
International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:1, No:1, 2007

23

Abstract—This paper presents a new heuristic algorithm for the

classical symmetric traveling salesman problem (TSP). The idea of
the algorithm is to cut a TSP tour into overlapped blocks and then
each block is improved separately. It is conjectured that the chance of
improving a good solution by moving a node to a position far away
from its original one is small. By doing intensive search in each
block, it is possible to further improve a TSP tour that cannot be
improved by other local search methods. To test the performance of
the proposed algorithm, computational experiments are carried out
based on benchmark problem instances. The computational results
show that algorithm proposed in this paper is efficient for solving the
TSPs.

Keywords—Local search, overlapped neighborhood, traveling
salesman problem.

I. INTRODUCTION
HE document is a template for Word (doc) versions.
traveling salesman problem is one of the classical

challenging combinatorial optimization problems. The
objective of the TSP is to minimize the total distance traveled
by visiting all the nodes once and only once and then
returning to the depot node. The classical formulation of the
TSP is stated as follows. Let a network G = (N, A, C) be
defined with N denoting the set of nodes on the network, A
denoting the set of arcs and C = [cij] denoting the matrix of
costs.

A common application of the TSP is the movement of
people, equipment and vehicles around tours of duty to
minimize the total traveling cost. For example, in a school bus
routing problem, it is required to schedule a school bus to pick
up waiting students from the pre-specified locations. Post
routing is another application of the TSP. The postman
problem is modeled as traversing a given set of streets in a
city, rather than visiting a set of specified locations. Moreover,
the TSP plays an important role in general post problem,

S. B. Liu is a PhD. candidate in the Department of Industrial & Systems

Engineering, National University of Singapore, Kent Ridge Crescent,
Singapore 119260 (corresponding author phone: (65) 6516-6514; fax: (65)
6777-1434 e-mail: g0403853@nus.edu.sg).

K. M. Ng is an assistant professor with the Department of Industrial &
Systems Engineering, National University of Singapore, Kent Ridge Crescent,
Singapore 119260 (e-mail: isenkm@nus.edu.sg).

H. L. Ong is an associate professor with the Department of Industrial &
Systems Engineering, National University of Singapore, Kent Ridge Crescent,
Singapore 119260 (e-mail: iseonghl@ nus.edu.sg).

where the houses or streets are far away from each other.
Besides the above mentioned applications, some other seemly
unrelated problems are solved by formulating them as the
TSP. The genome sequencing problem occurs in the field of
bio-engineering. The aim of this problem is to find the
genome sequence based on the markers that serve as
landmarks for the genome maps. The TSP plays an important
role in genome sequencing by providing a tool for building
sequences from experimental data on the proximity of
individual pairs of markers. By considering markers as cities,
a genome sequence can be viewed as a TSP path traveling
through each marker once and only once. The drilling problem
is another application of the TSP with the objective of
minimizing the total travel time of the drill. In the electronic
industry, printed circuit boards are widely found in common
electronic devices. The printed circuit board normally has a
very large number of holes used for mounting components or
integrated chips. These holes are typically drilled by
automated drilling machines that move between specified
locations to drill a hole one after another. Therefore, the
locations in the drilling problem correspond to the cities in the
TSP. The applications of the TSP are not limited to the
examples described above. A detailed review of the
applications of the TSP can be found in [1-2].

It has been proved that TSP is NP-hard in [3] which implies
that a polynomial bounded exact algorithm for TSP is unlikely
to exist. In this paper, we presented a heuristic algorithm for
solving the TSP and its performance is illustrated based on the
benchmark TSP instances. The algorithm proposed in this
paper is based on the work in [4], in which an existing
solution is divided into overlapped blocks and then each block
is explored separately. By doing local search using the
Generalized Crossing (GC) method, which is developed in [5]
for the vehicle routing problem (VRP), each block is explored
intensively in order to improve the existing solution. This
paper is organized as follows. In Section II, a literature review
is given on the TSP exact and approximate algorithms. The
details of the proposed algorithm are presented in Section III.
The computational results are provided in Section IV and the
concluding remarks and possible future work are given in
Section V.

