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Abstract—Perfectly suited for natural or man-made emergency 

and disaster management situations such as flood, earthquakes, 
tornadoes, or tsunami, multi-target search path planning for a team of 
rescue agents is known to be computationally hard, and most 
techniques developed so far come short to successfully estimate 
optimality gap. A novel mixed-integer linear programming (MIP) 
formulation is proposed to optimally solve the multi-target multi-
agent discrete search and rescue (SAR) path planning problem. 
Aimed at maximizing cumulative probability of successful target 
detection, it captures anticipated feedback information associated 
with possible observation outcomes resulting from projected path 
execution, while modeling agent discrete actions over all possible 
moving directions. Problem modeling further takes advantage of 
network representation to encompass decision variables, expedite 
compact constraint specification, and lead to substantial problem-
solving speed-up. The proposed MIP approach uses CPLEX 
optimization machinery, efficiently computing near-optimal solutions 
for practical size problems, while giving a robust upper bound 
obtained from Lagrangean integrality constraint relaxation. Should 
eventually a target be positively detected during plan execution, a 
new problem instance would simply be reformulated from the current 
state, and then solved over the next decision cycle. A computational 
experiment shows the feasibility and the value of the proposed 
approach. 

 
Keywords—Search path planning, search and rescue, multi-

agent, mixed-integer linear programming, optimization. 

I. INTRODUCTION 
EARCH and rescue path planning is an increasingly 
important problem for a variety of civilian and military 

domains such as homeland security and emergency 
management. The basic discrete SAR or optimal searcher path 
problem involving a stationary target is known to be NP-Hard 
[1]. SAR may be generally characterized through multiple 
dimensions and attributes including: one-sided search in which 
targets are non-responsive toward searcher’s actions, two-
sided, describing target behavior diversity (cooperative, non-
cooperative or anti-cooperative), stationary Vs. moving target 
search, discrete Vs. continuous time and space search (efforts 
indivisibility/divisibility), observation model, static/dynamic 
as well as open and closed -loop decision models, pursued 
objectives, target and searcher multiplicity and diversity. Early 
work on related search problems emerges from search theory 
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[2], [3]. Search-theoretic approaches mostly relate to the effort 
(time spent per visit) allocation decision problem rather than 
path construction. Based upon a mathematical framework, 
efforts have increasingly been devoted to algorithmic 
contributions to handle more complex dynamic problem 
settings and variants [4], [5]-[7]. In counterpart, many 
contributions on search path planning may be found in the 
robotics literature in the area of robot motion planning [8] and 
namely, terrain acquisition [9], [10] and coverage path 
planning [11]-[13]. Robot motion planning explored search 
path planning, primarily providing constrained shortest path 
type solutions for coverage problem instances [14], [15]. 
These studies typically examine uncertain search environment 
problems with limited prior domain knowledge, involving 
unknown sparsely distributed static targets and obstacles. 
Recent taxonomies and comprehensive surveys on target 
search problems from search theory and artificial 
intelligence/distributed robotic control perspectives may be 
found in [16], [5], [17]-[19] respectively.  

Exact problem-solving methods for sequential decision 
search problem formulations show computational complexity 
to scale exponentially. For instance, dynamic programming 
[5], [19], [7], [20] or tree –based search techniques [21], [22] 
may satisfactorily work under specific constraints and 
conditions but ultimately face the curse of dimensionality, 
showing poor scalability even for moderate size problem. This 
paved the way to the development of efficient heuristic and 
approximate methods. Some early approaches simply reduce 
computational complexity by relaxing some hard constraints 
to keep the problem manageable. Methods inspired from 
search theory propose procedures mainly based on branch and 
bound [20], [7] or path finding A* types of techniques and 
variants. Despite the development of many heuristics and 
approximate problem-solving techniques for the SAR problem 
[5], [19], published procedures still deliver approximate 
solution and mostly fail to provably estimate real performance 
optimality gap for practical size problems, questioning their 
real expected relative efficiency. 

