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A New Inversion-free Method for Hermitian
Positive Definite Solution of Matrix Equation

Minghui Wang, Juntao Zhang

Abstract—An inversion-free iterative algorithm is presented for
solving nonlinear matrix equation with a stepsize parameter t. The
existence of the maximal solution is discussed in detail, and the
method for finding it is proposed. Finally, two numerical examples
are reported that show the efficiency of the method.
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I. INTRODUCTION

IN this paper, we will consider the nonlinear matrix equation

X +A∗X−αA = I, (1)

where A ∈ Cn×n, α ∈ (0, 1) and X is an Hermitian positive
definite (HPD) matrix which will be found. Equation (1)
has many applications in dynamic programming, statistics,
stochastic filtering, control theory, Kalman filtering and so on,
see [1]–[3], [9] and references therein.

In [1], Engwerda discussed the equation X+A∗X−1A = I
and gave the algorithm

X0 = I,

Xn+1 = I −A∗X−1
n A, n = 0, 1, · · · .

which has a solution if and only if Xn > AA∗ for all n.
For (1), there also have been many results, see [4]–[8], [10],

[11]. Xinguo Liu and Hua Gao [10] analyzed the equation

Xs ±ATX−tA = In

and proved the existence of the symmetric positive definite
solutions based on the fixed-point theory, then proposed
iterative method for computing the positive solutions. In
[6], Marlliny Monsalve and Marcos Raydan developed a
inversion-free method for obtaining the minimal HPD solution
of the matrix rational equation

X +A∗X−1A = I

where I is the identity matrix and A is a given nonsingular
matrix, then discussed stability properties when the method
starts from the available matrix AA∗.

Minghui Wang and Musheng Wei [7] investigated the matrix
equation

Xs +A∗X−qA = I
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where A ∈ Cm×n, s, q ∈ R+ and discussed the existence
of the maximal solution XL and minimal solution XS that
XS ≤ X ≤ XL for any HPD solutions X . Here X ≥ Y
means that X − Y is Hermitian positive semidefinite and if
a Hermitian matrix Z satisfies Y ≤ Z ≤ X , then we say
Z ∈ [Y,X].

Inspired by the methods proposed by Peng, El-Sayed [5] and
L. Zhang [12], we propose an inversion-free iterative method
for (1), discuss the existence of the maximal solution and the
method to find it.

In the remainder of this section, we review some important
results for later discussion:
Lemma 1. If A > B > 0 (or A ≥ B > 0), then Aα > Bα

(or Aα ≥ Bα > 0) for all α ∈ (0, 1], and Aα < Bα (or
0 < Aα ≤ Bα) for all α ∈ [−1, 0).
Lemma 2. If C and P are Hermitian matrices of the same
order with P > 0, then CPC + P−1 ≥ 2C.
Lemma 3. If 0 < α ≤ 1, and P and Q are positive definite
matrices of the same order with P,Q ≥ bI > 0, then ‖Pα −
Qα‖ ≤ αbα−1‖P −Q‖.

For A ∈ Cn×n, λmax(A) , λmin(A) and ‖A‖ denote the
maximal eigenvalue, the minimal eigenvalue and the spectral
norm of A, respectively.

II. A NEW ITERATIVE METHOD

In this section, we propose an inversion-free iterative
algorithm to find the maximal solution for the nonlinear matrix
equation X +A∗X−αA = I . Based on the relevant results in
[7], it is easy to obtain the following results.

