
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:5, 2009

1455

Abstract—This paper addresses a stock-cutting problem with

rotation of items and without the guillotine cutting constraint. In
order to solve the large-scale problem effectively and efficiently, we
propose a simple but fast heuristic algorithm. It is shown that this
heuristic outperforms the latest published algorithms for large-scale
problem instances.

Keywords—Combinatorial optimization, heuristic, large-scale,
stock-cutting.

I. INTRODUCTION
UTTING and packing problems belong to a well-known
family of combinatorial optimization problems and have

many industrial applications in the different fields of
operations research. For example, in the wood or glass
industries, it is necessary to consider how to cut rectangular
pieces from large sheets of material. In the warehousing field,
it is necessary to consider how to place goods on shelves. In
the newspapers typesetting field, it is necessary to consider
how to arrange articles and advertisements in pages. In the
shipping industry, it is necessary to consider how to ship a set
of objects of various sizes as many as possible in a larger
container. In the optic-fiber communication field, it is
necessary to consider how to accommodate a bunch of optical
fibers in a pipe as small as possible. In VLSI floor planning
industry, it is necessary to consider how to lay VLSI. These
applications can be formalized as a cutting and packing
problem with different constraints and objectives [1]. One of
the goals in most industrial applications is to produce a good
quality of arrangements of items on the stock sheet in order to
maximize material utilization or minimize wastage. On the
other hand, there is a goal which is to produce a solution
within a very short time. The later goal is especially important
in the logistic fields because any delay will lead to a loss of
customers. Therefore, it is usually very important to produce
better-quality solutions in less time to meet the needs of
industrial applications. In some industrial fields, the cutting or
packing task is always done by skilled workers. However, due
to a lack of material and the need of industrial applications,
automated-packing algorithms have become more widely used

Stephen C. H. Leung is with the Department of Management Sciences,

City University of Hong Kong, Hong Kong (phone: 852-2788-8650; fax: 852-
2788-8560; e-mail: mssleung@cityu.edu.hk).

Defu Zhang is with the Department of Computer Science, Xiamen
University, Xiamen 361005, China (e-mail: dfzhang@xmu.edu.cn).

in recent years [2]. For more algorithms or reviews on cutting
and packing problems, the interested reader is referred to the
literature [1, 3, 4].

In this paper, the two-dimensional orthogonal stock-cutting
problem is considered without any guillotine constraint. This
problem can be stated as follows: Given a rectangular sheet of
a given width and an infinite height and a set of rectangles
with arbitrary sizes, the orthogonal stock-cutting problem is to
place each rectangle on the sheet so that no two rectangles
overlap and the height h of the used sheet is minimized. Let W
be the width of the rectangular sheet, and n is the number of
rectangles (or items). Let hi and wi be the height and width of
rectangle i (ni ≤≤1) respectively. A more formal statement
for this problem is given in [5]. In this paper, we assume that
the edges of each rectangle are parallel to the edges of the
rectangular sheet, namely, orthogonal cuts. In addition, all
rectangles must be placed into the rectangular sheet and are
allowed to rotate 90 degree, namely, RF subtype according to
[6]. This problem can be classified as a two-dimensional
single large object placement problem according to [7].

The rest of this paper is organized as follows. In section II,
inspired by the wall-building rule of bricklayers in daily life,
we present a fast heuristic algorithm. Computational results
are described in section III. Conclusions are summarized in
section IV.

II. A HEURISTIC FOR LARGE-SCALE STOCK-CUTTING

PROBLEM
In this section, a bricklaying heuristic strategy to explain

the work idea of wall building is first introduced [8]. Then it is
extended to design fast heuristics for the considered cutting
problem.

