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Abstract—Identifying protein coding regions in DNA sequences 
is a basic step in the location of genes. Several approaches based on 
signal processing tools have been applied to solve this problem, 
trying to achieve more accurate predictions. This paper presents a 
new predictor that improves the efficacy of three techniques that use 
the Fourier Transform to predict coding regions, and that could be 
computed using an algorithm that reduces the computation load. 
Some ideas about the combination of the predictor with other 
methods are discussed. ROC curves are used to demonstrate the 
efficacy of the proposed predictor, based on the computation of 25 
DNA sequences from three different organisms. 

Keywords—Bioinformatics, Coding region prediction, 
Computational load reduction, Digital Signal Processing, Fourier 
Transform,

I. INTRODUCTION

HE genomic information is usually represented by 
sequences of nucleotide symbols in the strands of DNA 

molecules, by symbolic codons (triplets of nucleotides), or by 
symbolic sequences of amino acids in the corresponding 
polypeptide chains. When representing by sequences of 
nucleotide symbols, the alphabet consists of the letters A, T, C 
and G; represent adenine, thymine, cytosine, and guanine 
respectively.  The segments of the DNA molecule responsible 
for protein synthesis are the genes. The regions containing 
useful information from genes are called exons; in eukaryotes 
these regions are separated by introns, whereas in prokaryotes 
they are continuous. 

 The computational recognition of genes is one of the 
challenges in the analysis of newly sequenced genomes, and it 
is a basic step to an understanding of the genome. It is needed 
to find accurate and fast tools to analyze genomic sequences 
and annotate genes. A number of methods have been proposed 
for gene and exon detection, based on distinctive features of 
protein-coding sequences, and among them many techniques 
using digital signal processing [1]-[8] and entropic 
segmentation methods [9], [10] have been used and shown to 
be successful. All these techniques are mainly based on the 
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period-3 periodicity present in most of genome exons due to 
the non-uniform distribution of codons in coding regions. The 
first methods try to detect where coding regions are located 
inside a large DNA strand; while the second ones try to find 
the borders between coding and noncoding regions. 

In this paper a new coding region predictor based on a 
combination of other approaches that use the Short Time 
Fourier Transform (STFT) [1]-[3] is proposed, and that could 
be computed using an algorithm [11] designed by the authors 
to improve the computational load. Some ideas about how to 
combine entropy based methods with the proposed predictor 
to increase its efficacy are discussed. In order to validate the 
results of the proposed predictor, ROC curves are used, which 
show a slight increase of the efficacy of the predictor when 
compared with the others that use the STFT.

II. MATERIALS AND METHODS

In the following paragraphs the new proposed predictor is 
presented, introducing firstly the technique that was used to 
convert the genomic information to a numerical sequence. In 
this work it has been extensively used the fast algorithm 
previously developed by the authors [11], in order to reduce 
the computational load associated to the use of the predictor. 
Later, some ideas about the use of entropy based methods and 
the possibility of combining them with the proposed predictor 
are discussed. At the end a brief presentation of ROC curves is 
made as a validation approach.  

A. Obtaining numerical sequences from genomic 
information 

There are several approaches [2], [6]-[8], [12], [13] to 
convert genomic information in numeric sequences using 
different representations. The most relevant for the application 
of signal processing tools is the assignation of complex 
numbers to each base of the nucleotide sequence, and the 
indicator sequences. The complex numbers to be assigned are 
selected according to their mathematical properties, their 
relation with the bases and the properties of the resulting 
numeric sequence. Indicator sequences are defined as binary 
sequences for each base, where 1 at position k indicates the 
presence of the base at that position, and 0 its absence. For 
example, for the DNA sequence x[k] = TACAGAACTTAGC… 
the binary indicator sequences for each base are: 
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One of the advantages of using indicator sequences lies in 
their simplicity, and in the possibility of providing a four-
dimensional representation of the frequency spectrum of the 
character string, when computing the Discrete Fourier 
Transform of each indicator sequence. 