In this paper, we propose a new exact mixed-integer linear 
programming formulation to optimally solve the multi-agent 
discrete search path planning problem aimed at detecting 
multiple stationary objects. In the proposed open-loop with 
anticipated feedback problem model, ‘open-loop with 
anticipated feedback’ refers to offline planning, while 
capturing information resulting from predicted agent 
observations (projected cell visit action outcome) as opposed 
to real feedback. Anticipated feedback augments pure open-
loop formulations which simply ignore information feedback, 
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while significantly improving solution quality, and mitigating 
computational complexity limitations traditionally associated 
with closed-loop problem formulations (e.g. dynamic 
programming, and partially observable Markov decision 
processes). This contribution aims at extending a single agent 
search path planning decision model [23] to a multi-target 
multi-agent environment in which feasible agent actions are 
further expanded to any possible neighboring move directions 
substantially increasing computational complexity, while 
capturing anticipated feedback information resulting from 
possible observation outcomes occurring from projected path 
execution. In that setting, the open-loop with anticipated 
feedback information (observations) decision model involves 
n agents (searchers) with imperfect sensing capability (but 
false alarm -free) searching an area (grid) to maximize 
cumulative probability of success in detecting m independent 
heterogeneous (dissimilar) targets, given a time horizon and 
prior cell occupancy probability distribution. The model takes 
advantage of anticipated feedback information resulting from 
observations outcomes along the path to update target 
occupancy beliefs and make better decisions. A network flow 
representation significantly reduces modeling complexity (e.g. 
constraint specification) as well as implementation and 
computational costs. The new decision model relies on an 
abstract network representation, coupled to a parallel 
computing capability (e.g. using the CPLEX solver [24]) to 
gain additional speed-up. The novelty lies in a new linear 
model, and the fast computation of near optimal solutions of 
practical size problems, providing a tight upper bound on 
solution quality through Lagrangean programming relaxation. 
The computable upper bound constitutes an objective measure 
to fairly estimate and compare performance gap against 
various techniques. Computational results prove the proposed 
approach very efficient. Small computational run-time 
naturally enables open-loop model (with anticipated feedback) 
extension to a closed-loop formulation in which action 
outcomes from the previous episode may be explicitly 
incorporated in real-time to update target occupancy belief 
distribution. As a result, an updated solution can be 
dynamically computed, by periodically solving new problem 
instances taking advantage of feedback information (from real 
observation outcomes), over short rolling horizons. The idea is 
to readily exploit episodic feedback information whenever 
available. In that case, computational run-time required to 
generate a solution corresponds to the duration of an episode. 
This way to embrace constructive dynamic planning in real 
time through inexpensive computational effort is largely 
preferable to dynamic programming techniques aimed at 
computing an exhaustive optimal policy, mapping suitable 
actions to any possible posterior states at a prohibitive 
computational cost. The proposed approach rather determines 
the best sequence of moves given the current state while 
updating the path solution resulting from partial path 
execution by repeatedly solving a new problem instance 
characterizing the follow-on state. Similarly, large time 
horizon problems can be solved efficiently, optimizing 
multiple problem instances over receding horizons. 

The structure of the paper is organized as follows. Section 
II first introduces problem definition, describing the main 
characteristics of the open-loop search path planning problem 
with anticipated feedback. Then the main solution concept for 
the problem is presented in Section III. It describes a new 
mixed-integer linear programming network flow formulation 
combined with network representation to efficiently compute a 
near-optimal solution. The proposed CPLEX-based problem-
solving technique and some implementation issues are then 
briefly presented in Section IV. Section V reports and 
discusses computational results depicting the value of the 
proposed method. Finally, a conclusion is given in Section VI. 

II. PROBLEM DEFINITION 

A. General Description 
The discrete centralized search and rescue path planning 

problem involves a team of n homogeneous stand-off sensor 
agents searching m stationary and independent heterogeneous 
targets in a bounded environment over a given time horizon. 
From a search and rescue mission perspective, the goal 
consists in maximizing a weighted cumulative probability of 
success in detecting multiple heterogeneous targets within a 
given region. Weights capture predetermined relative target 
values. Represented through a grid, the search region 
characterizes an area defined as a set of cells N, describing 
possible target locations. Presumably occupying a single cell, 
the precise location of a given target is assumed unknown. A 
prior target location probability density distribution for which 
cell occupancy probabilities sum up to one can be derived 
from domain knowledge. It reflects possible individual cell 
occupancy, defining a grid cognitive map or uncertainty grid. 
A cell may be occupied by multiple targets. Should a target be 
located outside the search areas of interest, a special 
inaccessible, and invisible virtual cell would simply be added 
to the basic problem description depicted. A target cognitive 
map constitutes a knowledge base describing a particular 
world state, including variables such as target occupancy 
belief distribution, time, agent positions and orientations. An 
example of a cognitive map for a given target is illustrated in 
Fig. 1 at a specific point in time. 
 

 
Fig. 1 Uncertainty grid /cognitive map at time step t for a given 

target. The 4-agent team beliefs are displayed through multi-level 
shaded cell areas. Projected agent plans are represented as possible 

paths 
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The duration of a cell visit or service time is assumed 
constant, specifying the period of each episode. Vehicles are 
assumed to visit different cell locations at the same time, and 
fly at slightly different altitudes to avoid colliding with one 
other. A search path solution consists in constructing an agent 
path plan selecting base-level control action to maximize 
target detection. 

B. Agent Path Planning 
Episodic agent search path planning decision is based on 

agent’s position (cell location), specific orientation {N, S, E, 
W, NE, SE, SW, NW} and speed determining possible legal 
moves to adjacent cell locations. For example, the 3-move 
agent investigated in [23] is limited to three possible moving 
directions with respect to its current heading, namely, ahead, 
right or left as depicted in Fig. 2.  