Fig. 1 The process of placing rectangles by bricklaying heuristic

algorithm

The idea of bricklaying heuristic algorithm is to place
rectangles by layer [8]. A new layer determined by a reference
rectangle starts when the current layer cannot place more

A New Heuristic Approach for the Stock-
Cutting Problems
Stephen C. H. Leung, and Defu Zhang

C

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:5, 2009

1456

rectangles. The layers are divided by the reference line. For
example, in Fig. 1(a), the reference rectangle 1 is placed into
the position O and forms the layer 1. In Fig. 1(b), a new layer
2 determined by the reference rectangle 4 starts when no
rectangles can be placed into the space S under the reference
line BC; a new reference line DE is determined by the
rectangle 4. The advantage of bricklaying heuristic algorithm
is that it can make full use of space, for example, the space
under the reference line BC can be used when placing layer 2.
In real life, the bricklayers have accumulated a large number
of experiences during the process of building the wall. These
experiences include that the wall is built by layer, and that the
lowest positions are given a priority to place. Inspired by their
experiences, the procedure of fast heuristics for cutting
problem is as follows:

1. Place one reference rectangle, and form the current
layer and the current reference line;

2. From the lowest position to the highest position and
from left to right, place the remaining rectangles into
the available positions under the current reference line
until no rectangles can be placed;

3. If all rectangles are placed, then stop, otherwise go to
step 1.

Fig. 2 The process of placing rectangles by proposed heuristic

algorithm

As the reference rectangle determines the size of the space
under the reference line, if the height of the current layer is
too small, it will easily lead to placing the small rectangles
first. Generally, in order to place large rectangles firstly, it is
necessary to increase the height of the layer by stacking the
rectangles of the same edge. For example, some small
rectangles have to be placed under the reference line BC
defined by the rectangle 1 in Fig. 2(a). From Fig. 2(b), the
height of the layer will be higher if the rectangles 1, 4 and 5
are stacked together; this will allow the large rectangles to be
placed first. Indeed, the rectangles 2 and 6 cannot be placed
under the reference line BC in Fig. 2(a), but they can be
placed under the reference line BC in Fig. 2(b). Therefore, in
step 1, we should stack the rectangle of the same edge until
this layer’s height exceeds the lower bound of solution LB,

where LB= ⎥
⎥

⎤
⎢
⎢

⎡∑
=

Wwh i

n

i
i

1

. In step 2, it is very important to

select one rectangle to be placed in the current available
position. For an available position p, in the rectangle space
determined by p there are two kinds of possible rectangular

space S determined by position p. S has four corner positions
which touch the placed rectangles, the corner positions
marked by circle in Figs. 3(1) and 3(2). Let h1 denote the
height of the wall adjacent to the left of S, h2 denote the height
of the wall adjacent to the right of S (see Figs. 3(1) and 3(2)).
The first case is h1 ≥ h2. For this case, the unplaced rectangles
should close 1h to place. There are four kinds of possible
available placements defined by different rectangle R. Which
kind of placements is better? The bricklayers have rich
experience and know how to place a rectangle by some
priority rules. It is observed that one placement is good one if
it can decrease the number of corner positions. So we present
the conception of fitness value to evaluate whether one
placement is good or not. If one placement can fit more corner
positions, the corresponding rectangle for this placement is
given a larger fitness value. In detail, the fitness value of one
rectangle R for the first case (see Fig. 3(1)) is given as
follows:

(1) For Fig. 3(1.1), the placement can fit three corner
points, so the fitness value of R is 3. Namely, if one
rectangle R marked by blue is placed into the position
p and obtain the placement in Fig. 3(1.1), then the
fitness value of R is 3. It is a good placement because
it can fit three corner points.

(2) For Fig. 3(1.2), the placement can fit two corner
points, so the fitness value of R is 2. Namely, if one
rectangle R marked by blue is placed into the position
p and obtain the placement in Fig. 3(1.2), then the
fitness value of R is 2. It is noted that the top dotted
edge of the rectangle can move vertically, meaning
that the rectangles have the same fitness value only if
these rectangles can fit the bottom edge of the
rectangle space S.

(3) For Fig. 3(1.3), the placement can fit one corner
points, so the fitness value of R is 1. Namely, if one
rectangle R marked by blue is placed into the position
p and obtain the placement in Fig. 3(1.3), then the
fitness value of R is 1. It is noted that the right dotted
edge of the rectangle can move horizontally, meaning
that the rectangles have the same fitness value only if
these rectangles do not touch the right edge of S. This
kind of placement does not fit the corner position in p;
it can be recognized that the corner position moves
along the arrow to the right (see arrow in Fig. 3(1.3)).

