

work.

B. Lemma [17]

Let X ∈ R
n×n, then

λmin(X)aT a ≤ aT Xa ≤ λmax(X)aT a

for any a ∈ R
n, if X is a symmetric matrix, where λmin(X)

and λmax(X) are respectively the smallest and biggest eigen-

value of the matrix X .

C. Lemma [16]

Let M(x) = MT (x), P (x) = P T (x) > 0 and Q(x) depend

affinely on x. Then
(

Q(x) M(x)
MT (x) −P (x)

)

< 0

is equivalent to

Q(x) + M(x)P−1(x)MT (x) < 0

III. MAIN RESULTS

Now, we shall establish some theorems which provide

sufficient conditions for global exponential stability, uniform

asymptotic stability and global asymptotic stability of system

(3). At first, we consider the global exponential stability.

A. Theorem

System (3) is asymptotically stable and globally exponen-

tially stable if there exist two positive definite matrices P, Q

and ǫ ∈]0, 1] such as E=
(

A(n)PA(n) − P + λmax(Q)L2 A(n)PB(n)
BT (n)PA(n) BT (n)PB(n) − Q

)

< 0

∏

n0≤nk≤n

max{
ξk

λmin(P )
, 1} ≤ ǫ2n, ∀n > 0,

where L = diag(Li), ξk and λmax(Q) are respectively the

largest eigenvalues of the matrix DkPDk, k ∈ Z
∗
+ and the

matrix Q.

If Q = I , P = 2I and L = I in Theorem III-A, we can easly

obtain this Corollary :

B. Corollary

System (3) is asymptotically stable and globally exponen-

tially stable if there exist ǫ ∈]0, 1] such as

(i)

E =

(

2A(n)A(n) − I 2A(n)B(n)
2BT (n)A(n) 2BT (n)B(n) − I

)

< 0

(ii)
∏

n0≤nk≤n

max{
ξk

2
, 1} ≤ ǫ2n, ∀n > 0,

where ξk is the largest eigenvalues of the matrix 2D2
k, k ∈ Z

∗
+.

Remark: Based on Lemma II-C, if 2BT (n)B(n) − I < 0,

then condition (i) in Corollary III-B can be rewritten as

E
′

= 2A(n)A(n) − I − 4A(n)B(n)(2BT (n)B(n) −
I)−1BT (n)A(n) < 0
Next we can establish a theorem which provides sufficient

conditions for uniform stability, uniform asymptotic stability

and global asymptotic stability of system (3).

C. Theorem

System (3) is uniformly stable if it exist ǫ∗ ∈]0, 1] and two

positive definite matrix P, Q such as:

(i)

E =
(

A(n)PA(n) − a(P + 1
1−ρ

λmax(Q)L2) A(n)PB(n)

BT (n)PA(n) BT (n)PB(n) − b
1−ρ

Q

)

< 0

with a = 1+ǫ∗(n−n0)2

1+ǫ∗(n+1−n0)2 and b = 1+ǫ∗(n−κ−n0)
2

1+ǫ∗(n+1−n0)2

(ii)

∏

0≤nk<n

max{
ξk

λmin(P )
,1}

1+ǫ∗(n−n0)2
< ∞, n −→ ∞, with ξk is

the largest eigenvalue of matrix DkPDk, k ∈ Z
∗
+.

If besides this condition is verified

(iii)

∏

0≤nk<n

max{
ξk

λmin(P )
,1}

1+ǫ∗(n−n0)2
−→ 0, n −→ ∞, the system (3)

is uniformly asymptoticaly stable and globally asymptoticaly

stable.
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If P = 2I and Q = I in TheoremIII-C, we can get

the following Corollary :

D. Corollary

System (3) is uniformly stable if it exist ǫ∗ ∈]0, 1] such as:

(i)

E =
(

2A(n)A(n) − a(2I + 1
1−ρ

I) 2A(n)B(n)

2BT (n)A(n) 2BT (n)B(n) − b
1−ρ

I

)

< 0

with a = 1+ǫ∗(n−n0)
2

1+ǫ∗(n+1−n0)2
and b = 1+ǫ∗(n−κ−n0)

2

1+ǫ∗(n+1−n0)2

(ii)

∏

0≤nk<n

max{
ξk
2 ,1}

1+ǫ∗(n−n0)2
< ∞, n −→ ∞, with ξk is the

largest eigenvalue of matrix 2D2
k, k ∈ Z

∗
+

If besides this condition is verified

(iii)

∏

0≤nk<n

max{
ξk
2 ,1}

1+ǫ∗(n−n0)2
−→ 0, n −→ ∞ the system (3)

is uniformly asymptoticaly stable and globally asymptoticaly

stable.