 

 
Fig. 2 Agent’s region of interest displayed as forward move 

projection span (possible paths), for a 3-move agent over a 3–step 
time horizon 

 
In this work, agent movement or manoeuvring capability is 

generalized to all degrees of freedom, permitting free motion 
along any possible directions to explore its neighborhood. An 
agent can therefore legally move toward its neighbouring cells 
offering eight alternate possible directions at each time step. 
This additional capability expands an agent path solution 
space by a factor (8/3)T over a 3-move planning agent for a 
given time horizon T, significantly increasing computational 
complexity. 

The primary goal consists in planning base-level control 
action moves to maximize probability of success (target 
detection) over the entire grid. 

C. Cumulative Probability of Success 
In the proposed open-loop SAR model, the probability to 

successfully detect multiple targets resulting from n agent path 
solution executions on the grid is defined as the sum over cells 
of the product of the probability of detection reflected from 
cell visits and target cell occupancy belief dictated by 
cognitive maps (grids) [5], [25], [26]. A weighted cumulative 
probability of success (CPOS) for team path solutions 
(sequence of cell visits) over a time horizon T can then be 
expressed as follows: 
 

∑ ∑ ∑∑ ∑ ∑
∈∈

==
Nc t

ctcc
Nc t

ct ppwposwCPOS
τ

τττ
τ

ττ (1) 

 
where posctτ represents the probability of successfully 
detecting targetτ  while visiting cell c over period t given it 
has not been detected during earlier visits. wτ reflects a user-
defined weight capturing relative target value. pctτ refers to the 

probability/belief of cell occupancy by target τ during time 
interval t which incorporates “anticipated” information 
feedback that would result from past visits. As for pccτ, it is a 
conditional probability on a specific agent visit to ‘correctly’ 
detect target τ in cell c given that τ is present in c. Target 
heterogeneity implies conditional probability of correct 
detection diversity. An agent sensor is assumed to be false-
alarm free, meaning that a visit to a vacant cell induces a 
negative observation by the sensing agent. Conversely, based 
on this assumption, a positive observation confirms that a 
target is found. In the current setting, sensor range defining 
visibility or footprint (coverage of observable cells given the 
current sensor position) is limited to the cell being searched. 

III. MIXED-INTEGER LINEAR PROGRAMMING MODEL 
FORMULATION 

A. Network Representation 
A network representation is used to simplify modeling and 

constraint specification as well as problem-solving, as it 
eliminates the need to explicitly capture all constraints. These 
include maximum path length or deadline, admissible/legal 
move, and disconnected subtours elimination which may 
significantly impact run-time when handled explicitly. 

Let Gk=(Vk, Ak)be the grid network, a directed acyclic graph 

associated with agent k∈η ={1,...,n}, where Vk ∪
Tt

kt
∈

= V is 

the set of vertices associated to agent states (i.e. position and 
orientation state variables during a given episode t ∈
T={0,1,2,..,|T|-1}), and Ak the set of arcs (i,j) where i,j∈Vk, 
reflecting possible agent state transition between consecutive 
episodes over the grid, corresponding to a legal move m 
selected from the action set A={left, ahead, right}. Nkt = N is 
the set of possible cell locations {1,...,|N|} over the grid during 
episode t whereas Okt = O refers to the set of possible agent 
orientations/headings {E,NE,N,NW,W,SW,S,SE} during 
episode t. As a result, Vk ∪

Tt
kt

∈

= V = .)(∪
Tt

ktkt ON
∈

× The 

nodes o and dare additional fictitious origin and destination 
location vertices defining legal path ends in graph. An excerpt 
from the abstracted representation for the agent network over 
two consecutive episodes is given in Fig. 3. An integer binary 
flow decision variable xijk is associated to each arc (i,j)∈Ak. 
Agent k path solution include arcs (i,j)∈Ak for which xijk = 1. 
Given an initial agent state i0(k), path may be defined over the 
grid network traveling along arcs connecting o to d 
instantiating flow decision variables to build feasible paths 
and then, consequently, assigning visit decision variables 
involved in the objective function. Agent state vertex 
duplication over |T| episodes is aimed at eliminating disjoint 
solution subtours otherwise difficult to handle explicitly, and 
provides a directed acyclic graph to represent a legal solution 
through binary integer flow decision variables including a 
multi-cycle path (possible occurrence of many visits on the 
same cell). Duplication implicitly satisfies path length 
constraint as well. The significant gain obtained through 
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duplication clearly exceeds the cost incurred by slightly 
degraded model readability due to the utilization of more 
complex notations. The agent network includes |O| |N| |T| 
nodes and |O| |N| |T| |A| arcs. It is assumed that a cell c can be 
visited at most Vc times. 

