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Abstract—This paper presents a new heuristic algorithm for the 

classical symmetric traveling salesman problem (TSP). The idea of 
the algorithm is to cut a TSP tour into overlapped blocks and then 
each block is improved separately. It is conjectured that the chance of 
improving a good solution by moving a node to a position far away 
from its original one is small.  By doing intensive search in each 
block, it is possible to further improve a TSP tour that cannot be 
improved by other local search methods. To test the performance of 
the proposed algorithm, computational experiments are carried out 
based on benchmark problem instances. The computational results 
show that algorithm proposed in this paper is efficient for solving the 
TSPs.  
 

Keywords—Local search, overlapped neighborhood, traveling 
salesman problem.  

I. INTRODUCTION 
HE document is a template for Word (doc) versions. 
traveling salesman problem is one of the classical 

challenging combinatorial optimization problems. The 
objective of the TSP is to minimize the total distance traveled 
by visiting all the nodes once and only once and then 
returning to the depot node. The classical formulation of the 
TSP is stated as follows. Let a network G = (N, A, C) be 
defined with N denoting the set of nodes on the network, A 
denoting the set of arcs and C = [cij] denoting the matrix of 
costs.  

A common application of the TSP is the movement of 
people, equipment and vehicles around tours of duty to 
minimize the total traveling cost. For example, in a school bus 
routing problem, it is required to schedule a school bus to pick 
up waiting students from the pre-specified locations. Post 
routing is another application of the TSP. The postman 
problem is modeled as traversing a given set of streets in a 
city, rather than visiting a set of specified locations. Moreover, 
the TSP plays an important role in general post problem, 
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where the houses or streets are far away from each other. 
Besides the above mentioned applications, some other seemly 
unrelated problems are solved by formulating them as the 
TSP. The genome sequencing problem occurs in the field of 
bio-engineering. The aim of this problem is to find the 
genome sequence based on the markers that serve as 
landmarks for the genome maps. The TSP plays an important 
role in genome sequencing by providing a tool for building 
sequences from experimental data on the proximity of 
individual pairs of markers. By considering markers as cities, 
a genome sequence can be viewed as a TSP path traveling 
through each marker once and only once. The drilling problem 
is another application of the TSP with the objective of 
minimizing the total travel time of the drill. In the electronic 
industry, printed circuit boards are widely found in common 
electronic devices. The printed circuit board normally has a 
very large number of holes used for mounting components or 
integrated chips. These holes are typically drilled by 
automated drilling machines that move between specified 
locations to drill a hole one after another. Therefore, the 
locations in the drilling problem correspond to the cities in the 
TSP. The applications of the TSP are not limited to the 
examples described above. A detailed review of the 
applications of the TSP can be found in [1-2]. 

It has been proved that TSP is NP-hard in [3] which implies 
that a polynomial bounded exact algorithm for TSP is unlikely 
to exist. In this paper, we presented a heuristic algorithm for 
solving the TSP and its performance is illustrated based on the 
benchmark TSP instances. The algorithm proposed in this 
paper is based on the work in [4], in which an existing 
solution is divided into overlapped blocks and then each block 
is explored separately. By doing local search using the 
Generalized Crossing (GC) method, which is developed in [5] 
for the vehicle routing problem (VRP), each block is explored 
intensively in order to improve the existing solution. This 
paper is organized as follows. In Section II, a literature review 
is given on the TSP exact and approximate algorithms. The 
details of the proposed algorithm are presented in Section III. 
The computational results are provided in Section IV and the 
concluding remarks and possible future work are given in 
Section V.  

II. LITERATURE REVIEW 
The TSP has been studied intensively during the last 50 

years and many exact and heuristic algorithms have been 
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developed. These algorithms include construction algorithms, 
iterative improvement algorithms, branch-and-bound and 
branch-and-cut exact algorithms, and many metaheuristic 
algorithms, such as simulated annealing (SA), tabu search 
(TS), ant colony (AC) and genetic algorithm (GA). 

Some of the well known tour construction procedures are 
the nearest neighbor procedure by Rosenkrantz et al. [6], the 
Clarke and Wright savings’ algorithm [7], the insertion 
procedures [6], the partitioning approach by Karp [8] and the 
minimal spanning tree approach by Christofides [9] etc.   

The branch exchange is perhaps the best known iterative 
improvement algorithm for the TSP. The 2-opt and 3-opt 
heuristics were described in Lin [10]. Lin and Kernighan [11] 
made a great improvement in quality of tours that can be 
obtained by heuristic methods. Even today, their algorithm 
remains the key ingredient in the most successful approaches 
for finding high-quality tours and is widely used to generate 
initial solutions for other algorithms. Or [12] developed a 
simplified edge exchange procedure requiring only O(n2) 
operations at each step, but producing tour nearly as good as 
the average performance of 3-opt algorithm.   