II. LITERATURE REVIEW
The TSP has been studied intensively during the last 50

years and many exact and heuristic algorithms have been

A New Heuristic Algorithm for the Classical
Symmetric Traveling Salesman Problem

S. B. Liu, K. M. Ng, and H. L. Ong

T

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:1, No:1, 2007

24

developed. These algorithms include construction algorithms,
iterative improvement algorithms, branch-and-bound and
branch-and-cut exact algorithms, and many metaheuristic
algorithms, such as simulated annealing (SA), tabu search
(TS), ant colony (AC) and genetic algorithm (GA).

Some of the well known tour construction procedures are
the nearest neighbor procedure by Rosenkrantz et al. [6], the
Clarke and Wright savings’ algorithm [7], the insertion
procedures [6], the partitioning approach by Karp [8] and the
minimal spanning tree approach by Christofides [9] etc.

The branch exchange is perhaps the best known iterative
improvement algorithm for the TSP. The 2-opt and 3-opt
heuristics were described in Lin [10]. Lin and Kernighan [11]
made a great improvement in quality of tours that can be
obtained by heuristic methods. Even today, their algorithm
remains the key ingredient in the most successful approaches
for finding high-quality tours and is widely used to generate
initial solutions for other algorithms. Or [12] developed a
simplified edge exchange procedure requiring only O(n2)
operations at each step, but producing tour nearly as good as
the average performance of 3-opt algorithm.

One of the earliest exact algorithms is due to Dantzig et al.
[13], in which linear programming (LP) relaxation is used to
solve the integer formulation by adding suitably chosen linear
inequality to the list of constraints continuously. Branch and
bound (B&B) algorithms are widely used to solve the TSPs.
Several authors have proposed B&B algorithm based on
assignment problem (AP) relaxation of the original TSP
formulation. These authors include Eastman [14], Held and
Karp [15], Smith et al. [16], Carpaneto and Toth [17], Balas
and Crhistofides [18]. Some branch and cut (B&C) based
exact algorithms were developed by Crowder and Padberg
[19], Padberg and Hong [20], Grötschel and Holland [21].

Besides the above mentioned exact and heuristic
algorithms, metaheuristic algorithms have been applied
successfully to the TSP by a number of researchers. SA
algorithms for the TSP were developed by Bonomi and Lutton
[22], Golden and Skiscim [23] and Nahar et al. [24], Lo and
Hus [25] etc. Tabu search metaheuristic algorithms for the
TSP have been proposed by Knox [26], and Fiechter [27] etc.
The AC is a relative new metaheuristic algorithm which is
applied successfully to solve the TSP. Some work based on
AC technology was reported by Dorigo et al. [28], Gomez and
Banan [29], Bullnheimer et al. [30] and Tsai et al. [31] etc.
Genetic algorithms for the TSP were reported by Grefenstette
et al. [32], Whitley et al. [33], and Nguyen et al. [34] etc.

Comprehensive review of the techniques developed for the
TSP can be found in [1-2, 35-37].

III. PROPOSED HEURISTIC ALGORITHM
It is conjectured that the chance of improving a good

solution by moving a node to a position far away from its
original position is small. Therefore, it is reasonable to define
a small size neighborhood based on the vicinity of nodes. The
heuristic algorithm proposed in this paper divides an existing

TSP tour into blocks which are overlapped with the blocks
next to them and each block is then explored separately. Here
we use the GC method as the local search method within each
block. The overlaps between any two blocks make it possible
to further improve a block if the positions of nodes in its next
block are changed.

The proposed heuristic algorithm is implemented with a
backtrack strategy. Whenever a block reaches local optimum
and is improved by the GC method, it will backtrack to the
recently searched block for possible improvement. If a block
cannot be improved by the GC method, the search procedure
will move to the next block. This procedure is repeated until
no improvement is possible. The computational requirements
of the above strategy can be reduced as follows: whenever the
positions of nodes in the overlap of two blocks are changed,
the GC procedure will backtrack to the previous block which
is overlapped with the current block; otherwise, it will move
to the next block.