 

 
Fig. 3 Agent grid network (directed acyclic graph) excerpt, over 
consecutive episodes t and t+1 for a 3x3 -cell grid. Nodes depict 

agent state (position, orientation, episode) whereas arcs capture node 
transition between episodes defined by possible legal moves. Squares 
refer to grid cells enclosing 8 possible agent orientations. A |T|-move 
path may be constructed by moving along arcs from stage 0 to stage 

|T|-1 

B. Mathematical Modeling 
A mathematical mixed-integer linear programming (MIP) 

formulation is proposed for the discrete stationary multi-target 
search and rescue (SAR) path planning problem. It extends the 
single agent model [23] to a multi-agent multi-target setting 
while incorporating any possible agent action moves. 

The open-loop decision model captures explicitly ahead of 
time anticipated information feedback resulting from projected 
action execution to update target cell occupancy probability 
(belief). Occupancy belief are assumed to be independent of 
past search visits as reported for the optimal searcher path 
problem [5], [25]-[28]. Accordingly, based on the completion 
of a projected visit in cell c during time interval t, the posterior 
probability of cell containment for a given target τpc’ t+1τ for 
any cell c’ is related to its prior belief pc’ tτ by: 

 
( ) τττ δ tccccctc ppp ''1' 1−=+  (2) 

 
where δcc’= 1 if c’=c and 0 otherwise. pc’tτ refers to the 
probability/belief of cell c’ occupancy by targetτ during time 

interval t which incorporates “anticipated” information 
feedback that would result from past visits. 

It should be noted that even if probability update 
normalization does not change relative probability over cells c 
for a given path, it nonetheless introduces nonlinearity making 
problem-solving much harder. However, it is assumed that 
normalization alone does not generally induce substantial 
differences to significantly impact the quality of the final path 
solution for this problem. Therefore, similarly to [5], [25]-
[28], we do deliberately ignore normalization in updating 
occupancy beliefs, proposing a near-optimal solution to an 
approximate problem model. 

The variables and parameters defining the decision model 
are given as follows: 
η :  set of homogeneous agents {1,2,…,n} 
N:  set of cells defining the grid search area {1,2,..,|N|} 
T:  set of time intervals defining the time horizon 

{0,1,...,|T|-1} 
Τ: set of targets {1,2,…,m} 
wτ :  relative value given to target τ( 1=∑

Τ∈τ
τw ) 

Vc:  maximum number of visits on cell c 
pccτ:  conditional probability of ‘correct’ target τ detection 

on a visit in cell c given that the target is located in c. 
βcτ

 : 1/(1-pccτ) 

pctτ :  belief of cell c occupancy by targetτ during time 
interval t. {pc0} refers to the initial belief distribution 
of target occupancy over the grid.  

posctτ : probability of success (finding the target τ) resulting 
from the observation of cell c at the end of time 
interval t  

CPOS: objective function defining weighted cumulative 
probability of success. 

vclt: binary decision variable corresponding to cumulative 
number of visits l on cell c at the end of time interval 
t– vclt=1 (otherwise 0) 

yct:  binary decision variable reflecting agent position in 
episode t. It indicates that cell cis visited during time 
interval t - tcy =1 (otherwise 0) 

xijk: state transition binary variable. xijk = 1 reflects agent k 
network state transition from state i to j between 
consecutive episodes. Agent k path solution includes 
arcs (i,j)∈Ak for which xijk = 1 

The MIP decision model may be formulated as follows: 
 

∑∑∑
∈ ∈ Τ∈

=
Nc Tt

ctpos
poswCPOS

ct τ
ττ

τ }{
maxmax

  

 (3) 

 
Subject to the linear convex constraint set: 
Cell visits: 

 

TtNcv
cVl
clt ∈∀∈∀=∑

≤≤
,1

0    
 (4) 
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Belief update: 
 

Τ∈∈∀∈∀= ∑
≤≤

+  ,,
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0
1 τ
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c
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Probability of success: 

Τ∈∈∀∈∀−≤−  ,,1 ττττ TtNcypppos tctccctc  (7) 
 

Τ∈∈∀∈∀≤  ,, ττ TtNcypos tctc  (8) 
 
Initial probability: 
 

Τ∈∈∀== τττ ,)0(0 Nctpp cc  (9) 
 
Network coupling: 
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Initial agent position: 
 

kV∈∈∀= )(,1 0)(0
kikx kkio η  (11) 

 

ηδ
η

∈∀∈∀= ∑
∈

kNcy
k

kycc ,)(0 0
 (12) 

 
Initial/final path condition: 

 
η∈∀=∑

∈

kx
i

oik 1
kV

 (13) 

η∈∀=∑
∈

kx
i

idk 1
kV

 (14) 

 
Flow conservation: 

 

kk
oi di

jikijk jijkxx AV
k kV V
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Maximum path length: 

