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Abstract— Principal Component Analysis (PCA) has many 
different important applications especially in pattern detection 
such as face detection / recognition. Therefore, for real time 
applications, the response time is required to be as small as 
possible. In this paper, new implementation of PCA for fast 
face detection is presented. Such new implementation is 
designed based on cross correlation in the frequency domain 
between the input image and eigenvectors (weights). 
Simulation results show that the proposed implementation of 
PCA is faster than conventional one.  
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I. INTRODUCTION 

RINCIPAL component analysis (or Kahunen – Loeve 
expansion) is applied to find the aspects of face which are 
important for identification. Facial eigenvectors, or, as 

they are sometimes called, eigenpictures or eigenfaces, 
provide a compact representation of whole faces, which is 
optimal for face reconstruction. Sirovich and Kirby [1-2] first 
applied the principal component analysis in efficient face 
representation. In this technique a new coordinate system is 
created for the faces where coordinates are part of the 
eigenvectors of a set of face images. New faces can be 
approximately reconstructed with only part of their projection 
onto the new low-dimensional space. Matthew Turk and Alex 
Pentland [3] expanded the idea to face recognition. Faces are 
encoded by a small set of weights corresponding to their 
projection onto the new coordinate system, and are recognized 
by comparing them with those of known individuals. 
Eigenfaces behaves well in case of different expression 
changes [22]. Improving the speed of PCA for face detection 
is very important and necessary for real time applications such 
as covert surveillance of criminals. In this paper, we 
concentrate on increasing the speed of PCA during the 
detection phase while its performance (detection rate) is the 
same as conventional implementation. 
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For face detection, the PCA algorithm is applied to check the 
presence of a face at each pixel position in the input image. 
This searching problem is realized using cross correlation in 
the frequency domain. The cross correlation is preformed 
between the whole input image and the eigenvectors. This new 
idea increases the speed of the detection process compared to 
normal implementation of PCA algorithm in the spatial 
domain.  

It was proved that performing cross correlation in the 
frequency domain is faster than time domain [19]. By the 
words "fast cross correlation", it is meant that cross correlation 
is performed in the frequency domain. A general fast pattern 
detection model using fast cross correlation was presented in 
[7-18]. Fast cross correlation was applied successfully for 
many different applications. Fast sub-image detection was 
achieved using fast cross correlation. A fast searching 
algorithm for face/object detection using neural networks and 
fast cross correlation was presented in [8,16,17]. Very fast iris 
detection using fast cross correlation was described in [14]. A 
faster algorithm for pattern detection using fast cross 
correlation and image decomposition was presented in 
[8,10,14,17]. The fastest pattern detection was achieved by 
using fast cross correlation, image decomposition and parallel 
processors. Furthermore, real time fast code detection for 
communication applications using fast cross correlation was 
introduced in [12]. In addition, a new time delay artificial 
neural network was invented using fast cross correlation as 
presented in [9]. As well as, an interesting mathematical 
application by using fast cross correlation was introduced [18]. 
Moreover, an Internet application for fast searching on web 
pages using fast cross correlation was presented in [15]. 
Finally, high speed data processing using fast cross correlation 
was introduced in [13]. 

Therefore, it is clear that in the previous work neural networks 
were used for pattern detection. The speed of pattern detection 
was achieved by applying cross correlation in the frequency 
domain between the input data and the weights of neural 
networks. Here, I make use of the idea of applying cross 
correlation in the frequency domain to increase the speed of 
PCA for face detection. The number of computation steps 
required by PCA is reduced by performing cross correlation in 
the frequency domain between the input image and 
eigenvectors. 
The paper is organized as follows: in section II, the principles 
of PCA are discussed. Training and detection phases are 
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described. Fast PCA for pattern detection is presented in 
section III. The complexity of fast PCA, the speed up ratio for 
pattern detection, and simulation results are given.  

