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Abstract—Ad hoc networks are characterized by multi-hop 
wireless connectivity and frequently changing network topology. 
Forming security association among a group of nodes in ad-hoc 
networks is more challenging than in conventional networks due to the 
lack of central authority, i.e. fixed infrastructure. With that view in 
mind, group key management plays an important building block of 
any secure group communication. The main contribution of this paper 
is a low complexity key management scheme that is suitable for fully 
self-organized ad-hoc networks. The protocol is also password 
authenticated, making it resilient against active attacks. Unlike other 
existing key agreement protocols, ours make no assumption about the 
structure of the underlying wireless network, making it suitable for 
“truly ad-hoc” networks. Finally, we will analyze our protocol to show 
the computation and communication burden on individual nodes for 
key establishment.

Abstract—Ad-hoc Networks, Group Key Management, Key 
Management Protocols, Password Authentication

I. INTRODUCTION

ET us assume that a small group of people at a conference 
has come together in a room for an ad hoc meeting. They 

would like to set up a wireless network session with their laptop 
computers for the duration of the meeting. They want to share 
information securely so that no one outside the room can 
eavesdrop and learn about the contents of the meeting. The 
people physically present in the room know and trust one 
another. However, they do not have any a priori means of 
digitally identifying and authenticating each other, such as 
shared secrets or public key certificate authority or access to 
trusted third party key distribution centers. An attacker can 
monitor and modify all traffic on the wireless communication 
channel and may also attempt to impersonate as a valid member 
of the group. There is no secure communication channel to 
connect the computers. The problem is: how can the group set 
up a secure session among their computers under these 
circumstances? The network in the scenario described above is 
an example of an Ad-hoc network in which entities construct a 
communication network with little or no infrastructural 
support. 

In recent years, mobile ad-hoc networks have received a 
great deal of attention in both academia and industry because 
they provide anytime-anywhere networking services. Ad-hoc 
networks have overwhelming influence on military warfare 
where troops can be deployed anywhere in the world and in any 

hostile environment. Moreover, they need to establish a secure 
communication channel among themselves quickly and also 
they have to maintain the security of that channel in case of 
group detachment and re-attachment. As wireless networks are 
being rapidly deployed, secure wireless environment will be 
mandatory. To ensure security, encryption can be used to 
protect messages exchanged among group members. A vital 
element of any encryption technique is the cryptographic key
(also called group key in ad-hoc networks). In ad-hoc networks, 
secure distribution of the group key to all valid participants is a 
very big issue. 

In this paper, we are going to propose an efficient group key 
distribution (most commonly known as group key agreement)
protocol which is based on multi-party Diffie-Hellman group 
key exchange and which is also password-authenticated. 

The rest of this paper is organized as follows. In the next 
section, a review of related works is given. In section III, we 
present the details of the various stages of the proposed 
protocol. Finally, we discuss some performance issues in 
section IV and conclude in section V. 

II. RELATED WORKS

Key agreement in ad-hoc networks is divided into three main 
classes:
1) Centralized group key management protocols: A single 

entity called the Key Distribution Center (KDC) is 
employed for controlling the whole group.  

2) Decentralized group key management protocols: The 
management of a large group is divided among subgroup 
managers, trying to minimize the problem of concentrating 
the work in a single place. 

3) Distributed group key management protocols: There is no 
explicit KDC, and all the members participate in the 
generation of the group key and each member contributes 
to a portion of the key.  

A. Centralized Group Key Management Protocols 
With only one managing entity, the central server is a single 

point of failure. The group privacy is dependent on the 
successful functioning of the single group controller; when the 
controller is not working, the group becomes vulnerable 
because the keys, which are the base for the group privacy, are 
not being generated/regenerated and distributed. Furthermore, 
the group may become too large to be managed by a single 
party, thus raising the issue of scalability. The group key 
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management protocol used in a centralized system seeks to 
minimize the requirements of both group members and KDC in 
order to augment the scalability of the group management. The 
efficiency of the protocol can be measured by: Storage 
requirements, Size of messages, Backwards and forward 
secrecy and Collusion. Some popular centralized protocols are: 
Group Key Management Protocol (GKMP) [1], Logical Key 
Hierarchy (LKH) [2], One-way Function Tree (OFT) [3], 
Efficient Large-Group Key (ELK) Protocol [4] etc. 