 

k
i ij

ijk jikTx A
k kV V

∈∈∀=∑ ∑
∈ ∈

),(,
}/{

η  (16) 

 
Decision variables 

 

},0{,,}1,0{,
,,]1,0[,

ccltct

ctct

VlTtNcvy
TtNcppos

∈∀∈∈∈
Τ∈∈∈∈ τττ  

kijk jikx A∈∈∀∈ ),(,}1,0{ η  (17) 
 

 

The objective function shown in (3) defines weighted 
cumulative probability of success over an agent path solution 
and time horizon |T|. Constraints are governed through (4)-
(17). For a given path solution, constraints (4) represent the 
cumulative number of visits paid on site c by the end of time 
interval t. Constraints (5) simply link that number to past visits 
on c so far. It should be noticed that simultaneous visits by 
multiple agents on a specific cell over a given time interval is 
implicitly prevented and reinforced by the fact that 1≤tcy , 

limiting to at most one, the number of visits a cell can receive 
during an episode. For cell coverage purposes, we assume a 
maximum number of visits Vc to be performed on site c. The 
bound Vc can be pre-computed or selected arbitrarily large. 
Target occupancy probability update is governed by constraint 
set (6). It is the explicit form of (2) relating belief and number 
of conducted visits. Constraint sets (7) and (8) determine 
probability of success contributions. Both in equations 
mutually reflect a visit requirement to a cell to ensure a 
feasible observation and an admissible success contribution 
aligned with the objective function. Initial probability 
distributions are specified in (9). Constraint sets (10)-(16) 
reflect model and network coupling as well as flow constraints 
imposed on/by the agent network. Constraints (10) link cell 
visits to the agent path network, connecting outgoing arcs 
from network nodes (states) on stage t to the cell c being 
visited during episode t. Accordingly, arcs (it(c),jt+1) relate to 
any agent state transition starting from position cat stage t. 
Agent k initial state i0(k) and position y0(k) as well as its 
related network connection are captured in constraints (11)-
(12). Constraints (13)-(14) guarantee path solution departure 
and final arrival points to be uniquely defined. Flow 
conservation governed by constraints (15) aims at balancing 
the number of incoming and outgoing arcs respectively for a 
given node. Constraints (16) guarantee a|T|-move path 
solution for an agent, but turn out to be unnecessary as 
solution constraints are implicitly satisfied by agent network 
construction. Binary and continuous domain variables are then 
defined in (17). 

Should eventually a targetbe positively detected (found 
target) during plan execution, a new problem instance would 
simply be reformulated from the current state. It would consist 
in taking away the detected target in the revisited model and 
then continue on solving the new problem instance over the 
next decision cycle. 

C. Single Team Network Simplification 
Given agent homogeneity, a single ‘team’ (n agent)T-stage 

network G=(V,A) representing possible team paths may 
alternatively be used, requiring minor network adjustments to 
concurrently incorporate agent action multiplicity subject to 
non-simultaneous visits on a same cell. The resort to a single 
team network rather than multiple network-agent mapping 
provides additional speed-up, number of decision variable 
reduction and significant computer savings (by a factor n). 
The resulting team directed acyclic graph G=(V,A) captures 
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agent multiplicity substituting xijk integer flow decision 
variables for xij, slightly modifying some key flow constraints: 
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The expected computational gain comes at the low cost 
expense of reconstructing individual agent paths from the 
computed agent-free decision variables of the team network 
solution. The agent path reconstruction procedure is described 
next. 

1) Agent Path Reconstruction 
A particular agent path is reconstructed using the team 

network and its instantiated integer flow decision variables xuv. 
A legal T-move agent k path is simply generated by moving 
along the computed team solution arcs from its departure state 
node i0(k)(combining initial cell and orientation) in stage 1 
adding the related cell to the evolving path, up to stage T, 
before finally converging to the destination node d. Decision 
variables are progressively decremented as the path expands. 
The agent path reconstruction algorithm is straightforward and 
fast (O(nT)), as summarized below: 

 

solutionpathagentForend
onconstructipathmoveTWhileend
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The path solution pathk in the above procedure is composed 

of a sequence of T cell visits. The path element pathk.cell(t) 
refers to the specific cell (cellu) visited by agent k in period t.  

D. Dynamic Planning and Time Horizon 
Dynamic problem solution can be computed constructively 

over receding horizons by repeatedly exploiting real 
information feedback as it becomes available and a new 
optimization to progressively improve solution quality. Aside 
the explicit inclusion of real information feedback, large time 
horizon problems are similarly solved through repeated fast 

subproblem optimizations over receding horizons as pictured 
in Fig. 4. Time horizon is divided in time intervals and 
corresponding subproblems sequentially solved over 
respective episodes of period ΔT. Accordingly, a subproblem 
solution periodically expands the overall current partial path 
solution progressively incorporating a small fraction of its 
solution moves (subperiod δT), while updating the objective 
function with new path contributions. Limited move insertions 
define overlapping episodes, mitigating the effects of myopic 
path planning. A new subproblem is then periodically solved 
subject to the revisited objective function updated from the 
previous episode accounting for the partial solution being 
progressively built. The process is then reiterated until the 
time horizon has been covered. The strategy consists in taking 
advantage of the fast computation of reasonable time horizon 
subproblems over a limited number of episodes to quickly 
compute a near optimal solution to the original problem. 

