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Abstract—This paper addresses a stock-cutting problem with 

rotation of items and without the guillotine cutting constraint. In 
order to solve the large-scale problem effectively and efficiently, we 
propose a simple but fast heuristic algorithm. It is shown that this 
heuristic outperforms the latest published algorithms for large-scale 
problem instances. 
 

Keywords—Combinatorial optimization, heuristic, large-scale, 
stock-cutting.  

I. INTRODUCTION 
UTTING and packing problems belong to a well-known 
family of combinatorial optimization problems and have 

many industrial applications in the different fields of 
operations research. For example, in the wood or glass 
industries, it is necessary to consider how to cut rectangular 
pieces from large sheets of material. In the warehousing field, 
it is necessary to consider how to place goods on shelves. In 
the newspapers typesetting field, it is necessary to consider 
how to arrange articles and advertisements in pages. In the 
shipping industry, it is necessary to consider how to ship a set 
of objects of various sizes as many as possible in a larger 
container. In the optic-fiber communication field, it is 
necessary to consider how to accommodate a bunch of optical 
fibers in a pipe as small as possible. In VLSI floor planning 
industry, it is necessary to consider how to lay VLSI. These 
applications can be formalized as a cutting and packing 
problem with different constraints and objectives [1]. One of 
the goals in most industrial applications is to produce a good 
quality of arrangements of items on the stock sheet in order to 
maximize material utilization or minimize wastage. On the 
other hand, there is a goal which is to produce a solution 
within a very short time. The later goal is especially important 
in the logistic fields because any delay will lead to a loss of 
customers. Therefore, it is usually very important to produce 
better-quality solutions in less time to meet the needs of 
industrial applications. In some industrial fields, the cutting or 
packing task is always done by skilled workers. However, due 
to a lack of material and the need of industrial applications, 
automated-packing algorithms have become more widely used 
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in recent years [2]. For more algorithms or reviews on cutting 
and packing problems, the interested reader is referred to the 
literature [1, 3, 4]. 

In this paper, the two-dimensional orthogonal stock-cutting 
problem is considered without any guillotine constraint. This 
problem can be stated as follows: Given a rectangular sheet of 
a given width and an infinite height and a set of rectangles 
with arbitrary sizes, the orthogonal stock-cutting problem is to 
place each rectangle on the sheet so that no two rectangles 
overlap and the height h of the used sheet is minimized. Let W 
be the width of the rectangular sheet, and n is the number of 
rectangles (or items). Let hi and wi be the height and width of 
rectangle i ( ni ≤≤1 ) respectively. A more formal statement 
for this problem is given in [5]. In this paper, we assume that 
the edges of each rectangle are parallel to the edges of the 
rectangular sheet, namely, orthogonal cuts. In addition, all 
rectangles must be placed into the rectangular sheet and are 
allowed to rotate 90 degree, namely, RF subtype according to 
[6]. This problem can be classified as a two-dimensional 
single large object placement problem according to [7]. 

The rest of this paper is organized as follows. In section II, 
inspired by the wall-building rule of bricklayers in daily life, 
we present a fast heuristic algorithm. Computational results 
are described in section III. Conclusions are summarized in 
section IV. 

  
II. A HEURISTIC FOR LARGE-SCALE STOCK-CUTTING 

PROBLEM 
In this section, a bricklaying heuristic strategy to explain 

the work idea of wall building is first introduced [8]. Then it is 
extended to design fast heuristics for the considered cutting 
problem. 

 
Fig. 1 The process of placing rectangles by bricklaying heuristic 

algorithm 
 

The idea of bricklaying heuristic algorithm is to place 
rectangles by layer [8]. A new layer determined by a reference 
rectangle starts when the current layer cannot place more 
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rectangles. The layers are divided by the reference line. For 
example, in Fig. 1(a), the reference rectangle 1 is placed into 
the position O and forms the layer 1. In Fig. 1(b), a new layer 
2 determined by the reference rectangle 4 starts when no 
rectangles can be placed into the space S  under the reference 
line BC; a new reference line DE is determined by the 
rectangle 4. The advantage of bricklaying heuristic algorithm 
is that it can make full use of space, for example, the space 
under the reference line BC can be used when placing layer 2. 
In real life, the bricklayers have accumulated a large number 
of experiences during the process of building the wall. These 
experiences include that the wall is built by layer, and that the 
lowest positions are given a priority to place. Inspired by their 
experiences, the procedure of fast heuristics for cutting 
problem is as follows: 