Remark: Based on LemmaII-C,

if 2BT (n)B(n)− b
1−ρ

< 0, then condition (i) in CorollaryIII-D

can be rewritten as:

E
′′

= 2A(n)A(n) − a(2 − 1
1−ρ

)I

− 4A(n)B(n)(2BT (n)B(n) − b
1−ρ

I)−1BT (n)A(n) < 0

IV. NUMERICAL APPLICATIONS

In this section, we will give an example to show the validity

of the results given in this paper.

A. Exemple

Consider the following discrete Hopfield neural network










x(n + 1) = A(n)x(n) + B(n)g(x(n − κ)), n 6= nk

∆xi\n=nk
= xi(nk) − xi(nk − 1)

= d
(i)
k (xi(nk − 1) − x∗

i ) i = 1, 2, k = 1, 2, ...
(5)

Where d
(1)
k =

√

1 + 1
5k2 − 1, d

(2)
k =

√

1 + 1
6k2 − 1, nk ∈ Z

∗
+

with the matrices

A(n) =

( √

20
91 0

0 0.05e−n

)

and B(n) =

(

0.2 0.4
0.2 −0.4

)

and the nonlinear input-output function is chosen as

f(x) = tanh(x). It can be verified that this function satisfies

assumption(4) with L1 = L2 = 1. Furthermore, we have

2BT (n)B(n) − I =

(

−0.6 0
0 −0.36

)

< 0

and one can easily check that

E
′

=





− 1
9 − 68

45

√

20
910.05e−n

− 68
45

√

20
910.05e−n 91

9000e−2n − 1





The determinants of the principal submatrices of E
′

are

− 1
9 < 0 and 1

9 − 0.0024e−2n > 0. Based on Hurwitz’s

Theorem, we can conclude that E
′

< 0. Therefore, from

Remark III-B, it follows that system (5) is asymptotically

stable.

2D2
k =





4 + 2
5k2 − 4

√

1 + 1
5k2 0

0 4 + 2
6k2 − 4

√

1 + 1
6k2





Therefore,

∏

n0≤nk≤n

max{ ξk

2 , 1} = 1 ≤ ǫn, with ǫ = 1.

So, system (5) is globally exponentially stable.

While using the CorollaryIII-D, we can even show that

system (5) is uniformly stable .

We choose ρ = 0: Therefore, the condition (i) in

CorollaryIII-D is verified:

=⇒
lim

ǫ∗−→0
E

′′

= 2A(n)A(n) − 3I − 4A(n)B(n)(2BT (n)B(n) −

I)−1BT (n)A(n) < 0

Besides

∏

0≤nk<n

max{ ξk

2 , 1}

1 + ǫ∗(n − n0)2
=

1

1 + ǫ∗(n − n0)2
< ∞

Hence, system (5) is uniformly stable.

Remark: In [16], the authors proved that system (5) is

asymptotically stable. In this work, we showed that system

(5) is also globally exponentially stable and uniformly stable.

V. CONCLUSION

In this paper, a class of discrete HNN with delay is

considered. We obtain some new sufficient criteria ensuring

uniform asymptotic stability, global stability and global ex-

ponential stability of the equilibrium point for system (3) by

using the Lyapunov method and linear matrix inequality. Our

results show effect of delay on the stability of HNN. The

results here are discussed from the point of view of its more

generality than earlier results. In order to validate our results,

an example is given to illustrate their feasibility and efficiency.

Has the continuation of this work us can look for new criterias

of stability for high-order Hopfield type neural networks by

refined and generalized our results.
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APPENDIX A

PROOF OF THE THEOREMIII-A

Consider the following Lyaponov function:

V (n) = yT (n)Py(n) +

n−1
∑

i=n−κ

gT (y(i))Qg(y(i)) (6)

We have

V (n+1) = yT (n+1)Py(n+1)+
n
∑

i=n+1−κ

gT (y(i))Qg(y(i))

= yT (n)A(n)PA(n)y(n)
+ 2yT (n)A(n)PB(n)g(y(n − κ))
+ gT (y(n − κ))BT (n)PB(n)g(y(n − κ))

+
n−1
∑

i=n+1−κ

gT (y(i))Qg(y(i)) + gT (y(n))Qg(y(n))

Therefore,

∆V (n) = V (n + 1) − V (n)
= yT (n)A(n)PA(n)y(n) + 2yT (n)A(n)PB(n)g(y(n − κ))
+gT (y(n − κ))BT (n)PB(n)g(y(n − κ))

+
n−1
∑

i=n+1−κ

gT (y(i))Qg(y(i))

+ gT (y(n))Qg(y(n))

− yT (n)Py(n) −
n−1
∑

i=n−κ

gT (y(i))Qg(y(i))