 

 
Fig. 4 A large time horizon T is defined over T/δT receding horizons 
of period ΔT. Moves computed in subperiods δ T form the final path 

solution to the original problem 

E. Discussion  
The proposed formulation confers many advantages over 

alternate modeling procedures, as the linear model allows to 
efficiently compute a bound on the optimal solution quality 
through Lagrangean programming relaxation. This provides a 
comparative measure to carry out performance gap analysis 
over alternate solutions, as well as the ability to trade-off 
solution quality and run-time for heuristic methods operating 
under tight temporal constraints. Problem-solving may be 
naturally achieved using well-known efficient techniques. 

IV. MIP ALGORITHM - CPLEX SOLVER 
The IBM ILOG CPLEX parallel Optimizer version 12.2.0.0 

[24] was used, essentially exploiting various optimized 
problem-solving techniques for large size problems. CPLEX 
solves the (exact) mixed integer programming (MIP) problem 
model implicitly computing an upper bound on solution 
quality through integrality constraint relaxation referred as 
Lagrangean programming relaxation (LP). 

Additional speed-up can be contemplated for 
implementation efficiency purposes. Accordingly, as 
probability update for a given cell is assumed strictly 
dependent upon the number of local visits, the proposed 
problem model may be solved resorting to an alternate 
equivalent implementation inspired from [29], exploiting 
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objective contributions pre-calculation in maximizing a linear 
function over binary integer variables vcl (number of visits l on 
cell c): 

 ( )( )∑∑ ∑ −−=
∈ τ

τττ
l

cccclcl
Nc l

clv
ppwcvc

cl

11,max 0}{

 

As a result, the implementation approach significantly 
reduces search space complexity reporting substantial gain in 
run-time.

 

V. COMPUTATIONAL EXPERIMENT 
A computational experiment has been conducted to test the 

approach for a variety of scenarios. The value of the proposed 
MIP approach is assessed in terms of optimality gap and run-
time. Computed solutions are reported against the relative 
cumulative probability of success optimality gap shown at the 
end of horizon |T|: 
 

*
*

CPOS
CPOSCPOSgapOpt a−

=
 (18) 

 
where CPOS* is the optimal cumulative probability of success 
defined in (1) or a tight upper bound (LP solution), and CPOSa 
the performance of our approach for a given scenario. The 
closer (smaller) the optimality gap the better the performance.  

A. Simulations  
Computer simulations were conducted under the following 

conditions: 
• Number of targets m, ranging over {1,2,3,4,5} and 

respective prior target cell occupancy belief distributions; 
identical value/weight: wτ = 1/m 

• Grid size N = 15x15, 10x10 
• Homogeneous sensor agents: 

Team cardinality: n ranging over {1,2,3,4} 
Actions: 8 moves 
Vc=5 for all cells c 
Sensor parameters: pc running into [0.7,0.95] for all 
cells 

• Hardware Platform: 
Intel (R) Xeon (R) CPU X5670 
Shared-memory multi-processing: 8 processors, 2.93 
GHz 
Random Access Memory: 16 Go, 64 bits binary 
representation (double precision) 

It should be noted that as target cell occupancy probability 
sum up to one, performance analysis for large grid turns out to 
be less attractive. Accordingly, the larger the grid in general, 
the smaller (arbitrarily negligible) the related target cell 
occupancy belief, inevitably conducting either to significant 
visit payoffs for a limited number of prominently noticeable 
cells sparsely distributed over a large area, or alternatively in 
near similar cell visit rewards, for which any sub-optimal 
algorithms would likely demonstrate highly competitive (near 
similar) performance behavior. In both cases, this would result 
in a large and costly fraction of the total effort and time 

dedicated to the planning and construction of long and 
unimportant subpath segments, leading ultimately to marginal 
or insignificant gains. Consequently, grid instances larger than 
10x10 – 15x15 should be further downsized and aggregated to 
embrace minimal belief coverage, to ensure substantial 
analysis and solution performance evaluation. This is why this 
study limited its investigation to the exploration of grid 
instances with a 15x15 maximum in size. 