1. Place one reference rectangle, and form the current 
layer and the current reference line; 

2. From the lowest position to the highest position and 
from left to right, place the remaining rectangles into 
the available positions under the current reference line 
until no rectangles can be placed; 

3. If all rectangles are placed, then stop, otherwise go to 
step 1. 

 
Fig. 2 The process of placing rectangles by proposed heuristic 

algorithm 
 

As the reference rectangle determines the size of the space 
under the reference line, if the height of the current layer is 
too small, it will easily lead to placing the small rectangles 
first. Generally, in order to place large rectangles firstly, it is 
necessary to increase the height of the layer by stacking the 
rectangles of the same edge. For example, some small 
rectangles have to be placed under the reference line BC 
defined by the rectangle 1 in Fig. 2(a). From Fig. 2(b), the 
height of the layer will be higher if the rectangles 1, 4 and 5 
are stacked together; this will allow the large rectangles to be 
placed first. Indeed, the rectangles 2 and 6 cannot be placed 
under the reference line BC in Fig. 2(a), but they can be 
placed under the reference line BC in Fig. 2(b). Therefore, in 
step 1, we should stack the rectangle of the same edge until 
this layer’s height exceeds the lower bound of solution LB, 

where LB= ⎥
⎥

⎤
⎢
⎢

⎡∑
=

Wwh i

n

i
i

1

. In step 2, it is very important to 

select one rectangle to be placed in the current available 
position. For an available position p, in the rectangle space 
determined by p there are two kinds of possible rectangular 

space S determined by position p. S has four corner positions 
which touch the placed rectangles, the corner positions 
marked by circle in Figs. 3(1) and 3(2). Let h1 denote the 
height of the wall adjacent to the left of S, h2 denote the height 
of the wall adjacent to the right of S (see Figs. 3(1) and 3(2)). 
The first case is h1 ≥ h2. For this case, the unplaced rectangles 
should close 1h  to place. There are four kinds of possible 
available placements defined by different rectangle R. Which 
kind of placements is better? The bricklayers have rich 
experience and know how to place a rectangle by some 
priority rules. It is observed that one placement is good one if 
it can decrease the number of corner positions. So we present 
the conception of fitness value to evaluate whether one 
placement is good or not. If one placement can fit more corner 
positions, the corresponding rectangle for this placement is 
given a larger fitness value. In detail, the fitness value of one 
rectangle R for the first case (see Fig. 3(1)) is given as 
follows: 

(1) For Fig. 3(1.1), the placement can fit three corner 
points, so the fitness value of R is 3. Namely, if one 
rectangle R marked by blue is placed into the position 
p and obtain the placement in Fig. 3(1.1), then the 
fitness value of R is 3. It is a good placement because 
it can fit three corner points. 

(2) For Fig. 3(1.2), the placement can fit two corner 
points, so the fitness value of R is 2. Namely, if one 
rectangle R marked by blue is placed into the position 
p and obtain the placement in Fig. 3(1.2), then the 
fitness value of R  is 2. It is noted that the top dotted 
edge of the rectangle can move vertically, meaning 
that the rectangles have the same fitness value only if 
these rectangles can fit the bottom edge of the 
rectangle space S.  

(3) For Fig. 3(1.3), the placement can fit one corner 
points, so the fitness value of R is 1. Namely, if one 
rectangle R marked by blue is placed into the position 
p and obtain the placement in Fig. 3(1.3), then the 
fitness value of R is 1. It is noted that the right dotted 
edge of the rectangle can move horizontally, meaning 
that the rectangles have the same fitness value only if 
these rectangles do not touch the right edge of S. This 
kind of placement does not fit the corner position in p; 
it can be recognized that the corner position moves 
along the arrow to the right (see arrow in Fig. 3(1.3)).     

(4) For Fig. 3(1.4), the placement cannot fit any corner 
points, so the fitness value of R is 0. Namely, if one 
rectangle R marked by blue is placed into the position 
p and obtain the placement in Fig. 3(1.4), then the 
fitness value of R is 0. It is noted that the right dotted 
edge of the rectangle can move horizontally and the 
top dotted edge of the rectangle can move vertically. It 
means that the rectangles have the same fitness value 
only if these rectangles do not touch the right edge of 
S. Similarly, this kind of placement does not fit the 
corner position in p. It can be recognized that the 
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corner position moves along the arrow to the right (see 
arrow in Fig. 3(1.4)).   