One of the earliest exact algorithms is due to Dantzig et al. 
[13], in which linear programming (LP) relaxation is used to 
solve the integer formulation by adding suitably chosen linear 
inequality to the list of constraints continuously. Branch and 
bound (B&B) algorithms are widely used to solve the TSPs. 
Several authors have proposed B&B algorithm based on 
assignment problem (AP) relaxation of the original TSP 
formulation. These authors include Eastman [14], Held and 
Karp [15], Smith et al. [16], Carpaneto and Toth [17], Balas 
and Crhistofides [18]. Some branch and cut (B&C) based 
exact algorithms were developed by Crowder and Padberg 
[19], Padberg and Hong [20], Grötschel and Holland [21].  

Besides the above mentioned exact and heuristic 
algorithms, metaheuristic algorithms have been applied 
successfully to the TSP by a number of researchers. SA 
algorithms for the TSP were developed by Bonomi and Lutton 
[22], Golden and Skiscim [23] and Nahar et al. [24], Lo and 
Hus [25] etc. Tabu search metaheuristic algorithms for the 
TSP have been proposed by Knox [26], and Fiechter [27] etc. 
The AC is a relative new metaheuristic algorithm which is 
applied successfully to solve the TSP. Some work based on 
AC technology was reported by Dorigo et al. [28], Gomez and 
Banan [29], Bullnheimer et al. [30] and Tsai et al. [31] etc. 
Genetic algorithms for the TSP were reported by Grefenstette 
et al. [32], Whitley et al. [33], and Nguyen et al. [34] etc.  

Comprehensive review of the techniques developed for the 
TSP can be found in [1-2, 35-37].  

III. PROPOSED HEURISTIC ALGORITHM 
It is conjectured that the chance of improving a good 

solution by moving a node to a position far away from its 
original position is small. Therefore, it is reasonable to define 
a small size neighborhood based on the vicinity of nodes. The 
heuristic algorithm proposed in this paper divides an existing 

TSP tour into blocks which are overlapped with the blocks 
next to them and each block is then explored separately. Here 
we use the GC method as the local search method within each 
block. The overlaps between any two blocks make it possible 
to further improve a block if the positions of nodes in its next 
block are changed.  

The proposed heuristic algorithm is implemented with a 
backtrack strategy. Whenever a block reaches local optimum 
and is improved by the GC method, it will backtrack to the 
recently searched block for possible improvement. If a block 
cannot be improved by the GC method, the search procedure 
will move to the next block. This procedure is repeated until 
no improvement is possible. The computational requirements 
of the above strategy can be reduced as follows: whenever the 
positions of nodes in the overlap of two blocks are changed, 
the GC procedure will backtrack to the previous block which 
is overlapped with the current block; otherwise, it will move 
to the next block.  

 
 
 
 
 
 
 
 

Fig. 1 Illustration of overlapped blocks 
 
The overlapped blocks are illustrated in Fig. 1 above. As 

shown in this figure, a TSP tour is divided into overlapped 
blocks B1, B2, B3 and so on. For example, after the local 
optimal solution in B2 is obtained and the partial sequence in 
B2 is improved, the GC local search will backtrack to B1 and 
continue to do local search. If the partial solution in B2 cannot 
be further improved, the GC local search will continue to 
search in B3. This backtrack search procedure is repeated until 
no improvement is possible.   

 
 
 
 
 
 

Fig. 2 Initial node sequence in a block 
 
To present the details of the proposed method, we use SB to 

denote the size of block, and SO to denote the size of overlap. 
The size of block or the size of overlap is the number of nodes 
in the block or in the overlap respectively. 

A block with SB = 6 is illustrated in Fig. 2. This block is cut 
into three pieces, represented by A, B and C respectively. Five 
new partial sequences can be generated by sequencing the 
three pieces. As presented in the GC local search method 
developed in [5], any of the three pieces A, B and C can also 
be reversed to form new sequence. For each sequence in Fig. 
3, 7 new sequences can be produced by reversing nodes in one 

A 
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piece, two pieces or three pieces as illustrated in Fig. 4. 
Therefore, a total of 48 TSP tours (including the original tour) 
can be generated from a sequence. The implementation of the 
GC method is a first-improvement strategy, which means the 
first neighbor of the current sequence that is found to be better 
than the current sequence is made the current sequence. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 Sequences generated by re-sequencing three pieces 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 4 New sequences generated by reversing nodes in each piece 
 
 
The proposed heuristic algorithm starts to search from small 

size of block with SB  = 3. If GC does not make any 
improvement for a given number of trials with different SB, 

the algorithm will terminate. For a given SB, if SO := 
Coefficient × SB, the number of blocks divided from a TSP 
tour is about 
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where n is the size of the TSP and Coefficient is the ratio of 
SO/SB with 0 < Coefficient ≤ 1. As the GC local search method 
has a computational complexity of )( 2

BSO , the 
computational complexity for a given SB is  
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Therefore, the computational complexity of proposed 
algorithm is O(n3) if the size of block ranges from 3 to n. 
However, in practice the proposed algorithm is much faster 
than O(n3) as it can terminate when the maximal number of 
trials without improvement is reached. 