B. Results 
A sample of random simulation results is reported in Table I 

for a few 15x15 grid 8-move multi-agent scenarios over 
horizon T. Each entry corresponds to a separate problem 
instance. Target multiplicity, agent team cardinality and time 
horizon are specified in second and third column respectively. 
A sample of performance results in terms of cumulative 
probability of success (CPOS) and optimality gap using the 
optimal CPLEX MIP solver is reported in the fourth column 
for path solutions subject to converge within a 2% optimality 
gap threshold. Run-time expressed in seconds is depicted in 
the last column. Data sets are organized in 5 blocks. Blocks 1-
4 include instances 1-11 corresponding to 4-target and 2-8 –
agent scenarios grouped by team cardinality, whereas block 5 
refers to 12-target and 4-6 -agent data sets defining instances 
12-14. 

 
TABLE I 

PERFORMANCE OF CPLEX SOLVER (MIP) FOR A SAMPLE OF MULTI-TARGET, 
8-MOVE 2-8–AGENT DATA SET (15X15 GRID) 

Instance 
m 

Targets 
m 

n 
Agents 

n 

Time 
Horizon 

|T| 

CPLEX 
Solver - MIP 
CPOS  Opt 

gap % 

CPLEX 
Solver 
Run-

time (s) 
1m4n2T20 4 2 20 0.5499 1.95 55 
2m4n2T22 4 2 22 0.5649 0.56 63 

3m4n4T18A 4  4 18 0.6479 1.78 59 
4m4n4T16B 4 4 16 0.6225 1.35 21 
5m4n4T16C 4 4 16 0.6238 1.74 12 
6m4n4T16D 4 4 16 0.6235 0.56 11 
7m4n4T16E 4 4 16 0.6279 0.64 26 
8m4n4T18F 4 4 18 0.6427 1.23 26 
9m4n6T15 4 6 15 0.6909 1.03 33 
10m4n6T17 4 6 17 0.7186 1.30 55 
11m4n8T14 4 8 14 0.7399 1.01 47 

12m12n4T18 12 4 18 0.6107 0.17 94 
13m12n6T17 12 5 17 0.6527 0 114 
14m12n8T14 12 6 14 0.6533 0 27 

 
Computational results show that near-optimal solutions for 

15x15 grid instances can be computed approximately on a 
minute timescale, imposing an optimality gap within less than 
2%. These findings prove computation of tight upper bounds 
on solution quality to be quite feasible and realistic in practice. 
Bound tightness suggests that relaxed solution might be 
further exploited while decreasing optimality gap threshold to 
improve solution quality and run-time performance. Near 
optimal multi-agent solution may in counterpart be computed 
on a second timescale for 10x10 grids. Generally, the larger 
the time horizon the larger the run-time, as solution space 
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increases exponentially with T. However, we might sometime 
observe marginal gain in performance as indicated for n=2,4,6 
highlighting the value of considering a limited time horizon 
outweighing potential benefits anticipated from longer term 
projection, in particular when path plans can be fully revisited 
after each visit/episode. In other words, even though larger 
time horizon for the studied scenarios might turn out to be 
computationally prohibitive, possibly demanding several 
minutes to ensure solution optimality convergence, specified 
time horizons in Table I are sufficient to dynamically build a 
path plan one step at a time, as the grid remains entirely 
visible to the planner during planning. The largest 8-move 
multi-agent problem investigated still delivering near-optimal 
solution within an approximately 1-minute run-time, involves 
8 agents over a 14 unit -time horizon, as exemplified by 
instance 11. In that case, the reported path solutions cover a 
significant portion of interesting cells as illustrated by CPOS 
performance results. In effect, the total number of moves nT to 
be executed by the team already corresponds to half grid size 
N/2, and therefore leads to high quality path solutions. 
Upgrading computational power technology through faster 
hardware and augmented parallel processing might ultimately 
extend computable T. 

It is worth noticing that run-time is not only impacted by 
combined team cardinality/planning time horizon Nt (path 
solution space: 8nT) and relative initial agent positions but also 
by target multiplicity creating additional visit contention 
among agents, and therefore increasing problem-solving 
complexity. In effect, target multiplicity generally tends to 
naturally reduce objective function contribution gaps among 
grid cells, making more cells equally attractive, and ultimately 
resulting in higher path solution quality contention. Agent 
contention is further exacerbated by team cardinality (e.g. 
n=8), in which more agents are exposed to a larger number of 
competing candidate cell visits, increasing path plan 
combinatorics. This is shown in Table I for data sets 12-14 in 
which run-time for 12-target instances may reach up to 2 
minutes. Differential run-time performance between data sets 
12 and 13 is due to additional contention induced by team 
agent proximity when starting the search. It is observed that 
time horizon larger than grid dimension (N1/2) makes problem 
increasingly complex with target multiplicity. 12-target 
problem scenarios could be solved within 2 minutes for a team 
involving up to 6 agents. As mentioned earlier, bound 
tightness characterizing Lagrangean relaxation path solution 
might be further exploited (local search) to speed-up problem-
solving and possibly handle larger agent teams. 