(4) For Fig. 3(1.4), the placement cannot fit any corner
points, so the fitness value of R is 0. Namely, if one
rectangle R marked by blue is placed into the position
p and obtain the placement in Fig. 3(1.4), then the
fitness value of R is 0. It is noted that the right dotted
edge of the rectangle can move horizontally and the
top dotted edge of the rectangle can move vertically. It
means that the rectangles have the same fitness value
only if these rectangles do not touch the right edge of
S. Similarly, this kind of placement does not fit the
corner position in p. It can be recognized that the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:5, 2009

1457

corner position moves along the arrow to the right (see
arrow in Fig. 3(1.4)).

(5) The fitness value of the rectangle is –∞ if that
rectangle cannot be placed into the rectangle space S.

For the second case of h2 > h1, the unplaced rectangles
should close h2 to place. Similarly, there are four kinds of
possible available placements. For each placement in Figs.
3(2.1), (2.2), (2.3) and (2.4), the fitness value of the
corresponding rectangle R is 3, 2, 1 and 0 respectively. The
fitness value of the rectangle is –∞ if that rectangle cannot be
placed into the rectangle space S.

For a given position p, we can compute the fitness value of
all the unplaced rectangles, then select one rectangle with the
maximum fitness value to place there. The rectangle in the
front of the ordering rectangle sequence is selected to be
placed if several rectangles have the same maximum fitness
value. In addition, it is very important to determine and place
the reference rectangle since other rectangles must refer to the
reference line. So the long edge of the reference rectangle is
placed along the reference line unless the length of long edge
is greater than W.

In detail, the heuristic algorithm based on the above
heuristic strategies is stated in Fig. 4.

Fig. 3 Fitness value

HeuristicPlacing(X)
 repeat

 select the first unplaced rectangle r in the current
rectangles sequence;

 if the long edge of the rectangle r is not greater than W
then

 place its long edge of the rectangle r along the
current reference line;

 let the length of r’s long edge be l
 else
 place its short edge of the rectangle r along the

current reference line;
 let the length of r’s short edge be l
 the current reference rectangle is r
 the current reference line determined by r is L, its height

is h
 repeat
 select one unplaced rectangle r1 whose one edge

length equals to l
 stack r1 above r and let r = r1;
 compute the height h of the current reference line L
 until the layer height h exceeds LB;
 repeat
 determine the available lowest position p under L and

compute h1, h2;
 if h1 ≥ h2 then
 compute the fitness value of each unplaced

rectangles by the first case;
 select the rectangle R with the maximum fitness

value;
 place the rectangle R by the first case;
 else

 compute the fitness value of each unplaced
rectangles by the second case;

 select the rectangle R with the maximum fitness
value;

 place the rectangle R by the second case;
 until no rectangles can be placed under the reference

line L;
until all rectangles are placed;

return h;

Fig. 4 A fast heuristic algorithm

It is noted that a new rectangle space will have to be
searched if the length or width of the current rectangle space
determined by p is less than the minimum length or width of
the unplaced rectangles.

Since the performance of heuristic algorithm significantly
depends on the placing ordering X of the rectangles, some
research results have shown that the placing ordering of the
rectangles affects the performance of the presented algorithm
[5, 6, 9]. In this paper, we make use of a heuristic strategy for
selecting an initial placing ordering, namely unplaced
rectangles should be sorted by a non-increasing ordering of
perimeter size before placing. According to this placing

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:5, 2009

1458

ordering, a rectangle with the maximum perimeter is given a
higher priority to be placed so that the largest rectangle can be
placed first. In addition, the way of strictly placing rectangles
by their perimeter ordering does not correspond to the way of
practical placing in the industry fields. Therefore, we can try
different orderings to find a better solution, and then develop a
fast heuristic (FH) algorithm (see Fig. 5) as follows.