B. Combining approaches based on Discrete Fourier 
Transform 

The Discrete Fourier Transform (DFT) has been used by 
several authors to predict coding regions in large DNA 
sequences. As a consequence of the non-uniform distribution 
of codons in coding regions, a three-periodicity is present in 
most of genome coding regions, which show a notable peak at 
the frequency component N/3 when calculating their DFT 
[14], [15]. Taking into account the validity of this result the 
Short Time Fourier Transform has been applied to large DNA 
sequences to predict coding regions, using a sliding window 
along the sequence, calculating the Fourier Transform of each 
subsequence, and taking only the N/3 frequency component. 
In [1] Tiwari introduces the Spectral Content Measure (SCM), 
defined as: 

2222 ][][][][][ kXkXkXkXkS GCTA .           (2) 

Here XA[k], XT[k], XC[k] and XG[k] are the frequency 
components at k of the Fourier Transform for the indicator 
sequences. In [2] Anastassiou introduces a new predictor, 
which he called “Optimized Spectral Content Measure 
(OSCM),” and that was defined as: 

2)()()()( sgGscCstTsaAW ,                               (3) 

where A(s), T(s), C(s) and G(s) are the frequency 
components at N/3 of the Fourier Transform for the sequence 
s. The values a, t, c and g are numerical complex constants 
obtained as a solution of an optimization problem proposed by 
the author to maximize the discriminatory capacity between 
coding and non-coding regions. This predictor demonstrated 
to be significantly better than the Spectral Content Measure 
for the sequences analyzed by Anasstasiou. 

Using an expression similar to (3), Kotlar proposes in [3] 
the Spectral Rotation Measure (SRM) (4), where A, T, C

and G are the approximated average values, in coding 
regions, of arg(A(s)), arg(T(s)), arg(C(s)), and arg(G(s))
respectively; and A, T, C and G are the angular deviation 
corresponding to A(s), T(s), C(s), and G(s). The magnitude 
shown in equation (4), proposed by Kotlar, achieves an 
increase in the magnitude on coding regions when computing 
this measure. 
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In his paper Kotlar demonstrates on all experimental exons, 
and for all non-coding strands of length greater that 50 bp 
from the first 15 Chromosomes of S. cerevisiae, that this 
predictor is more efficiently that the other two exposed 
methods. The measures were calculated using chromosome 16 
of S. cerevisiae.

In order to show how these three predictors work, the 
algorithm which described how they are constructed and used 
will be presented, supposing that there is a DNA sequence 
x[k] of length N. The first step is to define the value n<N
equal to the length of the sliding window used to move along 
the sequence x[k]. The use of the STFT involves completing 
the sequence with 2n/3 ceros at the beginning and with n/3
ceros at the end of x[k]. The procedure is to compute the four 
indicator sequences and the frequency component at n/3 (A(s),
T(s), C(s) and G(s)) of their Discrete Fourier Transform for 
each subsequence. Then S is calculated as the sum of the 
square of the modules of the four frequency components at 
n/3, while W and V previously multiply the frequency 
components at n/3 by four fixed complex values and then 
square the module of the result. 

The approach described assures to associate a value to each 
position of the original sequence x[k] by each predictor, and 
decide if the base at position k belongs to a coding region 
according to the measure of those values, which are obtained 
when computing the predictors for subsequence k.

Fig. 1 Distribution of the true positive fraction detected only by each 
predictor for all possible decision thresholds 

Based on these three predictors a new predictor was 
designed as a linear combination of them. In order to 
determine the linear combination coefficients, it was first 
considered the True Positive Fraction (The fraction of bases in 
the sequence that are predicted as coding regions, when they 
are truly inside a coding region) detected only by each 
predictor using a sample composed by 25 DNA sequences 
from different sizes and belonging to three different 
organisms. In Fig. 1 it is shown the distribution of these 
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fractions associated to each predictor for all possible decision 
thresholds using a sliding window of length 351, which is a 
typical value according to [2] when computing the DFT. 

The distribution of the true positive fraction detected only 
by the Optimized Spectral Content Measure appeared as 
hardly noticeable. This result clearly demonstrates that this 
predictor must be eliminated from the linear combination. The 
performance of the two remaining predictors when using the 
ROC analysis are very similar (Fig. 2), and after analyzing the 
similarity of the mean squared error of each predictor, the 
following equation was obtained: 

knSkmRkP ,                                                        (5) 

where R[k] and S[k] are the Spectral Rotation Measure and 
the Spectral Content Measure respectively, and m and n are 
the inverse of the maximum value reached by the 
corresponding predictor when computing the sequence. The 
objective of the previous multiplication of the measures by the 
values m and n is to normalize these measures before adding 
them.  Once P[k] is obtained, it can be normalized using the 
maximum norm, but it could be unnecessary because in 
practice some of the ways to calculate the threshold are based 
on the ratio of the average to the maximum of P[k].

