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Abstract—In the self-stabilizing algorithmic paradigm, each node
has a local view of the system, in a finite amount of time the system
converges to a global state with desired property. In a graph G =
(V,E), asubset S CV is a 2-packing if Vi € V:|N[i]]NS| <1.In
this paper, an ID-based, constant space, self-stabilizing algorithm that
stabilizes to a maximal 2-packing in an arbitrary graph is proposed.
It is shown that the algorithm stabilizes in O(n?) moves under
any scheduler (daemon). Specifically, it is shown that the algorithm
stabilizes in linear time-steps under a synchronous daemon where
every privileged node moves at each time-step.
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I. INTRODUCTION AND RELATED WORK

Self-stabilization is a strong and desirable fault-tolerance
property. The self-stabilizing approach is introduced by Di-
jkstra [3]. A distributed network is defined as a connected,
undirected graph G' with node set V' and edge set E C V x V.
Let n = |V| and m = | E|. Two nodes joined by an edge are
said to be neighbors. Notation N (¢) is used to denote the set
of neighbors of node i—its (open) neighborhood. Ni], the
closed neighborhood of i, is defined as N[i] = N (i¢)U{i}. The
distance dist(i,j) between two nodes ¢ and j is the number
of edges in a shortest -5 path. The contents of a node’s local
variables are defined as its local state. The system’s global
state is the union of all local states. If you take an arbitrary
distributed algorithm and start it in a state where its variables
have been set to a random value from its domain, the behavior
is usually not predictable. However, starting from any initial
configuration and in every execution, self-stabilizing systems
are required to recover to a set of legal states.

A. Self-stabilizing Algorithms

A self-stabilizing algorithm is presented as a set of rules,
each with a boolean predicate and an action. The rules of these
algorithms are of the form p — M, where p is a Boolean
predicate, and M is a move which changes local variable(s).
A node is said to be privileged if the predicate p is true. If a
node becomes privileged, it may execute the corresponding
move M. In the shared-variable version of this paradigm,
every node executes the same set of self-stabilizing rules, and
maintains and changes its own set of local variables based on
the current values of its variables and those of its neighbors.
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It is assumed that there exists a daemon, an adversarial
oracle as introduced in [3], [9], which at each time-step selects
one or more of the privileged nodes to move. In the serial, also
known as the central daemon model, no two nodes move at the
same time. In the distributed daemon model, the daemon can
choose any subset of privileged nodes to move simultaneously.
A special case of this is the synchronous daemon where every
privileged node moves at each step.

Self-stabilizing algorithms can be designed for networks
that are either ID-based or for the networks that are anony-
mous. In an ID-based network, each node has a unique ID. In
an anonymous network, the nodes lack unique IDs, so there
is not a priori way of distinguishing them. Anonymous self-
stabilizing algorithms are not as powerful as the ID-based
ones. However, they do not require the maintenance overhead
of the ID’s in the network. It is known that, given IDs, any
algorithm for the central daemon can be transformed into one
for the distributed daemon (see for example [2]). However, the
resulting protocols are not as fast. For a complete discussion
of self-stabilization, see the books by Dolev [4] or Tel [15].

When no further state change is possible, it is claimed
that the system is in a stable configuration. A self-stabilizing
algorithm must satisfy:

1) From any initial illegitimate state it reaches a legitimate
state after a finite number of moves; and

2) For any legitimate state and for any move allowed by
that state, the next state is a legitimate state.

The complexity of a self-stabilizing algorithm is measured
by the upper bound of the number of moves and/or time-
steps [4], [5]. A time-step is the minimum period of time where
every node that is continually privileged moves at least once.
In general, the number of moves is an upper bound on the
number of time-steps.

Several graph problems arise naturally in distributed sys-
tems. For example, distributed algorithms for finding match-
ings, independent sets, dominating sets and colorings have
been studied [7], [9], [11]-[13]. Synchronous algorithms have
been considered in [1], [6], [14] inter alia.

In this paper, an ID-based, constant space, self-stabilizing
algorithm that stabilizes to a maximal 2-packing in an arbitrary
graph is proposed. It is shown that the algorithm stabilizes in
O(n®) moves under any scheduler (daemon). Specifically, it is
shown that the algorithm stabilizes in linear time-steps under
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a synchronous daemon where every privileged node moves at
each step.

B. the 2-packing Problem

A subset S of nodes in a graph G = (V, E) is called a
2-packing [10] if Vi € V : [N[i]] N S| < 1. A 2-packing is
maximal if no proper superset of S is a 2-packing.