FastHeuristic()

Sort all unplaced rectangles by non-increasing ordering of
perimeter size and obtain ordering X;
besth ← HeuristicPlacing(X); // besth denotes the best
height so far
for i ← 1 to n–1 do

for j ← i+1 to n do
Swap the order of rectangle i and j in the current
ordering X and obtain the new ordering X’;
currenth ← HeuristicPlacing(X’); //currenth denotes
the height in the new orderings X’ ;
if currenth < besth then

besth ← currenth;
X ← X’;

else do not swap, namely X does not change;
 return besth

Fig. 5 A fast heuristic algorithm

From Fig. 5, FH first sorts the unplaced rectangles by a
non-increasing ordering of perimeter size, then
HeuristicPlacing(X) is called once according to this perimeter
ordering X and obtains an initial besth. Then, FH executes the
two for loops, for given i and j, the algorithm first swaps the
order of rectangle i and j in the current orderings X and obtain
a new orderings X’, then computes currenth in the new
orderings X’. If currenth is less than besth, then update besth
and X. Otherwise, do not swap, namely keep X unchanged.
Repeat this process until the two for loops are finished. For
the given i and j, if swapping them can improve the height,
then executes this swap, so FH makes use of the idea of
greedy search. However, it does not use real greedy search
because FH will exterminate after the two for loops are
finished.

III. COMPUTATIONAL RESULTS
In order to verify the performance of FH, we compare it

with other latest published heuristic and meta-heuristic
algorithms by testing a large amount of benchmark problem
instances from the literature. GA+BLF and SA+BLF [9], HR
[5] and Best fit (BF) [10] are very good algorithms, but they
have been beaten by the latest algorithms, such as
BF+metaheuristics and HRP for problem type RF. These latest
algorithms are selected to be compared with FH because many
RF type instances have been tested by them.

The benchmark instances on the two-dimensional
orthogonal stock-cutting problem include 21 problem
instances (data set C: C11~C73) ranging from 16 to 197 items

in [9] and 13 problem instances (data set N: N1~N13)
randomly generated by [10], and especially a large-scale
instance involving 3152 items is given. The 7 extra large-scale
instances (data set CX: 50cx~15000cx) proposed by [11] are
included. The problem scale of these instances varies from 50
to 15,000 rectangles. The optimal solution of the above 41
instances are all known, namely LB=the optimal solution for
each instance.

FH coded in C++, was run on a 2GHz Pentium 4 notebook
with 2048MB RAM. FH is allowed one run of 60 seconds.
Since FH is a deterministic algorithm, it only runs once.
BF+SA is the best algorithm among BF+TS, BF+SA and
BF+GA, so we only select the best BF+SA for comparison.
BF+SA was conducted on a 2GHz Pentium 4 computer with
256MB RAM. BF+SA is allowed one run of 60 seconds and
the best solution (besth) is shown during 10 runs. HRP is
designed to calculate the waste area of a packing; it is
extended to solve the problem considered by this paper, so its
original results slightly differ from the results obtained by this
paper. HRP executable program from the authors in [12] can
compute the height of each instances and runs faster. FH and
HRP were run on the same computer and only run once. The
solution (h) and the running time (time) are reported. The best
solutions are bold-typed.

A. Computational Results
1. Computational results on the data set C
For data set C, the computational results of BF+SA are

directly taken from [13]. HRP and FH are run on the same
machine and their computational results are reported in Table
I.

On this data set C, we observe that, BF+SA and HRP
perform better than FH for small instances which are C13 and
C33. However, FH outperforms BF+SA for large-scale
instances. FH and HRP find the same solutions for large-scale
instances (n > 49), but FH is faster than HRP.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:5, 2009