C. Reducing the computational load 
The use of two predictors and a linear combination of these 

predictors increases the computational load of the approach. 
Here was used the algorithm proposed by the authors in a 
previous paper [11] to calculate the DFT for sliding windows, 
which reduced at great extent the computational load 
associated to this task. The general computation load is also 
reduced, considering that the N/3 frequency component 
coefficient of the Discrete Fourier Transform for each window 
is computed once per indicator sequence. 

D. Entropy-based methods 
The entropy-based segmentation methods are computational 

methods used to identify the homogeneous regions based on 
entropy measures. They are important for DNA-sequence 
analysis when identifying the borders between coding and 
noncoding regions. In [9] Bernaola et al. use a 12-symbol 
alphabet and Jensen-Shannon divergence for finding the 
borders between coding and noncoding regions in DNA. The 
12-symbol alphabet is based on nucleotide statistics inside 
codons, and in [10] Nicorici and Astola proposed the use of 
the Jensen-Rényi divergence measure based on the ideas of 
Bernaola to make the segmentation. Other ideas based on 
entropic methods were introduced in [16], where the authors 
propose a new representation of DNA sequences which is able 
to characterize certain random aspects of a DNA sequences 
using entropy. One of the advantages of these methods is that 
they do not need prior training on known databases to process 
the DNA sequence. 

For a DNA sequence a frequency vector can be defined as  
F = {fl,j} where l {A,T,C,G} and j {0,1,2}; fl,j is defined as 

the relative number of nucleotides of type l with phase j.
Based on the definition of the frequency vector, given two 
sequences of lengths n1 and n2 with frequency vectors F1 and  
F2 the Jensen-Shannon divergence is defined as: 

)]()()([2ln2),( 221121 FHnFHnFNHFFC ,          (6) 

where N = n1+n2, F = (n1/N)F1 + (n2/N)F2 is the frequency 
vector of the entire sequence obtained concatenating both 
sequences, and H(F) is the Shannon entropy [17], defined as: 
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,2, log)( .                                               (7) 

In case of using the Jensen-Rényi divergence, the Rényi 
entropy [18] is defined as:                      
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,
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1)( ,                                          (8) 

where >0 and 1, and can be considered as a 
generalization of Shannon entropy, which is a particular case 
of Rényi Entropy for =1.

In [9], [10] the authors propose a recursive algorithm to 
make the segmentation. Based on the basic ideas of the 
algorithm used to compute previous predictors presented, it is 
proposed the use of some entropic method to increase the 
efficacy of the combination, using a sliding rectangular 
window as in the STFT calculation. In this case, the 
divergence between both halves of each windowed 
subsequence when moving along the whole sequence was 
evaluated. To reduce the computation load involved in the 
calculation of frequency vectors associated to both halves of 
each subsequence it can be used a mathematical simplification 
consisting in the calculation of frequency vectors for the first 
subsequence and then calculate the other ones based on the 
prior frequency vectors as it is shown below. 

Let p
jlf ,  the frequency matrix obtained from one of the 

two halves of a subsequence at step p, then 1
,

p
jlf can be 

obtained subtracting 1 from element p
Bf 0 where index B is 

the first base of the subsequence at step p, adding 1 to 
p

Bf 0 where index B is the last base of subsequence at step 
p+1, and finally it is only necessary to make the permutations 
C0 C1 and C1 C2.

Once the whole sequence has been computed, the peaks 
must correspond to the borders between coding and 
noncoding regions, and this result can be used to increase the 
efficacy of the proposed predictor.

Another idea related to entropy based methods is the 
combination of the representation proposed in [16] and an 
entropic measure which reaches its highest values in the 
coding regions. This idea could be integrated directly into the 
proposed predictor, proposing a linear combination which 
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involves a predictor based on an entropic measure. 

E. Evaluation method: ROC Curves 
In order to measure and compare the efficacy of the 

proposed predictor with the other three approaches, it is 
proposed the use of the receiver operating characteristic 
(ROC) curves [19], [20], which provide a global 
representation of the prediction accuracy.

When a dichotomic test is evaluated (results can be only 
interpreted as positives or negatives), the sensitivity is defined 
as the probability that an individual be correctly classified 
when its real status is the one defined as positive, regarding 
the condition studied by the test. This is also known as True 
Positive Fraction (TPF). The specificity is the probability of 
an individual to be correctly classified when its real status is 
the one defined as negative. It is the result to subtract the 
False Positive Fraction (FPF) from 1. 