A separate limited experiment alternatively confirms that 
weight parameters, which translate relative target importance 
in the objective function (3), mainly operate as agent 
attractors. They represent a main driver in magnifying high-
payoff locations (attractors), expectedly imposing a strong 
bias in directing more efforts (paid visits) toward most valued 
targets in priority, whenever necessary. 

Simulation results prove the proposed approach very 
efficient. Providing best or near optimal solution and a 
comparative measure of efficiency (upper bound obtained 

from Lagrangean integrality constraint relaxation) for practical 
size problems, the approach could be repeatedly reused in 
dynamic settings exploiting intermediate sensor readings, 
given its small run-time. 

A typical path solution is shown in Fig. 5. It should be 
mentioned that cells presenting large beliefs may sometime be 
visited less frequently than others depicting smaller belief 
magnitudes. The reason either relates on the gap between 
conditional probability of detection characterizing some 
targets which decrease marginal return differently after a visit, 
or when cells bridge promising areas, as illustrated in Fig. 5 
whereby agent 4 visit cell ‘0.23’ (at the bottom) only once, 
whereas cell ‘0.2’ is alternatively visited by agent 2 and 3. 

 

 
Fig. 5 4-agent team path solutions for 4 superimposed target belief 

distributions in a 10x10 grid, for T=10 
 

Based upon computational results, an analysis shows that 
search team behavior is ultimately conditioned by the multi-
target belief landscape. Initial peaks and valleys magnitudes 
and spatial distributions determine a full spectrum of agent 
path solution configurations, from a complex web of entangled 
agent trajectories overlapping one another (e.g. a near flat 
landscape), toward a spatially partitioned agent route pattern 
resulting from a highly well-structured and contrasted belief 
landscape with few distinct and distant pikes. Initial belief 
magnitude distribution is primarily determined by the variance 
over probability of cell containment for every target. As 
probability sums up to one, high-value beliefs commonly 
indicate a low occurrence number of peaks (high variance) 
asking for fewer searching agents and visits, whereas quasi 
similar (flat) beliefs (low variance) corresponds to a small 
number of high payoff locations, therefore requiring 
contributions from many agents and more visits to cover target 
belief distribution, while making path construction 
computationally more challenging. In other respect, belief 
spatial distribution has shown to significantly influence team 
behavior and individual agent path solutions. In this regard, 
large magnitude beliefs in conjunction with a small number of 
aggregated peaks for all targets, combined to mutually distant 
targets, eventually occurring at some stage of the search, 
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induces a propensity to partition targets between team 
members. Accordingly, multi-target beliefs distributed in 
localized clusters per target and distant from one another as 
graphically exemplified in Fig. 6(for a 5x5 grid for the sake of 
the argument) are quite evocative in naturally delivering path 
solutions partitioning the overall grid, splitting the team one 
agent per target. This partition remains nonetheless modulated 
by the various conditional probability of detection 
characterizing targets and locations as well as belief 
distribution variance (for a given target) which may incur 
some final path configuration variability. Incidentally, cells 
depicting high conditional probability of detection are likely to 
be more attractive to agents as they naturally tend to further 
increase the objective function. However, in the general case, 
as separate target belief clusters either get closer and overlap 
with one another or progressively widen and expand across the 
grid while decreasing in magnitude, results show that agent 
paths rather share a mix of sites from different targets 
indiscriminately, fully devoted at maximizing the objective 
function or average coverage. 

 

 
Fig. 6 4-agent team path solutions for 4 non-overlapping target 

clustered belief distributions illustrated by different shades/patterns 
on a 5x5 grid. The belief space is optimally partitioned, assigning one 

agent per target. 

VI. CONCLUSION  
An innovative mixed-integer linear programming (MIP) 

approach has been proposed to solve a probabilistic open-loop 
multi-target multi-agent search and rescue path planning 
problem with anticipated feedback, in which agent actions are 
subject to any neighbouring move directions. The novelty of 
the approach lies in a revisited combination of an extended 
problem formulation, an original network representation, and a 
refined problem-solving procedure based on linear 
programming CPLEX technology to efficiently compute near-
optimal solution for practical size problems, usually handled 
through heuristic methods. For the first time, an upper bound 
estimate on the optimal solution naturally derived from the 
approach may be used for convergence or performance 
comparison analysis purposes, and/or trading-off solution 
quality and execution time. Experimental results demonstrate 
the value of the proposed approach, proving problem-solving 
to be feasible in reasonable time. Small computational cost 
naturally allows dynamic planning through a closed-loop 

environment settings where real information feedback 
resulting from past sensor agent observations is exploited to 
compute a revisited solution over a rolling horizon. 

Future research directions will consist in considering 
generalized sensor footprint, and increasingly complex 
observation models (e.g. false-alarm) while extending search 
to moving targets. Alternate research work will explore search 
problem modeling variants involving heterogeneous sensing 
agents. 
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