(5) The fitness value of the rectangle is –∞ if that 
rectangle cannot be placed into the rectangle space S. 

For the second case of h2 > h1, the unplaced rectangles 
should close h2 to place. Similarly, there are four kinds of 
possible available placements. For each placement in Figs. 
3(2.1), (2.2), (2.3) and (2.4), the fitness value of the 
corresponding rectangle R is 3, 2, 1 and 0 respectively. The 
fitness value of the rectangle is –∞ if that rectangle cannot be 
placed into the rectangle space S. 

For a given position p, we can compute the fitness value of 
all the unplaced rectangles, then select one rectangle with the 
maximum fitness value to place there. The rectangle in the 
front of the ordering rectangle sequence is selected to be 
placed if several rectangles have the same maximum fitness 
value. In addition, it is very important to determine and place 
the reference rectangle since other rectangles must refer to the 
reference line. So the long edge of the reference rectangle is 
placed along the reference line unless the length of long edge 
is greater than W.  

In detail, the heuristic algorithm based on the above 
heuristic strategies is stated in Fig. 4. 
 

 

 
Fig. 3 Fitness value 

HeuristicPlacing(X) 
   repeat 

      select the first unplaced rectangle r in the current 
rectangles sequence; 

      if the long edge of the rectangle r is not greater than W 
then 

          place its long edge of the rectangle r along the 
current reference line; 

          let the length of r’s long edge be l  
      else  
          place its short edge of the rectangle r along the 

current reference line; 
          let the length of r’s short edge be l  
      the current reference rectangle is r 
      the current reference line determined by r is L, its height 

is h 
      repeat 
          select one unplaced rectangle r1 whose one edge 

length equals to l 
          stack r1 above r and let r = r1; 
          compute the height h of the current reference line L  
  until the layer height h exceeds LB; 
     repeat  
          determine the available lowest position p under L and 

compute h1, h2; 
          if h1 ≥ h2 then 
             compute the fitness value of each unplaced 

rectangles by the first case;  
             select the rectangle R with the maximum fitness 

value; 
             place the rectangle R by the first case; 
          else 

               compute the fitness value of each unplaced 
rectangles by the second case;  

             select the rectangle R with the maximum fitness 
value; 

             place the rectangle R by the second case; 
     until no rectangles can be placed under the reference 

line L;  
until all rectangles are placed; 

return h; 

Fig. 4 A fast heuristic algorithm 
 

It is noted that a new rectangle space will have to be 
searched if the length or width of the current rectangle space 
determined by p is less than the minimum length or width of 
the unplaced rectangles.  

Since the performance of heuristic algorithm significantly 
depends on the placing ordering X of the rectangles, some 
research results have shown that the placing ordering of the 
rectangles affects the performance of the presented algorithm 
[5, 6, 9]. In this paper, we make use of a heuristic strategy for 
selecting an initial placing ordering, namely unplaced 
rectangles should be sorted by a non-increasing ordering of 
perimeter size before placing. According to this placing 
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ordering, a rectangle with the maximum perimeter is given a 
higher priority to be placed so that the largest rectangle can be 
placed first. In addition, the way of strictly placing rectangles 
by their perimeter ordering does not correspond to the way of 
practical placing in the industry fields. Therefore, we can try 
different orderings to find a better solution, and then develop a 
fast heuristic (FH) algorithm (see Fig. 5) as follows. 
 
FastHeuristic() 

Sort all unplaced rectangles by non-increasing ordering of 
perimeter size and obtain ordering X; 
besth ← HeuristicPlacing(X); // besth denotes the best 
height so far  
for i ← 1 to n–1 do 

for j ← i+1 to n do 
Swap the order of rectangle i and j in the current 
ordering X and obtain the new ordering X’; 
currenth ← HeuristicPlacing(X’); //currenth denotes 
the height in the new orderings X’ ; 
if currenth < besth then 

besth ← currenth; 
X ← X’; 