In Table 1 it is shown the statistical procedure to obtain the 
sensitivity and the specificity, considering the problem of 
coding region prediction in DNA sequences. 

Sensitivity (Ss) = TP/(TP+FN) = TPF 
Specificity (Sp) = TN/(TN+FP) = TNF = 1 – FPF 

Basically the ROC curve plots for every possible decision 
threshold, which ranges from zero to the maximum value 
reached by the predictor, the pair (1-Sp, Ss) when computing 
the whole sequence and the results are compared with the real 
values. The closer the ROC curve is to a diagonal, the less 
useful is the predictor in order to discriminate coding and non-
coding region of a DNA sequence. The more the curve moves 
to the upper left corner on the graph, the better the predictor. 

III. RESULTS

For the validation of the experiments all the techniques 
were applied to 25 genomic sequences with different features 
and sizes, belonging to three organisms: S. cerevisiae, S.
pombe and C. elegans. These sequences can be retrieved 
directly from the Genbank database, maintained by National 
Center for Biotechnology Information (NCBI) [21]. 

Fig. 2 shows the ROC curves associated with each predictor 
when computing the 25 selected DNA sequences, using a 
sliding window of size 351. It can be noticed that the graph 
corresponding to the proposed predictor (solid line) is more 
effective than the three other approaches. The approximate 
values measured by the area under the curve for each predictor 
are:  Proposed Predictor: 0.7767, Spectral Content Measure: 
0.7352, Optimized Spectral Content Measure: 0.7319 and 
Spectral Rotation Measure: 0.7351; demonstrating that the 

Proposed Predictor outperforms the efficacy of the Spectral 
Content Measure in 6.12%. Using sliding window of lengths 
180, 480 and 702, similar results were obtained.  

Fig. 2 ROC curves associated to each predictor. Proposed Predictor 
(Solid line), Spectral Content Measure (dash dot), Optimized 

Spectral Content Measure (dotted), Spectral Rotation Measure 
(dashed line) 

Fig. 3 shows the graph obtained at using the proposed 
predictor to a DNA sequence composed by 16680 bp inside 
chromosome X of S. cerevisiae. Real coding regions are 
represented using the rectangles.  

Fig. 3 Application of the proposed approach to a sequence contains 
16680 bp inside chromosome X of S. cerevisiae. Rectangles indicate 

real coding regions.

In order to evaluate the computation time of the proposed 
predictor when using the fast algorithm described in [11], 
Table 2 shows the average execution time, in seconds, when 
computing the Spectral Rotation Measure using the direct 
(traditional) method and the proposed predictor using the fast 
algorithm for two sequences with different lengths and using 
two different window lengths, under the same conditions.  

TABLE I
STATISTICAL PROCEDURE TO OBTAIN THE SENSIBILITY AND THE SPECIFICITY 

IN CODING REGION PREDICTION

Coding region Non-coding region 

Positive Prediction True Positive (TP) False Positive (FP) 

Negative Prediction False Negative (FN) True Negative (TN) 

TABLE II
COMPUTATION TIME COMPARISON, IN SECONDS, BETWEEN THE SRM USING THE 

DIRECT METHOD AND THE PROPOSED PREDITOR USING THE FAST ALGORITHM 
FOR DIFFERENT DNA STRINGS

DNA stretch length 8000 bp 16680 bp 
Window Length 351 702 351 702 
Spectral Rotation Measure using 
direct method 1.4210 2.1700 2.9030 4.6050 

Proposed predictor using the fast 
algorithm 0.0470 0.0620 0.0930 0.1090 
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The percentage of time used by the proposed predictor 
using the fast algorithm is about 3% of the time employed to 
compute the Spectral Rotation Measure using the direct 
method. 

IV. CONCLUSIONS

The prediction of coding regions in large DNA sequences is 
a basic problem to annotate genes. Digital Signal Processing 
techniques have been used successfully to solve this problem; 
however the current tools are still unable to predict all the 
coding regions present in a DNA sequence.

In this work, a new predictor is proposed based on the 
linear combination of two other methods that showed good 
efficacy individually and also on a fast algorithm previously 
developed by the authors to reduce the computational load. 
The efficacy of the proposed predictor was evaluated by 
means of ROC curves, which showed a better performance in 
coding regions detection when compared to the previous 
methods. A computation time comparison between the 
Spectral Rotation Measure using the direct method and the 
proposed predictor using the fast algorithm demonstrated that 
even when combining two predictors the computational load 
does not increase significantly. 
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