1459

TABLE I
COMPUTATIONAL RESULTS ON DATA SET C

Instance BF+S
A

HRP FH

 n W LB besth h time h time

C11 16 20 20 20 20 0.03 20 0*

C12 17 20 20 20 20 0.19 20 0.01

C13 16 20 20 20 20 0.03 21 0

C21 25 40 15 16 15 0.27 16 0.02

C22 25 40 15 16 15 0.06 15 0

C23 25 40 15 16 15 0.05 15 0

C31 28 60 30 31 31 0.61 31 0.02

C32 29 60 30 31 31 0.61 31 0.02

C33 28 60 30 31 31 0.63 32 0.02

C41 49 60 60 61 61 1.84 61 0.16

C42 49 60 60 61 60 0.23 61 0.11

C43 49 60 60 61 61 2.02 61 0.08

C51 73 60 90 91 91 4.30 91 0.28

C52 73 60 90 91 90 1.34 90 0

C53 73 60 90 92 91 4.3 91 0.3

C61 97 80 120 122 121 9.84 12
1

0.83

C62 97 80 120 121 121 8.38 12
1

0.89

C63 97 80 120 122 121 9.94 12
1

0.76

C71 19
6

16
0

240 244 241 61.48 24
1

13.91

C72 19
7

16
0

240 244 241 58.91 24
1

11.64

C73 19
6

16
0

240 245 241 62.9 24
1

15

*: 0 means the running time is less than 0.01 second

2. Computational results on the data set N
The computational results of BF+SA for the data set N are

directly taken from [15]. The computational results of HRP
and FH are reported in Table II. On this data set N, as shown
in Table II, in 9 instances marked by underline among the 13
instances under column “BF+SA”, FH obtains a smaller h
than BF+SA. In 2 instances marked by italic among the 13
instances, FH is worse than BF+SA. In 4 instances marked by
underline among the 13 instances under column “HRP”, FH
obtains a smaller h than HRP. In 2 instances marked by italic
among the 13 instances, FH is worse than HRP. For large-
scale instances N12 and N13, FH can obtain better solutions
in a short time than HRP. Moreover, FH finds the optimal
solution of the largest scale instance N13.

TABLE II
COMPUTATIONAL RESULTS OF THE DATA SET N

instance BF+SA HRP FH

 n W LB besth h time h time

N1 10 40 40 40 40 0.03 40 0

N2 20 30 50 50 51 0.023 52 0

N3 30 30 50 51 51 0.61 51 0.02

N4 40 80 80 82 81 2.09 83 0.03

N5 50 100 100 103 102 4.08 10
2

0.08

N6 60 50 100 102 102 5.55 10
1

0.03

N7 70 80 100 104 102 9.0 10
2

0.13

N8 80 100 80 82 81 6.78 81 0.23

N9 100 50 150 152 152 23.27 15
1

0.14

N10 200 70 150 152 151 61.19 15
1

0.55

N11 300 70 150 153 151 67.69 15
1

1.48

N12 500 100 300 306 305 85.72 30
1

5.63

N13 3152 640 960 964 972 2743.48 96
0

1.91

3. Computational results on the extra large-scale data set

CX
For the extra large-scale data set CX, Table III reports the

computational results of HRP and FH, where “―” denotes
HRP cannot find solution in 10000 seconds. FH can find the
optimal solutions of most instances except 50cx and 100cx.
Moreover, for instance 5000cx, the solution obtained by FH is
better than that obtained by HRP in a very long time. So FH
outperforms HRP for large-scale instances (n > 100).

TABLE III
COMPUTATIONAL RESULTS ON THE EXTRA LARGE-SCALE DATA SET CX

Instance HRP FH
 n W LB h time h time

50cx 50 400 600 615 10.09 624 0.33
100cx 100 400 600 615 47.88 619 3.56
500cx 500 400 600 611 87.31 600 2.00

1000cx 1000 400 600 607 86.08 600 0.02
5000cx 5000 400 600 607 9256.37 600 0.05
10000cx 10000 400 600 ― ― 600 0.05
15000cx 15000 400 600 ― ― 600 0.06

IV. CONCLUSION
A fast heuristic algorithm for the large-scale orthogonal

stock-cutting problem is presented in this paper. This
algorithm inspired by nature is very simple and intuitive, and
can solve the orthogonal stock-cutting problem efficiently.
The computational results have shown that FH can compete
with some latest meta-heuristics in terms of both solution
quality and execution time. Especially, it performs better for
large-scale test problems. In addition, FH does not involve the
selection of parameters. However, meta-heuristics often
involve many parameters on whose selection their
performance significantly depends. So FH may be of great
practical value to the rational layout of rectangular objects in
the engineering fields, such as the wood-, glass- and paper

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:5, 2009

1460

industries, and the ship building industry, textile and leather
industry.