≤ yT (n)[A(n)PA(n) − P + λmax(Q)L2]y(n)
+2yT (n)A(n)PB(n)g(y(n − κ))
+gT (y(n − κ))[BT (n)PB(n) − Q]g(y(n − κ))

=

(

y(n)
g(y(n − κ))

)T

E

(

y(n)
g(y(n − κ))

)

< 0

It is clear that

V (n) ≤ λmax(P )‖y(n)‖2 + λmax(Q)‖y(n)‖2L2κ

Therefore,

V (n) ≤ [λmax(P ) + λmax(Q)L2κ]‖y(n)‖2

So while using Lemma II-B, we will have the following

result

λmin(P )‖y(n)‖2 ≤ V (n)

≤ (λmax(P ) + λmax(Q)L2κ)‖y(n)‖2

However we have

V (nk) ≤ max{ ξk

λmin(P ) , 1}V (nk − 1)

Therefore,

λmin(P )‖y(n)‖2 ≤ V (n)

≤ V (n0)
∏

n0≤nk<n

max{
ξk

λmin(P )
, 1}

Therefore,

‖y(n)‖2 ≤ [λmax(P )
λmin(P ) + λmax(Q)L2κ

λmin(P ) ]‖ϕ‖2

∏

n0≤nk<n

max{
ξk

λmin(P )
, 1}

So

‖y(n)‖2 ≤ [λmax(P )
λmin(P ) + λmax(Q)L2κ

λmin(P ) ]‖ϕ‖2ǫ2n

Then,

‖y(n)‖ ≤ M‖ϕ‖ǫn, ∀n ≥ 0

With

M =
√

[λmax(P )
λmin(P ) + λmax(Q)L2κ

λmin(P ) ] ≥ 1 Wich completes

the proof.

APPENDIX B

PROOF OF THE THEOREMIII-C

We start with showing that system (3) is uniformly stable.

According with the condition (iii), it exists a constant M ∗ > 0
as:

∏

0≤nk<n

max{
ξk

λmin(P )
,1}

1+ǫ∗(n−n0)2 ≤ M∗, n ≥ n0

∀n ≥ n0 if y(n0, ϕ) is a solution of (3), ∀ǫ > 0 we

choose:

δ =

√

λmin(P )

(λmax(P )+
λmax(Q)

1−ρ
N(κ+1))M∗

.ǫ

We considered the Lyapunov function:

V (n) = (1 + ε∗(n − n0)
2)yT (n)Py(n)

+ 1
1−ρ

n−1
∑

i=n−κ

(1 + ǫ∗(i − n0)
2)gT (y(i))Qg(y(i))

Therefore,

V (n + 1) = (1 + ε∗(n + 1 − n0)
2)yT (n + 1)Py(n + 1)

+ 1
1−ρ

n
∑

i=n+1−κ

(1 + ǫ∗(i − n0)
2)gT (y(i))Qg(y(i))

= [1 + ǫ∗(n + 1 − n0)
2][A(n)y(n)

+ B(n)g(y(n − κ))]T P [A(n)y(n) + B(n)g(y(n − κ))]

+ 1
1−ρ

n−1
∑

i=n+1−κ

(1 + ǫ∗(i − n0)
2)gT (y(i))Qg(y(i))

+ 1
1−ρ

(1 + ǫ∗(n − n0)
2)gT (y(n))Qg(y(n))

= [1 + ǫ∗(n + 1 − n0)
2][y(n)T A(n)P

+ gT (y(n − κ))]BT (n)P ][A(n)y(n) + B(n)g(y(n − κ))]

+ 1
1−ρ

n−1
∑

i=n+1−κ

(1 + ǫ∗(i − n0)
2)gT (y(i))Qg(y(i))

+ 1
1−ρ

(1 + ǫ∗(n − n0)
2)gT (y(n))Qg(y(n))
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= [1 + ǫ∗(n + 1 − n0)
2][yT (n)A(n)PA(n)y(n)

+ 2yT (n)A(n)PB(n)g(y(n − κ))
+ gT (y(n − κ))BT (n)PB(n)g(y(n − κ))]

+ 1
1−ρ

n−1
∑

i=n+1−κ

(1 + ǫ∗(i − n0)
2)gT (y(i))Qg(y(i))

+ 1
1−ρ

(1 + ǫ∗(n − n0)
2)gT (y(n))Qg(y(n))

Now, calculate the difference ∆V (n) = V (n + 1) − V (n)

∆V (n) = [1 + ǫ∗(n + 1 − n0)
2][yT (n)[A(n)PA(n)

− 1+ǫ∗(n−n0)2

1+ǫ∗(n+1−n0)2 P ]y(n)

+ 2yT (n)A(n)PB(n)g(y(n − κ))
+ gT (y(n − κ))BT (n)g(y(n − κ))]
+ 1

1−ρ
(1 + ǫ∗(n − n0)

