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Abstract—The very nonlinear nature of the generator and system 

behaviour following a severe disturbance precludes the use of 
classical linear control technique. In this paper, a new approach of 
nonlinear control is proposed for transient and steady state stability 
analysis of a synchronous generator. The control law of the generator 
excitation is derived from the basis of Lyapunov stability criterion. 
The overall stability of the system is shown using Lyapunov 
technique. The application of the proposed controller to simulated 
generator excitation control under a large sudden fault and wide 
range of operating conditions demonstrates that the new control 
strategy is superior to conventional automatic voltage regulator 
(AVR), and show very promising results. 
 

Keywords—Excitation control, Lyapunov technique, non linear 
control, synchronous generator, transient stability, voltage regulation. 
 

I.  INTRODUCTION 

HE high complexity and nonlinearity of power systems, 
together with their almost continuously time varying 

nature, have deal of challenge of power system control 
engineers for decades. A particular issue encountered at the 
generating plant level is to maintain stability under various 
operating conditions. In order to obtain high quality for 
synchronous generator controllers, many researches has been 
established and numerous paper are published.  

Conventional excitation controllers are mainly designed by 
using linear control theory. The principal conventional 
excitation controller is the automatic voltage regulator (AVR). 
Many different AVR models have been developed to represent 
the various types used in a power system. The IEEE defined 
several AVR types, the main one of which (Type 1) is shown 
in Fig. 1. The modern AVR employing conventional, fixed 
parameter compensators, whilst capable of providing good 
steady state voltage regulation and fast dynamic response to 
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disturbances, do suffer from considerable variations in voltage 
control performance as the generator operating change. 
Several forms of adaptive control have been investigated to 
address the problem of performance variation [1].  

Adversely, the generator automatic voltage regulator which 
reacts only to the voltage error weakens the damping 
introduced by damper windings. This detrimental effect of the 
AVR can be compensated using supplementary control loop 
which is the power system stabiliser. These stabilizers 
introduced additional system damping signals derived from 
the machine speed or power through the excitation system in 
order to improve the damping of power swings [2]. 
Conventional fixed parameter stabilizers work reasonably well 
over medium range of operating conditions. However may 
diminish as the generator load changes or the network 
configuration is altered by faults or other switching conditions 
which lead to deterioration in the stabilizer performance. 
Remarkable efforts have been devoted to the design of 
appropriate PSS; various methods, such as root locus, 
eigenvalue techniques, pole placement, adaptive control, etc 
have been used. But in all these methods model uncertainties 
cannot be considered explicitly at the design stage [3]. Hence, 
attention has been focused on the application of nonlinear 
controllers, which are independent of the equilibrium point 
and take into account the important non-linearities of the 
power system model.  

The application of nonlinear control techniques to solve the 
transient stabilisation problem has been given much attention 
[4], [5], [6]. Most of these controllers are based on feedback 
linearization technique [7], [8].  It was shown in the literatures 
that the dynamics of the power system could be exactly 
linearized by employing nonlinear state feedback. The essence 
of this technique is to first transform a nonlinear system into a 
linear on by a nonlinear feedback, and then uses the well-
known linear design techniques to complete the controller 
design. Consequently one can use conventional linear control 
to give acceptable performance [9], [10] and [11]. 
Nevertheless in many cases the feedback linearization method 
requires precise parameters plant and often cancels some 
useful non-linearities. On the other hand we are frequently 
faced with uncertainty in practical power systems. In this case, 
it is difficult to exactly linearize the system with nominal 
parameters.  Adaptive versions of   the   feedback   linearizing 
controls are then developed in [12], [13].   Feedback 
linearization is recently enhanced by using robust control 
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designs such as H∝ control and L2 disturbance attenuation 
[14], [15].  

Lyapunov theory has for a long time been an important tool 
in linear as well as nonlinear control [16]. However, its use 
within nonlinear control has been hampered by the difficulties 
to find a Lyapunov function for a given system. If one can be 
found, the system is known to be stable, but the task of 
finding such a function has often been left to the imagination 
and experience of the designer. 

The aim of this paper is the design of a control law for a 
nonlinear excitation controller to enhance the transient 
stability and to ensure good post-fault voltage regulation for 
sSynchronous generator connected to an infinite bus through a 
transmission line, as shown in Fig. 2. The model of the 
synchronous machine used is a 7th order model, 5 for the 
electrical dynamics and 2 for the mechanical dynamics, which 
takes into account the stator dynamics as well as the damper 
winding effects and practical limitation on control. The 
feedback system is globally asymptotically stable in the sense 
of the Lyapunov stability theory.  