Fig. 1 Illustration of overlapped blocks

The overlapped blocks are illustrated in Fig. 1 above. As

shown in this figure, a TSP tour is divided into overlapped
blocks B1, B2, B3 and so on. For example, after the local
optimal solution in B2 is obtained and the partial sequence in
B2 is improved, the GC local search will backtrack to B1 and
continue to do local search. If the partial solution in B2 cannot
be further improved, the GC local search will continue to
search in B3. This backtrack search procedure is repeated until
no improvement is possible.

Fig. 2 Initial node sequence in a block

To present the details of the proposed method, we use SB to

denote the size of block, and SO to denote the size of overlap.
The size of block or the size of overlap is the number of nodes
in the block or in the overlap respectively.

A block with SB = 6 is illustrated in Fig. 2. This block is cut
into three pieces, represented by A, B and C respectively. Five
new partial sequences can be generated by sequencing the
three pieces. As presented in the GC local search method
developed in [5], any of the three pieces A, B and C can also
be reversed to form new sequence. For each sequence in Fig.
3, 7 new sequences can be produced by reversing nodes in one

A

n6 n2 n3 n4 n5

B C

n1

B3 B2 B1

overlap of B1 and B2

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:1, No:1, 2007

25

piece, two pieces or three pieces as illustrated in Fig. 4.
Therefore, a total of 48 TSP tours (including the original tour)
can be generated from a sequence. The implementation of the
GC method is a first-improvement strategy, which means the
first neighbor of the current sequence that is found to be better
than the current sequence is made the current sequence.

Fig. 3 Sequences generated by re-sequencing three pieces

Fig. 4 New sequences generated by reversing nodes in each piece

The proposed heuristic algorithm starts to search from small

size of block with SB = 3. If GC does not make any
improvement for a given number of trials with different SB,

the algorithm will terminate. For a given SB, if SO :=
Coefficient × SB, the number of blocks divided from a TSP
tour is about

)1(tCoefficienS
n

SS
n

BOB −×
=

−
,

where n is the size of the TSP and Coefficient is the ratio of
SO/SB with 0 < Coefficient ≤ 1. As the GC local search method
has a computational complexity of)(2

BSO , the
computational complexity for a given SB is

)()
)1(

(2
BB

B

SnOS
tCoefficienS

nO ×=
−×

.

Therefore, the computational complexity of proposed
algorithm is O(n3) if the size of block ranges from 3 to n.
However, in practice the proposed algorithm is much faster
than O(n3) as it can terminate when the maximal number of
trials without improvement is reached.

IV. COMPUTATIONAL EXPERIMENTS
To test the performance of the proposed algorithm,

computational experiments are carried out based on 20
benchmark problems obtained from the TSP library
(accessible via the web at http://www.iwr.uni-
heidelberg.de/groups/comopt/software/TSPLIB95/). The same
set of problems was also used in [38] and [39]. It is noted that
in this study, we follow the rule used in TSPLIB to compute
the travel distance. That is, all the distances are rounded to the
nearest integer values. Therefore, it is possible that the results
may not be consistent with the results reported by some
researchers who compute the traveling distance in different
ways. The proposed algorithm has been coded in C++ and all
the experiments are implemented on a Pentium IV 2.6 GHz
PC with 512MB RAM.

In this study, the performance of the proposed algorithm is
compared with the co-adaptive neural network (CAN)
approach proposed in [39]. Similar to the computational
experiments conducted in [39], the proposed algorithm is
implemented for 10 runs for each problem and the
computational results are summarized in Table I. The
solutions presented in bold characters show the smallest
average deviation and the smallest deviation for each problem
respectively. The following information is presented in Table
I:

• the problem name
• the size of the problem
• the optimal length of tour Zopt
• the percentage deviation from Zopt of the average

solution value over the 10 replications, represented
by %PDM

• the percentage deviation from Zopt of the best solution
over the 10 replications, represented by %PDB