IV. COMPUTATIONAL EXPERIMENTS 
To test the performance of the proposed algorithm, 

computational experiments are carried out based on 20 
benchmark problems obtained from the TSP library 
(accessible via the web at http://www.iwr.uni-
heidelberg.de/groups/comopt/software/TSPLIB95/). The same 
set of problems was also used in [38] and [39]. It is noted that 
in this study, we follow the rule used in TSPLIB to compute 
the travel distance. That is, all the distances are rounded to the 
nearest integer values. Therefore, it is possible that the results 
may not be consistent with the results reported by some 
researchers who compute the traveling distance in different 
ways. The proposed algorithm has been coded in C++ and all 
the experiments are implemented on a Pentium IV 2.6 GHz 
PC with 512MB RAM.  

In this study, the performance of the proposed algorithm is 
compared with the co-adaptive neural network (CAN) 
approach proposed in [39]. Similar to the computational 
experiments conducted in [39], the proposed algorithm is 
implemented for 10 runs for each problem and the 
computational results are summarized in Table I. The 
solutions presented in bold characters show the smallest 
average deviation and the smallest deviation for each problem 
respectively. The following information is presented in Table 
I: 

• the problem name 
• the size of the problem 
• the optimal length of tour Zopt 
• the percentage deviation from Zopt of the average 

solution value over the 10 replications, represented 
by %PDM  

• the percentage deviation from Zopt of the best solution 
over the 10 replications, represented by %PDB 

• the average computation time in seconds 
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TABLE I 

COMPUTATIONAL RESULTS OF THE PROPOSED ALGORITHM 

Problem size optimal 
  CAN   proposed 

algorithm 
 

   %PDM %PD
B 

time1  %PDM %PDB time2 

Eil51 51 426  2.89 0.94 0.27 1.76 0.70 0.87 
Eil76 76 538  4.35 2.04 0.52 2.96 2.23 2.30 
Eil101 101 629  3.78 1.11 1.22 3.64 2.54 4.28 
berlin52 52 7542  7.01 0.00 0.32 3.94 0.00 0.95 
bier127 127 118282  3.00 0.69 1.88 2.50 0.77 6.57 
Ch130 130 6110  2.82 1.13 1.97 2.88 0.70 4.95 
Ch150 150 6528  3.23 1.78 2.62 3.20 1.53 9.58 
Rd100 100 7910  3.64 1.19 1.15 2.83 0.00 3.95 
Lin105 105 14379  1.08 0.00 1.27 2.17 0.70 3.72 
Lin318 318 42029  4.31 2.65 9.97 4.14 2.43 33.41 
kroa100 100 21282  1.31 0.57 1.14 0.86 0.00 5.07 
krob100 100 22141  2.20 1.53 1.15 2.94 0.61 3.68 
kroc100 100 20749  1.70 0.80 1.11 1.53 0.10 4.18 
krod100 100 21294  1.87 0.80 1.16 1.73 0.07 4.25 
kroe100 100 22068  2.56 1.52 1.15 2.32 0.00 4.18 
kroa150 150 26524  3.06 1.55 2.77 3.56 0.82 6.72 
krob150 150 26130  2.60 1.06 2.63 2.60 1.05 7.12 
kroa200 200 29368  3.27 0.92 4.74 2.72 0.84 14.75 
krob200 200 29437  2.31 0.88 4.74 3.70 2.04 10.61 
fl1400 1400 20127  4.26 2.12 82.85 3.39 2.32 1549.93 
Average   3.06 1.16 6.23 2.77 0.97 84.05 

 
1 – the average computation time for each replication based on Silicon Graphics O2 workstation 
2 – the average computation time for each replication based on PC with 2.6GHz CPU and 512MB RAM 
 

The computational results presented in Table I show that 
the proposed algorithm can get an average deviation of 2.77%, 
which is much smaller than the average deviation 3.06% 
obtained by CAN. Moreover, the proposed algorithm obtains 
14 best solutions while CAN only obtains 7 best solutions 
among the 20 TSPs. When average performance is concerned, 
the proposed algorithm obtains the smallest average deviation 
for 15 TSPs while CAN only obtains 6 best average 
deviations.  

As our computational experiments are conducted on 
different platforms from CAN, it is difficult to compare the 
computation time taken by CAN and the proposed algorithm. 
However, the average computation time taken by the proposed 
algorithm shown in Table I is reasonable even for large size 
problems up to 1400 cities. In general, our algorithm is 
superior to CAN regarding both the average deviation and the 
smallest deviation from the optimal solutions.   

V. CONCLUSIONS AND REMARKS 
This paper presents an overlapped neighborhood based 

local search algorithm to solve TSPs. By dividing a solution 
into small blocks with each block being explored by the GC 
local search method, the proposed heuristic algorithm is able 
to obtain better solutions for TSPs when compared with a co-
adaptive neural network method proposed in the literature. We 

believe that the performance of our algorithm can be further 
improved by hybridizing with metaheuristic algorithms, such 
as tabu search and ant colony optimization, and so this is an 
area of further research. In addition, the idea of applying the 
overlapped neighborhood based local search method to the 
TSP as described in this paper can be extended to other 
similar or related combinational optimization problems as 
well, such as the vehicle routing problems and machine 
scheduling problems.  
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