Theorem 1. Suppose that ‖A‖2 ≤
(

α
1+α

)α
2
(

1
1+α

) 1
2

and X

is an HPD solution of (1). Then we have
1. when A is nonsingular matrix,

X ∈ [α1I, β1I] ∪ [β2I, α2I] ∪ {X : α1 ≤ λmin(X) ≤ β1, β2

≤ λmax(X) ≤ α2};
2. when A is singular matrix,

X ∈ {X : 0 ≤ λmin(X) ≤ β1, λmax(X) = 1} ∪ {X : β2 ≤
λmin(X) ≤ 1, λmax(X) = 1};

where α1, α2 and β1, β2 are the solutions of

xα(1− x) = λmin(A
∗A)

and
xα(1− x) = λmax(A

∗A)
respectively, which satisfy

0 < α1 ≤ β1 ≤ α

1 + α
≤ β2 ≤ α2 < 1.
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Theorem 2. 1. When ‖A‖2 ≤
(

α
1+α

)α
2
(

1
1+α

) 1
2

, (1) has an
HPD solution Xl ∈ [β2I, α2I];

2. when ‖A‖2 <
(

α
1+α

)α
2
(

1
1+α

) 1
2

, Xl is unique and can
be obtained by the following algorithm:⎧⎨

⎩X0 ∈
[

α

1 + α
I, I

]
Xn+1 = I −A∗X−α

n A,n = 0, 1, · · · .
(2)

Moreover, these doesn’t exist other solution X such that X ≥
Xl.

Now we propose the following algorithm with a stepsize
paramenter t ∈ (0, 1] and give the proof of convergence in
detail.
Algorithm 1.
Step 1: Select Y0 = I, t ∈ (0, 1] and let k = 1.
Step 2: Let{

Xk = I −A∗Y α
k A

Yk+1 = (1 + t)Yk − tYkXkYk.
(3)

Set k := k + 1 and go to Step 2.
When t = 1, the above algorithm reduces to Algorithm 3.1

of [7]. So the former can be viewed as the generalization of
the latter.

For Algorithm 1, we have the following results.

Theorem 3. If given A is a nonsingular matrix, ‖A‖2 ≤(
α

1+α

)α
2
(

1
1+α

) 1
2

and α ∈ (0, 1), then (1) has the maximal
solution Xl, which can be generated by Algorithm 1.

Proof. We prove this theorem by induction. From Theorem 2,
we know that (1) has the HPD solution.

Let X is an Hermitian positive definite solution of (1). Then
X ≤ I and hence

A∗X−αA ≥ A∗A,

I −A∗X−αA ≤ I −A∗A,

that is
X ≤ I −A∗A.

It follows from (3) we have

X0 = I −A∗A ≥ X

and
X−1

0 ≤ X−1, X0 ≤ I, Y0 ≤ X−1
0 ≤ X−1.

By Lemma 1 and Lemma 2, we have

Y1 = (1 + t)Y0 − tY0X0Y0

= (1− t)Y0 + t(2Y0 − Y0X0Y0)

≤ (1− t)X−1
0 + tX−1

0

= X−1
0 ≤ X−1

and

Y1 − Y0 = tY0 − tY0X0Y0

= tY0(Y
−1
0 −X0)Y0 ≥ 0,

that is Y1 ≤ X−1, Y1 ≥ Y0 and we know that

Y0 ≤ Y1 ≤ X−1
0 ≤ X−1.

It follows from Lemma 1 that

X1 = I −A∗Y α
1 A

≥ I −A∗X−αA = X

and

X1 −X0 = I −A∗Y α
1 A− (I −A∗Y α

0 A)

= A∗(Y α
0 − Y α

1 )A ≤ 0,

which mean X0 ≥ X1 ≥ X.
From the above, we get

Y0 ≤ Y1 ≤ X−1
0 ≤ X−1

1 ≤ X−1.

Assume that

Yk−1 ≤ Yk ≤ X−1
k−1 ≤ X−1

k ≤ X−1,

we can find that

Yk+1 = (1− t)Yk + t(2Yk − YkXkYk)

≤ (1− t)Yk + tX−1
k

≤ (1− t)X−1
k + tX−1

k

≤ X−1
k

and

Xk+1 = I −A∗Y α
k A

≥ I −A∗X−1A = X.

Further, based on the assumption, we obtain

Yk+1 − Yk = tYk(Y
−1
k −Xk)Yk ≥ 0

and

Xk+1 −Xk = (I −A∗Y α
k+1A)− (I −A∗Y α

k A)

= A∗(Y α
k − Y α

k+1)A ≤ 0.