The 2-packings are subsets of nodes with some inherent
non-locality, in that no two nodes in the 2-packing set can
have overlapping neighborhoods. This prevents a node in a
2-packing from having direct knowledge of any other node in
the set. A self-stabilizing algorithm for maximal independent
sets (1-packing) was produced by Hedetniemi et al. in [7].
Because of the non-locality of 2-packings, this algorithm is
more complex both in design, correctness and complexity
proofs. The facts below follow directly from the definition
of 2-packing.

1) Every 2-packing S is an independent set.

2) If S is a 2-packing, then Vi,j € S : dist(i,j) > 3.

3) If S is maximal 2-packing, then Vi € V\S3j € S :

dist(i,j) < 2.

The goal of this self-stabilizing algorithm is to find a
maximal 2-packing. The problem of finding a maximum 2-
packing (a maximal 2-packing of largest cardinality) is shown
to be NP-hard by Hochbuam and Schmoys in [8], finding a
maximal one is easily done in linear time with the standard
RAM model.

II. A SELF-STABILIZING ALGORITHM FOR MAXIMAL
2-PACKING

Now a self-stabilizing algorithm which finds a Maximal
2-packing is formally introduce. It is referred to as Algo-
rithm Mazimal 2-Packing. It is assumed that each node in
the network has a unique ID. Without loss of generality, let
the ID’s be between 1 and n (the order of the graph). When
node % is referenced, variable ¢ holds the ID of the node. Local
variables of Algorithm M P are listed next.

1) Variable ¢ is an enumerate type of 3 possible values:
0,1 or 2.

2) Variables p (parent) and r (root) point to neighbors. They
hold either the ID’s of nodes or 0. Subscription is used
to denote the ID of the hosting node of a variable. Since
an ID is at least 1, let ¢ = pg = ro = null.

The following notations are used to abridge the presentation

of Algorithm M P.

1) Notation r-p denotes a node of minimum c¢ in set {j €
N(@),7; > ri Acj < 2}. If there are more than one
node, r-p is the one with the maximum r. If there is no
such node, let r-p be null.

2) Notation min-p denotes a node of minimum c¢ in
set {j € N(i),c; < 2}. If there are more than one
node, min-p is the one with the maximum r. If there is
no such node, let min-p be null.

The rules of this self-stabilizing algorithm are represented

by a list of if-then statements. To make a rule concise, the
negation of the desired state (the then statement) is omitted

from the condition. If the desired state is already achieved,
the node shall not be privileged by the rule. Assume the
algorithm runs on node 3.

Algorithm 1: Maximal 2-Packing

c-Decrease
if min-p # null A ¢; > cminp + 1
then ¢; = cmin-p + 1L ATy = Tpin-p A P; = min-p
Join
if Vj € N(3),¢; =2
thenc; =0ATr; =iAp; =1
Leave
if c; =0Ar-p# null
thenc; =crp+1AT; =77 p AP =7-p
c-Orphan
if ¢; = 1A (i # Tminp VTi # 7p; VCp; #0)
then ¢; = cmin-p + 1L AT = Tmin-p A Pp;i = min-p

Algorithm 1: Maximal 2-Packing

Upon stabilization, the maximal 2-packing set S is identified
by nodes of ¢ = 0.

A. A Brief Explanation of the Rules

In this section, the reasons behind the design of the rules of
Algorithm M azimal 2-Packing are described. A key local
variable on each node is c. Variable ¢ is used to record the
shortest distance to a node in the 2-packing set S. If ¢ = 0,
the node is in the set S. If ¢ = 1, then the node is adjacent to
a node of ¢ = 0. If ¢ = 2, then the node is adjacent to a node
of ¢ = 1, and possibly other nodes of ¢ = 1 or ¢ = 2; but
it is not adjacent to any node of ¢ = 0. Through neighbors’
variable ¢’s, a node can extract information on whether it is
within distance 2 from a node in the 2-packing set S.

The c-Decrease Rule applies to a node of ¢ = 2. If a node ¢
sees a neighbor, min-p with ¢in-p = 0, then ¢ decreases its
variable ¢; from 2 to 1. The root r; and parent p; variables
of node ¢ are also adjusted to these of the node min-p. After
the move, variable ¢; reflects the shortest distance from i to a
node in set S.

If node 7 is surrounded by node(s) of ¢ = 2, 4 considers
itself to be of distance 2 to any node in the 2-packing set S.
The node 7 can move by the Join Rule to join set S. Its root
and parent variables are both set to the ID of itself. Recall that
the negation of the desired state (the then statement) is omitted
from the condition. If node 7 has never moved and ¢; = 0 with
r; # i or p; # i, node i can move by the Join Rule to correct
variables r; and p;.