else do not swap, namely X does not change; 
 return besth 

Fig. 5 A fast heuristic algorithm 
 

From Fig. 5, FH first sorts the unplaced rectangles by a 
non-increasing ordering of perimeter size, then 
HeuristicPlacing(X) is called once according to this perimeter 
ordering X and obtains an initial besth. Then, FH executes the 
two for loops, for given i and j, the algorithm first swaps the 
order of rectangle i and j in the current orderings X and obtain 
a new orderings X’, then computes currenth in the new 
orderings X’. If currenth is less than besth, then update besth 
and X. Otherwise, do not swap, namely keep X unchanged. 
Repeat this process until the two for loops are finished. For 
the given i and j, if swapping them can improve the height, 
then executes this swap, so FH makes use of the idea of 
greedy search. However, it does not use real greedy search 
because FH will exterminate after the two for loops are 
finished. 
 

III. COMPUTATIONAL RESULTS 
In order to verify the performance of FH, we compare it 

with other latest published heuristic and meta-heuristic 
algorithms by testing a large amount of benchmark problem 
instances from the literature. GA+BLF and SA+BLF [9], HR 
[5] and Best fit (BF) [10] are very good algorithms, but they 
have been beaten by the latest algorithms, such as 
BF+metaheuristics and HRP for problem type RF. These latest 
algorithms are selected to be compared with FH because many 
RF type instances have been tested by them.  

The benchmark instances on the two-dimensional 
orthogonal stock-cutting problem include 21 problem 
instances (data set C: C11~C73) ranging from 16 to 197 items 

in [9] and 13 problem instances (data set N: N1~N13) 
randomly generated by [10], and especially a large-scale 
instance involving 3152 items is given. The 7 extra large-scale 
instances (data set CX: 50cx~15000cx) proposed by [11] are 
included. The problem scale of these instances varies from 50 
to 15,000 rectangles. The optimal solution of the above 41 
instances are all known, namely LB=the optimal solution for 
each instance.  

FH coded in C++, was run on a 2GHz Pentium 4 notebook 
with 2048MB RAM. FH is allowed one run of 60 seconds. 
Since FH is a deterministic algorithm, it only runs once. 
BF+SA is the best algorithm among BF+TS, BF+SA and 
BF+GA, so we only select the best BF+SA for comparison. 
BF+SA was conducted on a 2GHz Pentium 4 computer with 
256MB RAM. BF+SA is allowed one run of 60 seconds and 
the best solution (besth) is shown during 10 runs. HRP is 
designed to calculate the waste area of a packing; it is 
extended to solve the problem considered by this paper, so its 
original results slightly differ from the results obtained by this 
paper. HRP executable program from the authors in [12] can 
compute the height of each instances and runs faster. FH and 
HRP were run on the same computer and only run once. The 
solution (h) and the running time (time) are reported. The best 
solutions are bold-typed. 

 
A.  Computational Results 
1. Computational results on the data set C 
For data set C, the computational results of BF+SA are 

directly taken from [13]. HRP and FH are run on the same 
machine and their computational results are reported in Table 
I.  

On this data set C, we observe that, BF+SA and HRP 
perform better than FH for small instances which are C13 and 
C33. However, FH outperforms BF+SA for large-scale 
instances. FH and HRP find the same solutions for large-scale 
instances (n > 49), but FH is faster than HRP. 
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TABLE I 
COMPUTATIONAL RESULTS ON DATA SET C 