The rest of this paper is organized as follows. In section II, 
we describe the single-machine-infinite-bus power system 
model in a state space form suitable for Lyapunov-based 
control design. In section III, the nonlinear excitation 
controller is derived. The stability of this controller is proven. 
Some illustrative simulation results are presented and 
compared to the performance of a standard regulator voltage 
AVR in section IV to validate the proposed controller and 
some concluding remarks are mentioned in the final section.  

II.  MATHEMATICAL MODEL OF GENERATOR SYSTEM STUDIED 
The generator to be controlled, studied in this work, is 

shown in    Fig. 2.   It    consists   of   synchronous generator 
connected to an infinite bus via a transmission line (SMIB). 
The synchronous generator is described by a 7th order 
nonlinear mathematical model [17], [18] which comprises 
three stator windings, on field winding and tow damper 
windings. The generator winding are magnetically coupled. 

This coupling is function of the rotor position, and therefore, 
the flux linking each winding is also a function of the rotor 
position.  

The synchronous machine equations in terms of Park’s d-q 
axis are expressed as follows [18]: 
Armature windings 

                  d
d s d q

dv R i
dt
λ

ωλ= − − +                            (1) 

q
q s q d

d
v R i

dt
λ

ωλ= − + +                             (2) 

 
Where 

  ( )d d d md fd kdL i L i iλ = − + +                            (4) 

   q q q mq kqL i L iλ = − +                 (5) 
 

Field winding 

          fdd kd
fd s fd md fd md

didi div R i L L L
dt dt dt

= − + +             (6) 

Damper windings  

         0 fdd kd
kd kd md md kd

didi diR i L L L
dt dt dt

= − + +                (7) 

0 kqd
kq kq mq kq

didiR i L L
dt dt

= − +                                  (8) 

Where 
vd, vq  Direct and quadrature axis stator terminal 

voltage components, respectively. 
vfd         Excitation control input. 
vt           Terminal voltage. 
id, iq Direct and quadrature axis stator current 

components, respectively.  
            ifd     Field winding Current 
            ikd, ikq Direct and quadrature axis damper winding                   

current components, respectively. 
           λd ,λq Direct and quadrature axis flux linkages, 

respectively. 
            Rs    Stator resistance. 
            Rfd   Field resistance. 
            Rkd, Rkq  Damper winding resistances. 
           Ld, Lq Direct and quadrature self inductances, 

respectively.  
           Lfd     Rotor self  inductance. 
           Lid, Lkq  Direct and quadrature damper winding self                   
     inductances, respectively.  
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Fig. 1 Bloc diagram of the conventional IEEE type 1 AVR 
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Fig. 2 Single machine infinite bus 
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           Lmd ,Lmq Direct and quadrature magnetizing 
inductances, respectively.  

                    
 Mechanical equations 

                                    1d
dt
δ ω= −                                    (9) 

                          2 m e
dH T T D
dt
ω ω= − −                         (10) 

 Where 
           ω    Angular speed of the generator.  
           δ    Rotor angle of the generator. 
           Tm   Mechanical torque. 
           Te     Electromagnetic  torque. 
           D      Damping constant. 
           H    Inertia  constant. 
 

The electromagnetic torque is 
 

   ( )e q d d q mfd fd q md kd q mq d kqT L L i i L i i L i i L i i= − + + −       (11) 

 
The equation for transmission network with external 

resistance eR and inductance eL , in the Park transformed 
coordinates are 

           cos( )d
d e d e e q

div R i L L i V a
dt

ω δ∞= + − + −         (12) 

           sin( )q
q e q e e d

di
v R i L L i V a

dt
ω δ∞= + + − −          (13) 

 
Where V∝ is the infinite bus voltage and a is its phase angle. 
 

In state space form the resulting system by combining 
equations (1) to (13) is highly nonlinear not only in the state 
but in the input and output as well [8]. The mathematical 
model of the generator system, in per unit, has the following 
form 
 

11 12 13 14 15

16 1        cos( )

d
d fd q kd kq

fd

di a i a i a i a i a i
dt

a a b v

ω ω

δ

= + + + +

+ − + +
                 (14) 

21 22 23 24 25

26 2        cos( )

fd
d fd q kd kq

fd

di
a i a i a i a i a i

dt
a a b v

ω ω

δ

= + + + +

+ − + +
              (15) 

31 32 33 34 35

36        sin( )

q
d fd q kd kq

di
a i a i a i a i a i

dt
a a

ω ω ω

δ

= + + + +

+ − +
              (16) 

41 42 43 44 45

46 3        cos( )

kd
d fd q kd kq

fd

di a i a i a i a i a i
dt

a a b v

ω ω

δ

= + + + +

+ − + +
               (17) 

51 52 53 54 55

56        sin( )

kq
d fd q kd kq

di
a i a i a i a i a i

dt
a a

ω ω ω

δ

= + + + +

+ − +
             (18) 

61 62 63 64 65 66d q fd q q kd d kq m
d a i i a i i a i i a i i a a T
dt
ω ω= + + + + +  

 (19) 

                            ( 1)R
d
dt
δ ω ω= −                (20) 

 
Where ωR  is the electrical frequency. 