2)gT (y(n))Qg(y(n))

− 1
1−ρ

(1 + ǫ∗(n − κ − n0)
2)gT (y(n − κ))Qg(y(n − κ))

≤ [1 + ǫ∗(n + 1 − n0)
2][yT (n)[A(n)PA(n)

− 1+ǫ∗(n−n0)2

1+ǫ∗(n+1−n0)2 P ]y(n)

+ 2yT (n)A(n)PB(n)g(y(n − κ))
+ gT y(n − κ))[BT (n)PB(n)

− 1
1−ρ

· 1+ǫ∗(n−κ−n0)
2

1+ǫ∗(n+1−n0)2
Q]g(y(n − κ))]

= [1+ǫ∗(n+1−n0)
2]

(

y(n)
g(y(n − κ))

)T

E

(

y(n)
g(y(n − κ))

)

≤ [1+(n+1−n0)
2]

(

y(n)
g(y(n − κ))

)T

E

(

y(n)
g(y(n − κ))

)

Therefore,

∆V (n) < 0 (7)

V (nk) = (1 + ǫ∗(nk − n0)
2)yT (nk)Py(nk)

+ 1
1−ρ

nk
∑

i=nk−κ

(1 + ǫ∗(i − n0)
2)gT (y(i))Qg(y(i))

= (1 + ǫ∗(nk − n0)
2)yT (nk − 1)DkPDky(nk − 1)

+ 1
1−ρ

nk−1
∑

i=nk−1−κ

(1 + ǫ∗(i − n0)
2)gT (y(i))Qg(y(i))

≤ (1 + ǫ∗(nk − n0)
2)ξkyT (nk − 1)y(nk − 1)

+ 1
1−ρ

nk−1
∑

i=nk−1−κ

(1 + ǫ∗(i − n0)
2)gT (y(i))Qg(y(i))

≤ (1 + ǫ∗(nk − n0)
2) ξk

λmin(P )y
T (nk − 1)Py(nk − 1)

+ 1
1−ρ

nk−1
∑

i=nk−1−κ

(1 + ǫ∗(i − n0)
2)gT (y(i))Qg(y(i))

Therefore,

V (nk) ≤ max{
ξk

λmin(P )
, 1}V (nk − 1) (8)

We have from Lemma II-B

λmin(P )(1 + ǫ∗(n − n0)
2)‖y(n)‖2 ≤ V (n)

≤ λmax(P )(1 + ǫ∗(n − n0)
2)‖y(n)‖2

+ λmax(Q)
1−ρ

N(
n−1
∑

n−κ

1 +
n−1
∑

i=n−κ

ǫ∗(i − n0)
2)‖y(n)‖2

≤ λmax(P )(1 + ǫ∗(n − n0)
2)‖y(n)‖2

+ λmax(Q)
1−ρ

Nκ(1 + ǫ∗(n − n0)
2)‖y(n)‖2

≤ [λmax(P ) + λmax(Q)
1−ρ

Nκ](1 + ǫ∗(n − n0)
2)‖y(n)‖2

Therefore,

λmin(P )(1 + ǫ∗(n − n0)
2)‖y(n)‖2 ≤ V (n)

≤ [λmax(P ) +
λmax(Q)

1 − ρ
Nκ](1 + ǫ∗(n − n0)

2)‖y(n)‖2 (9)

Collecting (7), (8) et (9), then we get:

λmin(P )(1 + ǫ∗(n − n0)
2)‖y(n)‖2 ≤ V (n)

≤ V (n0)
∏

0<nk≤n

max{
ξk

λmin(P )
, 1} (10)

Of (9) we can raise V (n0):

V (n0) ≤ [λmax(P ) +
λmax(Q)

1 − ρ
Nκ]‖ϕ‖2

by following:

‖y(n)‖2 ≤ [λmax(P ) +

λmax(Q)
1−ρ

Nκ] ‖ϕ‖2

λmin(P )

∏

0≤nk<n

max{
ξk

λmin(P )
,1}

1+ǫ∗(n−n0)2

From where

‖y(n)‖2 ≤ [λmax(P ) + λmax(Q)
1−ρ

Nκ] ‖ϕ‖2

λmin(P )M
∗

≤ [λmax(P ) + λmax(Q)
1−ρ

Nκ] δ2

λmin(P )M
∗ ≤ ǫ2

What implies that

‖y(n)‖2 ≤ ǫ2, n ≥ n0

Therefore,

‖y(n)‖ ≤ ǫ, n ≥ n0

Then the solution of (3) is uniformly stable.

It is clear that if the condition(iii) is verified then:

lim sup
n−→+∞

‖y(n)‖2 = 0, and for this cas, (3) is also uniformly

asymptotically stable and globally asymptotically stable.
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