The Leave Rule uses ID’s to resolve conflicts when the
distance between two nodes in the set S is less than 3. If
a node ¢ of ¢; = 0 is adjacent to a node 7-p of ¢, < 2
and r; < r,_p, then ¢ changes its ¢ to a nonzero value. The
Leave Rule ensures that the distance between any pair of nodes
in S is at least 3. For the Leave Rule to function properly, any
node j of ¢; = 1 must have r; equals the largest ID of a
neighboring node in the set S. This is guaranteed by the last
rule of Algorithm Maximal 2-Packing, the c-Orphan Rule.

A node i of ¢; = 1 must be adjacent to a node, pointed to
by its parent variable, p; with ¢,; = 0. The root variable of
node ¢ must be equal to the root variable of its parent p;. The c-
Orphan Rule is designed to ensure this property. By definition,
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notation min-p denotes a node of minimum ¢ in set {j €
N(i),c; < 2}. If there are more than one node, min-p is the
one with the maximum r. The c-Orphan Rule also updates
variable r; to the largest ID possible (without increasing c).
This ensures that the Leave Rule functions properly.

III. CORRECTNESS

It is first shown that Algorithm M aximal 2-Packing pro-
duces a maximal 2-packing upon stabilization. The correctness
of Algorithm M P is proved by Lemma 1.

Lemma 1: Upon stabilization, Algo-
rithm M azimal 2-Packing produces a Maximal 2-packing
set S in which every node has ¢ = 0.

Proof: Let nodes ¢ and j have ¢ = 0 upon stabilization.
By the Leave Rule, ¢ and j are not adjacent. If dist(,5) < 3,
let & be the node on the shortest path between ¢ and j. Ensured
by the c-Decrease Rule, ¢ is 1. Without loss of generality,
let ¢ > j. Ensured by the c-Orphan Rule, r > ¢ > j which
is the largest ID of nodes ¢ and j. Then j is privileged by
the Leave Rule; a contradiction. Hence, the self-stabilizing
algorithm yields a 2-packing.

Next, it is shown that set S is a maximal 2-packing.
Variable ¢ can have three possible values: 0, 1 and 2. By
the c-Orphan Rule, a node of ¢ = 1 must be adjacent to a
node of ¢ = 0. A node of ¢ = 2 must be adjacent to a node
of ¢ =1, and possibly other nodes of ¢ = 1 or ¢ = 2, since it
is not privileged by the Join Rule. But the node must not be
adjacent to any node of ¢ = 0 by the c-Decrease Rule. Hence
any node not in the 2-packing set is within distance 2 from a
node in the set. The result is maximal. |

IV. CONVERGENCE AND COMPLEXITY ANALYSIS

In this  section, the complexity of  Algo-
rithm Mazimal 2-Packing is bounded. The number
of moves is used to evaluate the complexity of the algorithm
except for the analysis under a synchronous daemon. With
a synchronous daemon, every privileged node moves at
each time-step. The concept time-step is used to measure
complexity for this case. A time-step is the minimum period
of time where every node that is continually privileged moves
at least once. The concept of a dirty node is first define.

Definition. If a node has never moved since the start of the self-
stabilization process, it is called a dirty node.

The number of dirty nodes is at most n. Once a node moves,
it is no longer dirty.

Definition. Let i be a node and S be the 2-packing set.
count(i, S) is used to denote the number of nodes in S whose
ID’s are greater than i.

The convergence is shown next. First the number of moves
by the Leave Rule is examined. The analysis looks at the
number of moves under a central daemon. This number
of moves is an upper bound of the complexity of Algo-
rithm Mazimal 2-Packing under any daemon (scheduler).

Lemma 2: The number of moves by the Leave Rule is

of O(n?).

c-Decrease

Fig. 1. State Transition Diagram

Proof: A node ¢ may move by the Leave Rule because
it is dirty. Otherwise node 7 has moved before, its last move
must be by the Join Rule since the Leave Rule requires ¢; = 0.
Each neighbor of ¢ had ¢ = 2 at the last move. Now, when 4
moves by the Leave Rule, r,, > 7; = ¢ by definition.
Let j denote r-p. Node j could be dirty when ¢ moved by
the Join Rule. Because j must move before ¢ moves by the
Leave Rule, the number of dirty nodes reduces by one. If j
has moved before, j was not adjacent to any node of ¢ = 0
at its last move. Before ¢ moves by the Leave Rule,at the last
move of j, j was adjacent to a node k with ¢, = 0A Kk > 4.
If ¢, = 0 when ¢ moves by the Leave Rule, count(i, S) has
increased by one. If ¢, > 0 when ¢ move by the Leave Rule,
then k£ must have moved at least once by the Leave Rule.
Note that only the Leave Rule may decrease count(i, S). For
node k, the same argument for ¢ is used: either the number
of dirty nodes has decreased, or count(k,S) has increased.
Since k > 4, count(i,S) has also increased. The number of
dirty nodes is at most n and count (i, S) < n. There are O(n)
moves by the Leave Rule on each node, hence the result. W

Next, the number of moves by the c-Orphan Rule is exam-
ined.