II. THEORY OF PCA 
     
This technique takes the advantage of face structure by 
proposing a scheme for recognition which is based on 
information theory approach, seeking to encode the most 
relevant information in a group of faces which will best 
distinguish them from one another. The approach transforms 
face images into a small set characteristic feature images 
(eigenfaces) which are the principle components of the initial 
training set of face images. Recognition is performed by 
projecting a new image into the subspace spanned by the 
eigenfaces (face space) and then classifying the face by 
comparing its position in face space with the positions of 
known individuals [3]. The technique of eigenspace 
representation is based on the earlier work presented in [5] on 
autoassociative memories. Autoassociative memories are a 
special case of associative memories in which the input 
patterns are associated with themselves. The goal of 
autoassociative memories is to find the values or weights for 
the connections between input units so that when a portion of 
an input is presented as a memory key, the memory retrieves 
the complete pattern, filling in missing components. Kohonen 
[6] used faces as stimuli to illustrate some properties of 
autoassociative memories. Specifically, he showed that an 
autoassociative memory can act as a content addressable 
memory of faces. Kohonen and Anderson et. al. pointed out 
that using an autoassociative memory to store a set of patterns 
is equivalent to comparing the eigen decomposition of the 
cross-product matrix created from the set of features 
describing these patterns, or, in other words, to performing the 
principle component analysis of the set of patterns. The model 
is presented first, followed by a discussion of the 
interpretation of eigenvectors as "macrofeatures". 
The training phase is performed in the spatial domain as 
follows. Let a face image Γ be a two-dimensional n by n array 
of intensity values. An image may also be considered as a 
vector of dimensions nxn, so that a typical image of size 20 by 
20 (as in our experiments) becomes a vector of dimension 400. 
The main idea of the principle component analysis is to find 
the vectors that best account for the distribution of face images 
within the entire image space. These vectors determine the 
subspace of face images, which can be called "face space". 
Each vector is of length nxn, describes an n by n image, and is 
a linear combination of the original face images. Because 
these vectors are the eigenvectors of the covariance matrix 
corresponding to the original sub-images, and because they are 
face – like in appearance, we can refer to them as 
"eigenfaces". For a set of face images be Γ1, Γ2, Γ3, . . . . . . . . . 
., ΓM. The average image β of the set is defined by [3]: 

∑
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Each image differs from the average by the vector [3]:  

βΓφii −=                         (2) 

This set of very large vectors is then subject to principle 
component analysis, which seeks a set of M orthonormal 
vectors, ut , which best describes the distribution of the data. 
The kth vector, uk, is chosen such that [3]: 
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The vectors uk, and scalars λk are the significant M 
eigenvectors and eigenvalues, respectively, of the covariance 
matrix  
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where the matrix A=[φ1, φ2, . . . . . . . . ., φt]. The matrix C, 
however, is n2 by n2, and determining the n2 eigenvectors and 
eigenvalues is an intractable task for typical image sizes. We 
need a computationally feasible method to find these 
eigenvectors [3]. If the number of data points in the image 
space is less than the dimension of the space, (M<nxn), there 
will be only M-1, rather than n2, meaning eigenvectors. The 
remaining eigenvectors will have associated eigenvalues of 
zero. Fortunately we can solve for the n2 dimensional 
eigenvectors in this case by first solving for the eigenvectors 
of an M by M matrix. For example solving a 10x10 matrix 
rather than 400x400 matrix and taking appropriate linear 
combinations of the images φt. Consider the eigenvectors vi of 
AT A such that [3]: 

iii
T vAvA λ=                          (6) 

Pre-multiplying both sides by A, from the left, we have [3]: 

iAvAvAA ii
T λ=                       (7) 

from which we see that Avi are the eigenvectors of                  
C = AT A. 
Following this analysis, an M by M matrix called L= AT A 
may be constructed, and the M eigenvectors vℓ of L may be 
computed. These vectors determine the linear combination of 
the M training set face images to form the eigenspace uℓ [3]: 

∑
=

=
M

1k

kkφvu ll                             (8) 

With this analysis the calculations are greatly reduced from 
the order of the number of pixels in the images (n2) to the 
order of the number of images in the training set (M). In 
practice, the training set of face images will be relatively small 
(M<<n2), and the calculations become quite manageable. The 
associated eigenvalues allow us to rank the eigenvectors 
according to their usefulness in characterizing the variation 
among the images [3].  
In the detection phase, a new sub-image Γ is transformed into 
eigenspace components wk (projected into "facespace") by a 
simple operation [3]:  
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β)(Γuw t
kk −=                           (9) 

for k=1, . . . . . ., M. The average image β is subtracted and the 
reminder is projected onto the eigenspace uk.  The weights 
form a vector Ωt = [w1, w2, . . . . . . . . . ., wM] that describe the 
contribution of each eigenvalue in representing the sub-image, 
treating the eigenfaces as a basis set for face image.  