III.  THE  CONTROL STRATEGIES AND STABILITY ANALYSES 
Lyapunov’s second or direct method is a very powerful tool 

of assessing stability of a nonlinear system [19]. In this paper, 
the concept of Lyapunov’s stability criterion is used to select 
the control strategy in order to ensure steady and transient 
stability of Single Machine Infinite Bus (SMIB). To reach this 
objective, we define the terminal voltage error as 

 t te v v∗= −              (21) 
 

Where tv∗  is the desired trajectory and  

         2 2
t d qv v v= +                                (22) 

 
The expressions of dv and qv  as a function of the state 
variables can be expressed as follow  

11 12 13 14 15

16 17        cos( )
d d fd q kd kq

fd

v c i c i c i c i c i

c a c v

ω ω

δ

= + + + +

+ − + +
                 (23) 

21 22 23 24 25

26        sin( )
q d fd q kd kqv c i c i c i c i c i

c a

ω ω ω

δ

= + + + +

+ − +
              (24) 

 
A positive definite Lyapunov function of the SMIB can be 
considered as  

                                    21
2

V e=                                   (25) 

 
The basis of the Lyapunov’s stability theory is that the time 
derivative of ( )V e must be negative semi definite along the 
post fault trajectory.  

The time derivative of the ( )V e can be written as 

               
dV dee
dt dt

=                                 (26) 

  
 From the derivative of the terminal voltage error and by using 
(14)-(18) and (22)-(24), we obtains the following expression  
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  17 3 14 1 2 14

1

     

         

qt d
d q

t

fdd d d d
fd

t t t t

q q

t

dvdv dvde v v
dt dt v dt dt

dvv v v vc b c v c
v dt v v v

v dv
v dt

β β

⎛ ⎞
= = +⎜ ⎟

⎝ ⎠

= + + +

+

    (27) 

Where  

      
1 11 12 13

15 16    sin( )

fd qd
q

kq
kq

di didi dc c c i
dt dt dt dt

di dc i c a
dt dt

ωβ ω

ωω δ

⎛ ⎞
= + + +⎜ ⎟

⎝ ⎠
⎛ ⎞

+ + + − +⎜ ⎟
⎝ ⎠

             (28) 

And     

      2 41 42 43 44 45

46                    cos( )
d fd q kd kqa i a i a i a i a i

a a

β ω ω

δ

= + + + +

+ − +
           (29) 

 
Then the derivative of the Lyapunov function is computed as 

          
17 3 14 1

2 14                    

fdd d d
fd

t t t

q qd

t t

dvv v vdV c e b c v e e
dt v dt v v

v dvvc e e
v v dt

β

β

= + +

+ +

          (30) 

 
Thus, the Lyapunov’s stability criterion can be satisfied by 
making term on the right hand side of (30) negative semi 
definite in order to guarantee the global asymptotic stability of 
the system. 

The candidates of fdv  that guarantees the semi definiteness 
criterion of equation (30) can be considered as 

             

3 14 1

17
14 2

           

d d
fd

t tfd t

q qd d

t t

v vKe b c v
v vdv v

v dvdt c v vc
v v dt

β

β

⎡ ⎤+ +⎢ ⎥
⎢ ⎥= −
⎢ ⎥
+ +⎢ ⎥

⎣ ⎦

        (31) 

 
Where K is a positive constant feedback gain. 

Substituting (31) into (30) the derivative of the Lyapunov 
function becomes 

                         2dV Ke
dt

= −                                       (32) 

 
Define the following equation 

                   2( ) 0W t Ke= ≥                                    (33) 
 

Furthermore, by using LaSalle Yoshizawa’s theorem [18], its 
can be shown that ( )W t  tend to zero as t → ∞ . Therefore, 
e will converge to zero as. 

VI.  SIMULATION RESULTS AND DISCUSSION 
To show the validity of the mathematical analysis and, 

hence, to investigate the performance of the proposed 
nonlinear control scheme, Simulations works are carried out 
for the Single Machine Infinite Bus System. The system 
configuration is presented as shown in Fig. 3. 