Instance BF+S
A 

HRP FH 

 n W LB besth h time h time 

C11 16 20 20 20 20 0.03 20 0* 

C12 17 20 20 20 20 0.19 20 0.01 

C13 16 20 20 20 20 0.03 21 0 

C21 25 40 15 16 15 0.27 16 0.02 

C22 25 40 15 16 15 0.06 15 0 

C23 25 40 15 16 15 0.05 15 0 

C31 28 60 30 31 31 0.61 31 0.02 

C32 29 60 30 31 31 0.61 31 0.02 

C33 28 60 30 31 31 0.63 32 0.02 

C41 49 60 60 61 61 1.84 61 0.16 

C42 49 60 60 61 60 0.23 61 0.11 

C43 49 60 60 61 61 2.02 61 0.08 

C51 73 60 90 91 91 4.30 91 0.28 

C52 73 60 90 91 90 1.34 90 0 

C53 73 60 90 92 91 4.3 91 0.3 

C61 97 80 120 122 121 9.84 12
1 

0.83 

C62 97 80 120 121 121 8.38 12
1 

0.89 

C63 97 80 120 122 121 9.94 12
1 

0.76 

C71 19
6 

16
0 

240 244 241 61.48 24
1 

13.91 

C72 19
7 

16
0 

240 244 241 58.91 24
1 

11.64 

C73 19
6 

16
0 

240 245 241 62.9 24
1 

15 

*: 0 means the running time is less than 0.01 second 
 

2.  Computational results on the data set N 
The computational results of BF+SA for the data set N are 

directly taken from [15]. The computational results of HRP 
and FH are reported in Table II. On this data set N, as shown 
in Table II, in 9 instances marked by underline among the 13 
instances under column “BF+SA”, FH obtains a smaller h 
than BF+SA. In 2 instances marked by italic among the 13 
instances, FH is worse than BF+SA. In 4 instances marked by 
underline among the 13 instances under column “HRP”, FH 
obtains a smaller h than HRP. In 2 instances marked by italic 
among the 13 instances, FH is worse than HRP. For large-
scale instances N12 and N13, FH can obtain better solutions 
in a short time than HRP. Moreover, FH finds the optimal 
solution of the largest scale instance N13. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

TABLE II 
COMPUTATIONAL RESULTS OF THE DATA SET N 

instance BF+SA HRP FH 

 n W LB besth h time h time 

N1 10 40 40 40 40 0.03 40 0 

N2 20 30 50 50 51 0.023 52 0 

N3 30 30 50 51 51 0.61 51 0.02 

N4 40 80 80 82 81 2.09 83 0.03 

N5 50 100 100 103 102 4.08 10
2 

0.08 

N6 60 50 100 102 102 5.55 10
1 

0.03 

N7 70 80 100 104 102 9.0 10
2 

0.13 

N8 80 100 80 82 81 6.78 81 0.23 

N9 100 50 150 152 152 23.27 15
1 

0.14 

N10 200 70 150 152 151 61.19 15
1 

0.55 

N11 300 70 150 153 151 67.69 15
1 

1.48 

N12 500 100 300 306 305 85.72 30
1 

5.63 

N13 3152 640 960 964 972 2743.48 96
0 

1.91 

 
3. Computational results on the extra large-scale data set 

CX 
For the extra large-scale data set CX, Table III reports the 

computational results of HRP and FH, where “―” denotes 
HRP cannot find solution in 10000 seconds. FH can find the 
optimal solutions of most instances except 50cx and 100cx. 
Moreover, for instance 5000cx, the solution obtained by FH is 
better than that obtained by HRP in a very long time. So FH 
outperforms HRP for large-scale instances (n > 100). 
 

TABLE III 
COMPUTATIONAL RESULTS ON THE EXTRA LARGE-SCALE DATA SET CX 

Instance HRP FH 
 n W LB h time h time 

50cx 50 400 600 615 10.09 624 0.33 
100cx 100 400 600 615 47.88 619 3.56 
500cx 500 400 600 611 87.31 600 2.00 

1000cx 1000 400 600 607 86.08 600 0.02 
5000cx 5000 400 600 607 9256.37 600 0.05 
10000cx 10000 400 600 ― ― 600 0.05 
15000cx 15000 400 600 ― ― 600 0.06 

 

IV. CONCLUSION 
A fast heuristic algorithm for the large-scale orthogonal 

stock-cutting problem is presented in this paper. This 
algorithm inspired by nature is very simple and intuitive, and 
can solve the orthogonal stock-cutting problem efficiently. 
The computational results have shown that FH can compete 
with some latest meta-heuristics in terms of both solution 
quality and execution time. Especially, it performs better for 
large-scale test problems. In addition, FH does not involve the 
selection of parameters. However, meta-heuristics often 
involve many parameters on whose selection their 
performance significantly depends. So FH may be of great 
practical value to the rational layout of rectangular objects in 
the engineering fields, such as the wood-, glass- and paper 
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industries, and the ship building industry, textile and leather 
industry.  

To our knowledge, this is the first paper that presents a 
simple and deterministic algorithm and has attempted to test 
such a broad range of large-scale benchmark problem 
instances from the literature and obtains so desirable solutions 
for large-scale instances in a very short time when comparing 
with the latest heuristics and metaheuristics. Future work is to 
further improve the performance of this algorithm and extend 
it to solve three-dimensional rectangular packing problems. 
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