III. FAST PCA FOR FACE DETECTION USING CROSS 
CORRELATION IN THE FREQUENCY DOMAIN 

    Here, we are interested in increasing the speed of the 
detection process using PCA during the detection phase. By 
the words “Fast PCA” we mean reducing the number of 
computation steps required by PCA in the detection phase. 
First a set of face examples are collected and its average image 
is obtained. This operation is performed in the spatial domain. 
Then, the eigenvalues are computed as described in the 
previous section. In the detection phase, each sub-image in the 
input image (under test) is tested for the presence or absence 
of the required face. At each pixel position in the input image 
each sub-image is multiplied by the eigenvectors (weights), 
which has the same size as the sub-image. This multiplication 
is done in the spatial domain. The outputs of processors in the 
hidden layer are multiplied by the weights of the output layer. 
When the final output is high this means that the sub-image 
under test contains the required face and vice versa. Thus, we 
may conclude that this searching problem is cross correlation 
in the spatial domain between the image under test and the 
eigenvectors.   

 In this section, a fast algorithm for face detection based on 
two dimensional cross correlations that take place between the 
tested image and a window of weights (eigenvectors) is 
described. Such window is represented by the eigenvectors 
computed during the learning phase. The convolution theorem 
in mathematical analysis says that a convolution of f with h is 
identical to the result of the following steps: let F and H be the 
results of the Fourier transformation of f and h in the 
frequency domain. Multiply F and H in the frequency domain 
point by point and then transform this product into spatial 
domain via the inverse Fourier transform [19]. As a result, 
these cross correlations can be represented by a product in the 
frequency domain. Thus, by using cross correlation in the 
frequency domain a speed up in an order of magnitude can be 
achieved during the detection process [7-11].      

In the detection phase, a sub-image X of size nxn (sliding 
window) is extracted from the tested image, which has a size 
PxT, and fed to the hidden processors. Let U be the 
eigenvectors between the input sub-image and the processors 
in the hidden layer. This vector has a size of nxn and can be 
represented as nxn matrix. The output of hidden processor h 
can be calculated as follows:  

Uβ
1j
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Eq. (10) represents the output of the hidden neuron for a 
particular sub-image X. It can be computed for the whole 
image Ψ as follows: 

∑
−=

∑
−=

++=
n/2

n/2j

n/2

n/2k  
k)vj,(eΨ  k)U(j,v)h(e,        (11) 

Eq. (11) represents a cross correlation operation. Given any 
two functions f and d, their cross correlation can be obtained 
by [7-10]: 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑
∞

∞−=
∑
∞

∞−=
++=⊗

n n
n)n)d(n,yn,f(xy)d(x,y)f(x,   (12) 

Therefore, Eq. (11) can be written as follows: 
UβUΨh −⊗=                       (13) 

where h is the output of the hidden processor and h (e,v) is the 
activity of the hidden processor when the sliding window is 
located at position (e,v) in the input image Ψ and (e,v)∈[P-
n+1,T-n+1].  

Now, the above cross correlation can be expressed in terms of 
the Fourier Transform: 

( ) ( )( )UΨ *FF1FUΨ •−=⊗            (14) 

(*) means the conjugate of the FFT for the weight matrix. 
Hence, by evaluating this cross correlation, a speed up ratio 
can be obtained comparable to conventional PCA.  

In [3], the author stated that the hidden layer of eigenface units 
must be fed into a neural network which classify their outputs 
Therefore, the final output can be evaluated as follows:  
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where q is the number of neurons in  the hidden layer. O(e,v) 
is the output of the neural network when the sliding window 
located at the position (e,v) in the input image Ψ. b is the bias, 
g is the activation function, and Wo is the weight matrix 
between hidden and output layer. 