• the average computation time in seconds

A C B
n4

n3

B C A

B C A

A C B

A C B

B A C

n3 n1 n5 n6 n4 n2

n3 n2 n6 n5 n4 n1

n3 n1 n6 n5 n4 n2

A
n4 n1 n5 n6

C B
n2

n4 n2 n6 n5 n3 n1

n3 n2 n5 n6 n1

n4 n1 n6 n5 n3 n2

B
n6 n4 n1 n2 n5

A C
n3

B
n2 n4 n5 n6 n1

C A
n3

C
n4 n6 n1 n1 n3

A B
n5

A
n4 n2 n5 n6 n3

C B
n1

C
n2 n6 n3 n4 n1

B A
n5

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:1, No:1, 2007

26

TABLE I

COMPUTATIONAL RESULTS OF THE PROPOSED ALGORITHM

Problem size optimal
 CAN proposed

algorithm

 %PDM %PD
B

time1 %PDM %PDB time2

Eil51 51 426 2.89 0.94 0.27 1.76 0.70 0.87
Eil76 76 538 4.35 2.04 0.52 2.96 2.23 2.30
Eil101 101 629 3.78 1.11 1.22 3.64 2.54 4.28
berlin52 52 7542 7.01 0.00 0.32 3.94 0.00 0.95
bier127 127 118282 3.00 0.69 1.88 2.50 0.77 6.57
Ch130 130 6110 2.82 1.13 1.97 2.88 0.70 4.95
Ch150 150 6528 3.23 1.78 2.62 3.20 1.53 9.58
Rd100 100 7910 3.64 1.19 1.15 2.83 0.00 3.95
Lin105 105 14379 1.08 0.00 1.27 2.17 0.70 3.72
Lin318 318 42029 4.31 2.65 9.97 4.14 2.43 33.41
kroa100 100 21282 1.31 0.57 1.14 0.86 0.00 5.07
krob100 100 22141 2.20 1.53 1.15 2.94 0.61 3.68
kroc100 100 20749 1.70 0.80 1.11 1.53 0.10 4.18
krod100 100 21294 1.87 0.80 1.16 1.73 0.07 4.25
kroe100 100 22068 2.56 1.52 1.15 2.32 0.00 4.18
kroa150 150 26524 3.06 1.55 2.77 3.56 0.82 6.72
krob150 150 26130 2.60 1.06 2.63 2.60 1.05 7.12
kroa200 200 29368 3.27 0.92 4.74 2.72 0.84 14.75
krob200 200 29437 2.31 0.88 4.74 3.70 2.04 10.61
fl1400 1400 20127 4.26 2.12 82.85 3.39 2.32 1549.93
Average 3.06 1.16 6.23 2.77 0.97 84.05

1 – the average computation time for each replication based on Silicon Graphics O2 workstation
2 – the average computation time for each replication based on PC with 2.6GHz CPU and 512MB RAM

The computational results presented in Table I show that
the proposed algorithm can get an average deviation of 2.77%,
which is much smaller than the average deviation 3.06%
obtained by CAN. Moreover, the proposed algorithm obtains
14 best solutions while CAN only obtains 7 best solutions
among the 20 TSPs. When average performance is concerned,
the proposed algorithm obtains the smallest average deviation
for 15 TSPs while CAN only obtains 6 best average
deviations.

As our computational experiments are conducted on
different platforms from CAN, it is difficult to compare the
computation time taken by CAN and the proposed algorithm.
However, the average computation time taken by the proposed
algorithm shown in Table I is reasonable even for large size
problems up to 1400 cities. In general, our algorithm is
superior to CAN regarding both the average deviation and the
smallest deviation from the optimal solutions.

V. CONCLUSIONS AND REMARKS
This paper presents an overlapped neighborhood based

local search algorithm to solve TSPs. By dividing a solution
into small blocks with each block being explored by the GC
local search method, the proposed heuristic algorithm is able
to obtain better solutions for TSPs when compared with a co-
adaptive neural network method proposed in the literature. We

believe that the performance of our algorithm can be further
improved by hybridizing with metaheuristic algorithms, such
as tabu search and ant colony optimization, and so this is an
area of further research. In addition, the idea of applying the
overlapped neighborhood based local search method to the
TSP as described in this paper can be extended to other
similar or related combinational optimization problems as
well, such as the vehicle routing problems and machine
scheduling problems.