Lemma 3: The number of moves by the c-Orphan Rule is
of O(n?).

Proof: Let ¢ be a node moves by the c-Orphan Rule. If ¢
is a dirty node, it is no longer dirty after the one move. There
is O(n) moves by dirty nodes.

If node ¢ has moved and ¢; = 1, then p; was a neighbor
of 4 with ¢p; = 0 when ¢ made its last move. Since ¢; = 1, no
neighbor of ¢ can move by the Join Rule. Node p; must move
by the Leave Rule before ¢ moves by the c-Orphan Rule. By
Lemma 2, the number of moves by the Leave Rule is of O(n?).
Node p; can be the parent of O(n) nodes. Hence the number
of moves by nodes of ¢ = 1 is of O(n?). [ |

Theorem 1: Algorithm Mazximal 2-Packing stabilizes
with a maximal 2-packing in O(n®) moves under any dae-
mon(scheduler).

Proof: Figure 1 is the state transition diagram with regard
to variable c. A move by the c-Decrease, Join or Leave Rules
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changes the value of ¢. A move by the c-Orphan Rule may
result in the same value of ¢ but a different value of r.

By Lemma 2, the total number of moves by the Leave Rule
is of O(n?). By Lemma 3, the total number of moves by the c-
Orphan Rule is of O(n?). These restrictions bound the number
of moves on each arc in the diagram to be of O(n?). Hence, the
total number of moves by Algorithm Mazimal 2-Packing
is O(n®). ]

Algorithm M azimal 2-Packing converges under a syn-
chronous daemon is second shown.

Lemma 4: If the distance between two nodes of ¢ = 0 (in
set S) is less than 3, at least one of the two nodes moves
out of set S within the next 2 time-steps under a synchronous
daemon.

Proof: Let nodes ¢ and j have ¢ = 0 at time-step t.
Without loss of generality, let ¢ > j. If ¢ and j are adjacent,
then node 7 moves by the Leave Rule at time-step ¢+ 1 under
a synchronous daemon. If dist(i,j) = 2, let k be the node on
the shortest path between ¢ and j. Ensured by the c-Decrease
Rule, ¢, is 1 at time-step ¢+ 1. Ensured by the c-Orphan Rule,
r > ¢ which is the largest ID of nodes ¢ and j. Then j moves
by the Leave Rule at time-step ¢ + 2 under a synchronous
daemon. ]

Lemma 5: If a node 7 is not within distance 2 from any
node of ¢ = 0 (in the set S), the node or its neighbor(s)
within distance 2 from ¢ will join the set S within the next 2
time-steps under a synchronous daemon.

Proof: Assume node ¢ is not within distance 2 from any
node of ¢ = 0 at time-step ¢. In time-step ¢+ 1, node ¢ and its
neighbors must move by the Join Rule or the c-Orphan Rule.
If 4 and its neighbors all move by the c-Orphan Rule, they all
have ¢ = 2. Hence node ¢ moves by the Join Rule in time-
step t + 2. |

Theorem 2: Algorithm M aximal 2-Packing stabilizes at
a maximal 2-packing in linear time-steps under a synchronous
daemon.

Proof: Under a synchronous daemon, the algorithm ex-
ecutes in parallel. For proposition of the upper bound, this
process is described in order.

By Lemma 5, every node is within distance 2 from a node in
set S by time-step 3. Through these time-steps, the cardinality
of the set S increases. By Lemma 4, the distance between two
nodes of set S is at least 3 by time-step 6. Through these time-
steps, the cardinality of the set S decreases from the end of
time-step 3, but increases from time-step 1. By time-step 6, any
neighbor of a node joined the set S by the end of time-step 3
has ¢ = 1. Hence, if the distance between two nodes of set S is
less than 3, both nodes have joined the set S after time-step 3.
If the 6 time-steps is considered a process, it repeats O(n)
time-steps because the cardinality of S increases after each
process. Hence, the algorithm stabilizes in linear time-steps.

|

V. CONCLUDING REMARKS

In this paper, an ID-based, constant space, self-stabilizing
algorithm for finding a maximal 2-packing in an arbitrary
graph have been presented. It have been seen that the problem

of 2-packing has inherent non-local properties. However, it is
possible to design a reasonably fast self-stabilizing algorithm
for finding a maximal 2-packing in arbitrary graph. It is
shown that the algorithm stabilizes in O(n®) moves under any
scheduler (daemon). Specifically, it is shown that the algorithm
stabilizes in linear time-steps under a synchronous daemon
where every privileged node moves at each step.
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