The complexity of the new implementation of PCA using 
cross correlation in the frequency domain can be analyzed as 
follows: 

1. For a tested image of NxN pixels, the 2D-FFT requires a 
number equal to N2log2N2 of complex computation steps. 
Also, the same number of complex computation steps is 
required for computing the 2D-FFT of the eigenvectors 
matrix.  
2. The inverse 2D-FFT is computed. So, one backward and 
two forward transforms have to be computed. Therefore, for 
an image under test, the total number of the 2D-FFT to 
compute is 3N2log2N2. 
3. The input image and eigenvectors matrix should be 
multiplied in the frequency domain. Therefore, a number of 
complex computation steps equal to N2 should be added.  
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4. The number of computation steps required by the fast PCA 
is complex and must be converted into a real version. It is 
known that the two dimensions Fast Fourier Transform 
requires (N2/2)log2N2 complex multiplications and N2log2N2 
complex additions [20,21]. Every complex multiplication is 
realized by six real floating point operations and every 
complex addition is implemented by two real floating point 
operations. So, the total number of computation steps required 
to obtain the 2D-FFT of an NxN image is: 

ρ=6((N2/2)log2N2) + 2(N2log2N2)             (16) 
which may be simplified to: 

ρ=5N2log2N2                        (17) 
Performing complex dot product in the frequency domain also 
requires 6N2 real operations. 
5. In order to perform cross correlation in the frequency 
domain, the eigenvectors matrix must have the same size as 
the input image. Assume that the input sub-image has a size of 
(nxn) dimensions. So, the search process will be performed 
over sub-images of (nxn) dimensions and the weight matrix 
will have the same size. Therefore, a number of zeros = (N2-
n2) must be added to the weight matrix. This requires a total 
real number of computation steps = (N2-n2) for all neurons. 
Moreover, after computing the 2D-FFT for the eigenvectors 
matrix, the conjugate of this matrix must be obtained. So, a 
real number of computation steps = N2 should be added in 
order to obtain the conjugate of the eigenvectors matrix for all 
neurons.  Also, a number of real computation steps equal to N 
is required to create butterflies complex numbers (e-jk(2Πn/N)), 
where 0<K<L. These (N/2) complex numbers are multiplied 
by the elements of the input image or by previous complex 
numbers during the computation of the 2D-FFT. To create a 
complex number requires two real floating point operations. 
So, the total number of computation steps required for the fast 
PCA becomes: 

σ=(3*5N2log2N2) +6N2+(N2-n2)+N2 +N        (18) 

which can be reformulated as: 
σ=(15N2log2N2) +8N2+N-n2             (19) 

6. Using a sliding window of size nxn for the same image of 
NxN pixels, (2n2-1)(N-n+1)2 computation steps are required 
when using traditional PCA for face detection process. The 
theoretical speed up factor η can be evaluated as follows: 

  2n- N 28N 2N2log215N

 2 1)n-1)(N-2(2n
η

++

+
=        (20) 

The theoretical speed up ratio (Eq. 11) with different sizes of 
the input image and different in size eigenvectors matrices is 
listed in Table I. Practical speed up ratio for manipulating 
images of different sizes and different in size eigenvectors 
matrices is listed in Table II using 700 MHz processor and 
MATLAB Ver 7.0.4.365 (R!4 SP2) An interesting property 
with fast PCA is that the number of computation steps does 
not depend either on the size of the input sub-image or the size 
of the eigenvectors matrix (n). The effect of (n) on the number 
of computation steps is very small and can be ignored. This is 
incontrast to conventional networks in which the number of 

computation steps is increased with the size of both the input 
sub-image and the eigenvectors matrix (n). 
In practical implementation, the multiplication process 
consumes more time than the addition one. The effect of the 
number of multiplications required for conventional PCA in 
the speed up ratio (Eq. 11) is more than the number of 
multiplication steps required by the fast PCA. In order to clear 
this, the following equation (ηm) describes relation between 
the number of multiplication steps required by conventional 
and fast PCA: 

22
2

2

22

6N)Nlog(3N*(3)
1)n(Nn

mη +

+−
=             (21) 

The results listed in Table III prove that the effect of the 
number of multiplication steps in case of conventional PCA is 
more than fast PCA and this the reason why practical speed up 
ratio is larger than theoretical speed up ratio. 