REFERENCES
[1] E. L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, and D.B. Shmoys, The

traveling salesman problem. Ed. Chichester: John Wiley & Sons, 1985.
[2] D.L. Applegate, R.E. Bixby, V. Chvátal, and W.J. Cook, The traveling

salesman problem: A computational study. Princeton: Princeton
University Press, 2006.

[3] M.R. Garey, and D.S. Johnson, Computers and intractability: A guide to
the theory of NP-completeness. San Francisco: W.H. Freeman, 1979.

[4] S.B. Liu, and K.M. Ng, and H.L. Ong, “An overlapped neighborhood
search method for general sequencing problems,” Working Paper,
Department of Industrial & Systems Engineering, National University of
Singapore, 2007.

[5] L. Zeng, H.L., Ong, and K.M. Ng, “A generalized crossing local search
method for solving vehicle routing problems,” The Journal of the
Operational Research Society, vol. 58, pp. 528-532, 2007.

[6] G. Clarke, and J. Wright, “Scheduling of vehicles from a central depot to
a number of delivery points”. Operations Research, vol. 12, pp. 568-
581, 1964.

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:1, No:1, 2007

27

[7] D. Rosenkrantz, R.E. Sterns, and P.M. Lewis, “An analysis of several
heuristics for the traveling salesman problem,” SIAM Journal on
Computing, vol. 6, pp. 563-581, 1977.

[8] R. M. Karp, “Probabilistic analysis of partitioning algorithms for the
traveling salesman problem in the plane,” Mathematics of Operations
Research, vol. 2, pp.209-224, 1977.

[9] N. Christofides, “Worst-case analysis of a new heuristic for the traveling
salesman problem,” Report 388, Graduate School of Industrial
Administration, Carnegie Mellon University, February 1976.

[10] S. Lin, “Computer solutions of the traveling salesman problem,” Bell
System Technical Journal, vol.44, pp. 2245-2269, 1965.

[11] S. Lin, and B.W. Kernighan, “An effective heuristic algorithm for the
traveling-salesman problem,” Operations Research, vol. 21, pp. 498-
516, 1973,

[12] I. Or, “Traveling salesman-type combinatorial problems and their
relation to the logistics of regional blood banking,” Ph.D. Thesis,
Northwestern University, Evanston, IL, 1976.

[13] G.B. Dantzig, D.R. Fulkerson, S.M. and S.M. Johnson, “Solution of a
large-scale traveling-salesman problem,” Operations Research, vol. 2,
pp. 393-410, 1954.

[14] W.L. Eastman, “Linear programming with pattern constraints,” Ph.D.
Thesis, Harvard University, Cambridge, MA, 1958.

[15] M. Held, and R.M. Karp, “The traveling salesman problem and
minimum spanning trees: Part II,” Mathematical Programming, vol. 1,
pp. 6-25. 1971.

[16] T.H.C. Smith, V. Srinivasan, and G.L. Thompson, “Computational
performance of three subtour elimination algorithms for solving
asymmetric traveling salesman problems,” Annals of Discrete
Mathematics, vol. 1, pp. 495-506, 1977.

[17] G. Carpaneto, and P. Toth, “Some new branching and bounding criteria
for the asymmetric travelling salesman problem,” Management Science,
vol. 26, pp. 736-743, 1980.

[18] E. Balas, and N. Christofides, “A restricted lagrangean approach to the
traveling salesman problem,” Mathematical Programming, vol. 21, pp.
19-46, 1981.

[19] H. Crowder, and M.W. Padberg, “Solving large-scale symmetric
travelling salesman problems to optimality,” Management Science, vol.
26, pp. 495-509, 1980.

[20] M.W. Padberg, and S. Hong, “On the symmetric traveling salesman
problem: A computational study,” Mathematical Programming Study,
vol. 12, pp. 78-107, 1980.

[21] M. Grötschel, and O. Holland, “Solution of large-scale symmetric
travelling salesman problems,” Mathematical Programming, vol. 51, pp.
141-202, 1991.