The performance of the nonlinear controller was tested on 
the complete 7th order model of the generator system with the 
physical limit of the excitation voltage of the generator. 
Digital simulations have been carried out using 
MATLAB/SIMULINK. The parameter values used in the 
ensuing simulation are given in the appendix. In order to 
prove the robustness of the proposed controller, the results are 
compared with those of the conventional IEEE type 1 AVR. 
The fault considered in this paper is a symmetrical three-phase 
short circuit, which occurs on the infinite bus. The following 
temporary fault sequence is simulated: 

Stage 1 : The system is in prefault steady state. 
Stage 2 : A fault occurs at time t = 0.1 seconds. 
Stage 3 : The fault is cleared after t = 0.1seconds. 
Stage 4 : The system is in post fault-state.    

 Consider tow cases in the simulation. Firstly, consider the 
operating point 0.3mP =  p. u. The simulation results are 
presented in figure 4 to 7. Terminal voltage, excitation 
voltage, rotor angle and rotor speed are shown, respectively. It 
is seen how the stabilisation of tv  is improved using the 
nonlinear controller compared to the one obtained using the 
linear AVR. We can see that the proposed controller can 
quickly and accurately track the desired terminal voltage. 

It is seen how both dynamics of the rotor angle and the 
rotor speed exhibit large overshoots during post fault state 
before they settles to its steady states value with the standard 
linear scheme than with the proposed controller. It is obvious 
that with the derived control high and accuracy stability can 
be achieved. In the next simulation, we consider the operating 
point  0.9mP =  p. u. The simulation results given in Fig. 8 to 
Fig. 11 indicate that the proposed controller can maintain the 
system    stability   under   all   realistic   operating conditions. 
Adversely, it can be seen that with the AVR, terminal voltage, 
excitation voltage, rotor angle and rotor speed display 
oscillations of constant amplitude showing that system 
stability is deteriorated. From the results presented earlier, it is 
quite evident that the proposed technique gives good and high 
performances transient stability.  

 

Synchronous
Generator Nonlinear  

Controller 

vfd 

Pm

Vref  Vt  

System state variables

 
 

Fig. 3 Bloc diagram of the proposed nonlinear scheme 
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Fig. 4 Terminal voltage with operating point 0.3mP =  p. u 

 
Fig. 5 Excitation voltage with operating point 0.3mP =  p. u 

 
Fig. 6 Rotor angle with operating point 0.3mP =  p. u 

 
Fig. 7 Rotor speed with operating point 0.3mP =  p. u 

V.   CONCLUSION 
 

This paper has successfully demonstrated the design, and 
stability analysis of Lyapunov technique approach for the 
transient stability of a SMIB power system based on the 
complete 7th order model of the generator system. The 
nonlinear behavior of the system limits the performance of 
classical linear controllers used for this purpose.  

The feedback system is globally asymptotically stable in the 
sense of Lyapunov method. The design of the controller is 
independent of the operating point. 

Simulation results demonstrate that generator excitation 
with the proposed controller can effectively improve the 
voltage stability damp oscillation and enhance the transient 
stability of power system under a large sudden fault. The 
proposed controller demonstrates consistent superiority and 
most importantly reliability and robustness compared to the 
conventional AVR controller. 
 
 

 
Fig. 8 Terminal voltage with operating point 0.9mP =  p. u 

 
 

Fig. 9 Excitation voltage with operating point 0.9mP =  p. u 
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Fig. 10 Rotor angle with operating point 0.9mP =  p. u 

 

Fig. 11 Rotor speed with operating point 0.9mP =  p. u 

APPENDIX 
TABLE I 

PARAMETERS  OF  THE  POWER SYNCHRONOUS GENERATOR IN P.U. 
 

Parameter Value 
Rs, stator resistance. 
Rfd , field resistance. 
Rkd, direct damper winding resistance. 
Rkq, quadrature damper winding resistance. 
Lfd, rotor self inductance. 
Lkd, direct damper winding self inductance. 
Lkq, quadrature damper winding self inductance.  
Lmd, direct magnetizing inductance.  
Lmq, quadrature magnetizing inductance.  
V∝ , infinite bus voltage 
D, damping constant. 
H, inertia constant. 

3.10-3 

6.3581.10-4 

4.6454.10-3 

6.8460.10-3 

1.083 

0.9568 

0.2321 

9.1763.10-1 

2.1763.10-1 

1 

0 

3.195 
 

TABLE II 
PARAMETERS  OF  THE  TRANSMISSION LINE 

 
Parameter Value 

Le, inductance of the transmission line. 
Re, resistance of the transmission line. 

11.16.10-3 

60.10-3 
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