For general fast cross correlation the speed up ratio (ηg) is in 
the following form: 

2n-τ)(N2τ)8(N)2τ)(N2log2τ)(3(5(N

21)N2(2n
gη ++++++

−
=   (22) 

where τ is a small number depends on the size of the 
eigenvectors matrix. General cross correlation means that the 
process starts from the first element in the input matrix. The 
theoretical speed up ratio for general fast cross correlation (ηg) 
defined by Eq. (22) is shown in Table V. Compared with 
MATLAB cross correlation function (xcorr2), experimental 
results show that our proposed algorithm is faster than this 
function as shown in Table IV. 

IV. CONCLUSION 

A new approach for fast PCA has been presented for face 
detection. It has been proved mathematically and practically 
that the speed of the detection process becomes faster than 
conventional PCA. This has been accomplished by applying 
cross correlation in the frequency domain between the input 
image and the eigenvectors. Simulation results have confirmed 
theoretical computations by using MATLAB. As a result, the 
speed of PCA has been increased while its performance 
(detection rate) is the same as conventional implementation. 
Such approach can be considered as a completion of that work 
presented in [3] to build fast and efficient face detection 
system. Moreover, this algorithm can be used to fast detect 
and object or subimage in a given input image. 
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Fig.1 Classical implementation of PCA 
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Fig. 2 Fast implementation of PCA 
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TABLE  I 

 THE THEORETICAL SPEED UP RATIO FOR IMAGES WITH DIFFERENT 
SIZES 

Image size Speed up 
ratio (n=20)

Speed up 
ratio (n=25) 

Speed up 
ratio (n=30)

100x100 2.5290 3.4807 4.3761 
200x200 2.7576 4.0759 5.5420 
300x300 2.7505 4.1480 5.7601 
400x400 2.7118 4.1285 5.7895 
500x500 2.6697 4.0869 5.7636 
600x600 2.6300 4.0408 5.7196 
700x700 2.5939 3.9955 5.6701 
800x800 2.5612 3.9526 5.6201 
900x900 2.5317 3.9128 5.5716 

1000x1000 2.5049 3.8758 5.5255 
1100x1100 2.4804 3.8415 5.4818 
1200x1200 2.4579 3.8097 5.4407 
1300x1300 2.4371 3.7801 5.4021 
1400x1400 2.4180 3.7524 5.3656 
1500x1500 2.4001 3.7266 5.3312 
1600x1600 2.3834 3.7023 5.2988 
1700x1700 2.3678 3.6794 5.2681 
1800x1800 2.3532 3.6578 5.2390 
1900x1900 2.3393 3.6374 5.2113 
2000x2000 2.3263 3.6181 5.1850  

TABLE II 
PRACTICAL SPEED UP RATIO FOR IMAGES WITH DIFFERENT SIZES USING 

MATLAB VER 5.3 

Image size Speed up 
ratio (n=20)

Speed up 
ratio (n=25) 

Speed up 
ratio (n=30)

100x100 7.88 10.75 14.69 
200x200 6.21 9.19 13.17 
300x300 5.54 8.43 12.21 
400x400 4.78 7.45 11.41 
500x500 4.68 7.13 10.79 
600x600 4.46 6.97 10.28 
700x700 4.34 6.83 9.81 
800x800 4.27 6.68 9.60 
900x900 4.31 6.79 9.72 

1000x1000 4.19 6.59 9.46 
1100x1100 4.24 6.66 9.62 
1200x1200 4.20 6.62 9.57 
1300x1300 4.17 6.57 9.53 
1400x1400 4.13 6.53 9.49 
1500x1500 4.10 6.49 9.45 
1600x1600 4.07 6.45 9.41 
1700x1700 4.03 6.41 9.37 
1800x1800 4.00 6.38 9.32 
1900x1900 3.97 6.35 9.28 
2000x2000 3.94 6.31 9.25  

 
 