Therefore, we obtain that

Yk ≤ Yk+1 ≤ X−1
k ≤ X−1

k+1 ≤ X−1

and
Y0 ≤ Y1 ≤ · · ·Yk ≤ Yk+1 ≤ X−1,

X0 ≥ X1 ≥ · · ·Xk ≥ Xk+1 ≥ X

hold for all k = 0, 1, 2 . . . and so the limits of {Xk} and {Yk}
exist.

Taking the limit in the Algorithm 1, we can obtain that
limk→∞ Xk is an HPD solution of (1). Moreover, since

X0 ≥ · · ·Xk ≥ X

holds for any HPD solution X of (1), then we have

lim
k→∞

Xk = Xl

and since
Y0 ≤ · · ·Yk ≤ X−1
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holds for any X−1, we also have

lim
k→∞

Yk = X−1
l .�

Theorem 4. Suppose ‖A‖2 ≤
(

α
1+α

)α
2
(

1
1+α

) 1
2

for the case
α ∈ (0, 1) and after k steps of Algorithm 1, we have ‖I −
XkYk‖ < ε, then

‖Xk +A∗X−α
k A− I‖ < εαβ−1

2 ‖A‖2. (4)

Proof. From Theorem 1 and Theorem 2, we know that Xl ∈
[β2I, α2I]. Thus, according to the proof of Theorem 3, we can
obtain

I ≤ Yk ≤ Yk+1 ≤ X−1
k ≤ X−1

k+1 ≤ X−1 ≤ β−1
2 I.

Since Xk+1 +A∗Y α
k+1A = I and

Xk +A∗X−α
k A− I

= Xk −Xk+1 +A∗(X−α
k − Y α

k+1)A

= A∗(Y α
k+1 − Y α

k )A+A∗(X−α
k − Y α

k+1)A

= A∗(X−α
k − Y α

k )A,

by Lemma 3 we have

‖Xk +A∗X−α
k A− I‖ ≤ ‖A‖2‖X−α

k − Y α
k ‖

≤ α‖A‖2‖Xk − Yk‖
≤ α‖A‖2‖X−1

k ‖I −XkYk‖
< εαβ−1

2 ‖A‖2.�

III. NUMERICAL EXAMPLE

In this section, we give two examples to illustrate the
efficiency and investigate the performance of Algorithm 1 with
different t and α values for (1). Example 1 and Example 2 will
give the maximal solution and the performance with different
t and α. All codes are calculated by MATLAB with machine
precision around 10−16 and let the residual

ηk = ‖X +A∗X−αA− T‖F < 10−16 (5)

as the practical stopping criterion, where ‖ · ‖F stands for the
Frobenius norm.
Example 1. Given nonsingular matrix

A =

⎛
⎜⎜⎝

0.071 0.028 0.08 0.034
−0.065 0.031 0.047 0.056
0.023 −0.05 0.019 0.025
−0.012 0.035 −0.06 0.041

⎞
⎟⎟⎠ .

When α = 0.5 and t = 0.8, using Algorithm 1 and iterating
20 steps, we have the matrix solution of (1) which is X ≈
X20 =⎛

⎜⎜⎝
0.9900 0.0016 −0.0038 0.0011
0.0016 0.9945 −0.0006 −0.0029
−0.0038 −0.0006 0.9874 −0.0034
0.0011 −0.0029 −0.0034 0.9934

⎞
⎟⎟⎠ ,

with the residual η20 = ‖X20+A∗X−0.5
20 A−I‖F < 2.0032×

10−17.