[22] E. Bonomi, and J.-L. Lutton, “The N-city travelling salesman problem:
Statistical mechanics and the Metropolis algorithm,” SIAM Review, vol.
26, pp. 551-568, 1984.

[23] B.L. Golden, and C.C. Skiscim, “Using simulated annealing to solve
routing and location problems,” Naval Research Logistics Quarterly,
vol. 33, pp. 261-280, 1986.

[24] S. Nahar, S.Sahni, and E. Shragowitz, “Simulated annealing and
combinatorial optimization,” International Journal of Computer Aided
VLSI Design, vol. 1, pp. 1-23, 1989.

[25] C.C. Lo, and C.C. Hus, “An Annealing framework with learning
memory,” IEEE Transactions on Systems, Man and Cybernetics, Part A,
vol. 28, pp. 1-13, 1998.

[26] J. Knox, “An application of TABU search to the symmetric traveling
salesman problem,” Ph.D. Thesis, Center for Applied Artificial
Intelligence (CAAI), Graduate School of Business, University of
Colorado, 1988.

[27] Fiechter, C.-N. “A parallel tabu search algorithm for large scale traveling
salesman problems,” Working Paper 90/1, Département de
Mathématiques, École Polytechnique. Fédérale de Lausanne, 1990.

[28] M. Dorigo, V. Maniezzo, and A. Colorni, “The ant system: optimization
by a colony of cooperating agents,” IEEE Transactions on Systems, Man
and Cycbernetics, Part B, vol. 26, pp. 29-42, 1996.

[29] O. Gomez , and B. Banan, “Reasons of ACO's success in TSP,” Ant
Colony Optimization And Swarm Intelligence, Proceedings Lecture
Notes In Computer Science, vol. 3172, pp. 226-237, 2004.

[30] B. Bullnheimer, R.F. Hartl, and C. Strauss, “An improved ant system
algorithm for the vehicle routing problem,” Annals of Operation
Research, vol. 89, pp. 319-328, 1999.

[31] C.F. Tsai, C.W. Tsai, and C.C. Tseng, “A new and efficient ant-based
heuristic method for solving the traveling salesman problem,” Expert
Systems, vol. 20, pp.179-186, 2003.

[32] J.J. Grefenstette, R. Gopal, B. Rosmaita, and D. VanGucht, “Genetic
algorithms for the traveling salesman problem,” in Proceedings of the
first International Conference on Genetic Algorithms, pp. 160–168,
1985.

[33] D. Whitley, T. Starkweather, and D. Fuquay, “Scheduling problems and
traveling salesman: The genetic edge recombination operator,” in
Proceedings of the third international conference on Genetic algorithm,
pp. 133–140, 1989.

[34] H.D. Nguyen, I. Yoshihara, K. Yamamori, and M. Yasunaga,
“Implementation of an effective hybrid GA for large-scale traveling
salesman problems,” IEEE Transactions on Systems, Man, and
Cybernetics—Part B: Cybernetics, vol. 37, pp. 92-99, 2007.

[35] L.D. Bodin, and B.L. Golden, A.A. Assad, M. Ball, “Routing and
scheduling of vehicles and crews, the state of art,” Computers and
Operations Research, vol. 10, pp. 63-212, 1983.

[36] G. Laporte, “The traveling salesman problem: An overview of exact and
approximate algorithms,” European Journal of Operational Research,
vol. 59, pp. 231-247, 1992.

[37] D.S. Johnson, and L.A. Mcgeoch, “The traveling salesman problem: A
case study,” In: Local Search in Combinatorial Optimization. E. Aarts,
J.K. Lenstra, Ed. New York: John Wiley & Sons, 1997, pp. 215-310.

[38] S. Somhom, A. Modares, and T. Enkawa, “A self-organising model for
the traveling salesman problem,” The Journal of the Operational
Research Society, vol. 48, pp. 919-928, 1997.

[39] E.M. Cochrane, and J.E. Beasley, “The co-adaptive neural network
approach to the Euclidean traveling salesman problem,” Neural
Networks, vol. 16, pp. 1499-1525, 2003.