TABLE III 
A COMPARISON BETWEEN THE NUMBER OF MULTIPLICATION STEPS 

REQUIRED FOR CONVENTIONAL AND FAST PCA TO MANIPULATE 
IMAGES WITH DIFFERENT SIZES (n=20, q=30) 

.Image size Conventional 
Neural Nets 

Faster Neural 
Nets 

Speed up 
ratio (ηm)

100x100 7.8732e+007 2.6117e+007 3.0146 
200x200 3.9313e+008 1.1911e+008 3.3007 
300x300 9.4753e+008 2.8726e+008 3.2985 
400x400 1.7419e+009 5.3498e+008 3.2560 
500x500 2.7763e+009 8.6537e+008 3.2083 
600x600 4.0507e+009 1.2808e+009 3.1627 
700x700 5.5651e+009 1.7832e+009 3.1209 
800x800 7.3195e+009 2.3742e+009 3.0830 
900x900 9.3139e+009 3.0552e+009 3.0486 

1000x1000 1.1548e+010 3.8275e+009 3.0172 
1100x1100 1.4023e+010 4.6921e+009 2.9886 
1200x1200 1.6737e+010 5.6502e+009 2.9622 
1300x1300 1.9692e+010 6.7026e+009 2.9379 
1400x1400 2.2886e+010 7.8501e+009 2.9154 
1500x1500 2.6320e+010 9.0935e+009 2.8944 
1600x1600 2.9995e+010 1.0434e+010 2.8748 
1700x1700 3.3909e+010 1.1871e+010 2.8564 
1800x1800 3.8064e+010 1.3407e+010 2.8392 
1900x1900 4.2458e+010 1.5041e+010 2.8229 
2000x2000 7.8732e+007 2.6117e+007 3.0146  

TABLE IV 
THE THEORETICAL SPEED UP RATIO FOR THE GENERAL FAST PCA 

ALGORITHM 

Image size Speed up 
ratio (n=20)

Speed up 
ratio (n=25) 

Speed up 
ratio (n=30)

100x100 5.59 8.73 11.95 
200x200 4.89 7.64 10.75 
300x300 4.56 7.12 10.16 
400x400 4.35 6.80 9.68 
500x500 4.20 6.56 9.37 
600x600 4.08 6.38 9.13 
700x700 4.00 6.24 8.94 
800x800 3.92 6.12 8.77 
900x900 3.85 6.02 8.63 

1000x1000 3.79 5.93 8.51 
1100x1100 3.74 5.85 8.43 
1200x1200 3.70 5.78 8.33 
1300x1300 3.66 5.72 8.24 
1400x1400 3.62 5.66 8.16 
1500x1500 3.59 5.61 8.08 
1600x1600 3.56 5.57 8.02 
1700x1700 3.53 5.52 7.95 
1800x1800 3.51 5.48 7.89 
1900x1900 3.48 5.44 7.84 
2000x2000 5.59 8.73 11.95  
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TABLE V 
SIMULATION RESULTS OF THE SPEED UP RATIO FOR THE GENERAL FASTER 

CROSS CORRELATION COMPARED WITH THE MATLAB CROSS 
CORRELATION FUNCTION (XCORR2) 

Image size Speed up ratio 
(n=20) 

Speed up ratio 
(n=25) 

Speed up ratio 
(n=30) 

100x100 10.14  13.05   16.49  
200x200 9.17  11.92  14.33   
300x300 8.25  10.83  13.41  
400x400 7.91  9.62  12.65  
500x500 6.77  9.24  11.77  
600x600 6.46  8.89  11.19  
700x700 5.99  8.47  10.96  
800x800 5.48  8.74  10.32  
900x900 5.31  8.43  10.66  

1000x1000 5.91  8.66  10.51  
1100x1100 5.77 8.61 10.46 
1200x1200 5.68 8.56 10.40 
1300x1300 5.62 8.52 10.35 
1400x1400 5.58 8.47 10.31 
1500x1500 5.54 8.43 10.26 
1600x1600 5.50 8.39 10.22 
1700x1700 5.46 8.33 10.18 
1800x1800 5.42 8.28 10.14 
1900x1900 5.38 8.24 10.10 
2000x2000 5.34 8.20 10.06  

 

 

 
 