To our knowledge, this is the first paper that presents a
simple and deterministic algorithm and has attempted to test
such a broad range of large-scale benchmark problem
instances from the literature and obtains so desirable solutions
for large-scale instances in a very short time when comparing
with the latest heuristics and metaheuristics. Future work is to
further improve the performance of this algorithm and extend
it to solve three-dimensional rectangular packing problems.

ACKNOWLEDGMENT
The authors would like to thank Dr. Glenn Whitwell, Prof.

Manuel Iori, Dr. C.L. Mumford and Dr. Graham Kendall for
their help to provide test data sets for this paper. Special
thanks to Prof. Ramon Alvarez-Valdes, Dr. G. Belov and Dr.
Duanbing Chen for their executable programs. Special thanks
also to Dr. Andreas Bortfeldt for his valuable help and data
sets. This work has been supported by the National Nature
Science Foundation of China (Grant no. 60773126) and the
Province Nature Science Foundation of Fujian (Grant no.
2007J0037) and academician start-up fund (Grant No.
X01109) and 985 information technology fund (Grant No.
0000-X07204) in Xiamen University.

REFERENCES
[1] A. Lodi, S. Martello, and D. Vigo, “Recent advances on two dimensional

bin packing problems,” Discrete Applied Mathematics, vol. 123, pp.
379–396, 2002.

[2] Z. Li, and V. Milenkovic, “Compaction and separation algorithms for
non-convex polygons and their applications,” European Journal of
Operational Research, vol. 84, pp. 539–561, 1995.

[3] K. A. Dowsland, and W. B. Dowsland, “Packing problems,” European
Journal of Operational Research, vol. 56, pp. 2–14, 1992.

[4] José Fernando Oliveira, and Gerhard Wäscher, “Cutting and Packing,”
European Journal of Operational Research, vol. 183, pp. 1106–1108,
2007.

[5] Defu Zhang, Yan Kang, and Ansheng Deng, “A new heuristic recursive
algorithm for the strip rectangular packing problem,” Computers and
Operations Research, vol. 33, pp. 2209–2217, 2006.

[6] A. Bortfeldt, “A genetic algorithm for the two-dimensional strip packing
problem with rectangular pieces,” European Journal of Operational
Research, vol. 172, pp. 814–837, 2006.

[7] Gerhard Wäscher, Heike Haußner, and Holger Schumann, “An improved
typology of cutting and packing problems,” European Journal of
Operational Research, vol. 183, pp. 1109–1130, 2007.

[8] Defu Zhang, Shui-hua Han, and Wei-guo Ye, “A bricklaying heuristic
algorithm for the orthogonal rectangular packing problem,” Chinese
Journal of Computers, vol. 23, pp. 509–515, 2008.

[9] E. Hopper, and B. C. H. Turton, “An empirical investigation of meta-
heuristic and heuristic algorithms for a 2D packing problem,” European
Journal of Operational Research, vol. 128, pp. 34–57, 2001.

[10] E. K. Burke, G. Kendall, and G. Whitwell, “A new placement heuristic
for the orthogonal stock-cutting problem,” Operations Research, vol. 52,
pp. 655–671, 2004.

[11] E. Pinto, and J. F. Oliveira, “Algorithm based on graphs for the non-
guillotinable two-dimensional packing problem,” Second ESICUP
Meeting, Southampton, 2005.

[12] Wenqi Huang, Duanbing Chen, and Ruchu Xu, “A new heuristic
algorithm for rectangle packing,” Computers and Operations Research,
vol. 34, pp. 3270–3280, 2007.

[13] E. K. Burke, G. Kendall, and G. Whitwell, “Metaheuristic enhancements
of the best-fit heuristic for the orthogonal stock cutting problem,”

Computer science technical report no. NOTTCS-TR-SUB-0605091028-
4370, University of Nottingham, 2006.