From Algorithm 1, when α = 0.5, we choose different t
values with t ∈ (0, 2) and list the numerical results in the
following Table I. Then Fig. 1 plots the relation between ηk
with different t values and iteration number K.
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Fig. 1 THE CONVERGENCE OF SOLUTIONS WITH DIFFERENT

t VALUES WHEN α = 0.5

TABLE I
INTERATIVE STEP AND PRECISION FOR α = 0.5

T ITERATION RESIDUAL

1.6 56 2.7575× 10−17

1.4 32 3.6981× 10−17

1.2 20 7.2342× 10−17

1.1 14 2.3183× 10−17

1 8 0.5887× 10−17

0.9 15 1.5036× 10−17

0.7 25 8.6194× 10−17

0.5 42 6.5984× 10−17

0.4 56 7.8284× 10−17

When α = 0.25, we list the numerical results in the
following Table II.

TABLE II
INTERATIVE STEP AND PRECISION FOR α = 0.25

T ITERATION RESIDUAL

1.6 54 5.3183× 10−17

1.4 32 2.4819× 10−17

1.2 19 2.6263× 10−17

1.1 14 1.4509× 10−17

1 7 1.7200× 10−17

0.9 14 5.3063× 10−17

0.7 25 3.3580× 10−17

0.5 41 6.1947× 10−17

0.4 55 5.9060× 10−17
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Example 2. Given nonsingular matrix

B =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.08 0.02 −0.03 0.04 0 0.07
−0.07 0.03 0.04 −0.06 0.02 0.08
0.02 0.03 0.04 0.05 0.01 0.03
−0.01 0.02 0.03 −0.03 0.04 0.05
0.02 0.01 −0.02 0.07 0.06 0.03
0.03 −0.05 0.06 0.04 0.2 0.06

⎞
⎟⎟⎟⎟⎟⎟⎠

.

When α = 0.5 and t = 0.8, using Algorithm 1 and iterating
22 steps, we have the matrix solution of (1) which is X ≈
X22 =⎛
⎜⎜⎜⎜⎜⎜⎝

98.68 0.14 0.33 −1.15 −0.58 −0.26
0.14 99.48 0.08 0.14 0.77 −0.30
0.33 0.08 99.09 0.15 −1.33 −0.69
−1.15 0.14 0.15 98.46 −1.07 −0.27
−0.58 0.77 −1.33 −1.07 95.35 −1.81
−0.26 −0.30 −0.69 −0.27 −1.81 98.05

⎞
⎟⎟⎟⎟⎟⎟⎠
×0.01,

with the residual η22 = ‖X22+A∗X−0.5
22 A−I‖F < 9.1243×

10−17.

From Algorithm 1, when α = 0.5, we choose different t
values and list the numerical results in the following Table
III. Then Fig. 2 plots the relation between ηk with different t
values and iteration number K.
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Fig. 2 THE CONVERGENCE OF SOLUTIONS WITH DIFFERENT

t VALUES WHEN α = 0.5

TABLE III
INTERATIVE STEP AND PRECISION FOR α = 0.5

T ITERATION RESIDUAL

1.6 58 4.7411× 10−17

1.4 33 5.4275× 10−17

1.2 20 4.4258× 10−17

1.1 15 3.3239× 10−17

1 11 4.0280× 10−17

0.9 17 4.8098× 10−17

0.7 28 9.1601× 10−17

0.5 47 4.8974× 10−17

0.4 63 9.8793× 10−17

When α = 0.75, we list the numerical results in the
following Table IV.

TABLE IV
INTERATIVE STEP AND PRECISION FOR α = 0.75

T ITERATION RESIDUAL

1.6 60 3.0437× 10−17

1.4 34 4.9502× 10−17

1.2 20 2.1350× 10−17

1.1 16 5.0963× 10−17

1 12 4.0159× 10−17

0.9 18 5.1166× 10−17

0.7 30 7.8826× 10−17

0.5 49 6.1751× 10−17

0.4 65 7.8643× 10−17

From Table I and Table II, we know that different
stepsize parameter t affects the performance of Algorithm 1
significantly. With given fixed constant α for all α ∈ (0, 1),
we can find that the algorithm get better performance when
t tends to 1. In this paper we only prove that Algorithm 1
converges when t ∈ (0, 1], but we can run Algorithm 1 when t
decreasing towards 1 in practical computation, which provides
more choices for practical problems.
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