B. Decentralized Group Key Management Protocols 
In the decentralized subgroup approach, the large group is 

split into small subgroups. Different controllers are used to 
manage each subgroup, minimizing the problem of 
concentrating the work on a single place. In this approach, 
more entities are allowed to fail before the whole group is 
affected. We use the following attributes to evaluate the 
efficiency of decentralized frameworks: Key independence,
Decentralized controller, Local rekey, Keys vs. data and Rekey
per membership. Scalable Multicast Key Distribution [5], 
Kronos [6], Intra-Domain Group Key Management (IGKMP) 
[7], Hydra [8] are some of the popular protocols that follow the 
decentralized architecture. 

C. Distributed Group Key Management Protocols 
The distributed key management approach is characterized 

by having no group controller. The group key can be either 
generated in a contributory fashion, where all members 
contribute their own share to computation of the group key, or 
generated by one member. In the latter case, although it is 
fault-tolerant, it may not be safe to leave any member to 
generate new keys since key generation requires secure 
mechanisms, such as random number generators, that may not 
be available to all members. Moreover, in most contributory 
protocols (apart from tree-based approaches), processing time 
and communication requirements increase linearly in term of 
the number of members. Additionally, contributory protocols 
require each user to be aware of the group membership list to 
make sure that the protocols are robust. Our proposed protocol 
falls in this category. We use the following attributes to 
evaluate the efficiency of distributed key management 
protocols:  

Number of rounds: The protocol should try to minimize 
the number of iterations among the members to reduce 
processing and communication requirements. 
Number of messages: The overhead introduced by every 
message exchanged between members produces 
unbearable delays as the group grows. Therefore, the 
protocol should require a minimum number of messages. 
DH key: Identify whether the protocol uses Diffie-Hellman 
(DH) to generate the keys. The use of DH to generate the 
group key implies that the group key is generated in a 
contributory fashion. 
Number of Exponentiations: Since exponentiations impose 
more overhead than additions/multiplications, the number 
of exponentiations performed by a node should be kept to 

as low as possible. 
Some popular protocols in this category are Burmester and 

Desmedt (BD) Protocol [9], Group Diffie-Hellman Key 
Exchange (G-DH) [10], Octopus Protocol [11], Conference 
Key Agreement (CKA) [12], Diffie-Hellman Logical Key 
Hierarchy (DH-LKH) [13], Password Authenticated 
Multi-Party Diffie-Hellman Key Exchange (PAMPDHKE) 
Protocol [14]. 

III. THE PROPOSED PROTOCOL

The basic idea of the protocol is to securely construct and 
distribute a secret session key, K, among a group of nodes/users 
who want to communicate among themselves in a secure 
manner. The group is formed in an ad hoc fashion (i.e. a small 
group of people at a conference coming together in a room for 
an ad hoc meeting, a small military troop deployed in a hostile 
environment wanting to maintain secure communication with 
each other etc.) and hence no pre-assumption can be made 
about the overall physical structure of the group. Our proposed 
protocol is based on the Password Authenticated Multi-Party 
Diffie-Hellman Key Exchange (PAMPDHKE) Protocol 
described in [14]. The protocol described in [14] does not give 
us any idea about the structure of the ad hoc network and is 
described in a very vague way without mentioning the details of 
every action. Without detailed description, some actions beg 
the question of validity in ad hoc scenario. So we will try to 
better it by giving it some kind of structure. Also the structure 
of the final session key is not the same as the one described in 
[14]. 

The proposed protocol starts by constructing a spanning tree 
on-the-fly involving all the valid nodes in the scenario. It is 
assumed, like all other protocols, that each node is uniquely 
addressed and knows all its neighbors (i.e. the protocol runs on 
top of the network layer and it assumes that a valid route among 
the nodes have already been constructed by some underlying 
routing protocol). It is also assumed that each valid member of 
the scenario shares a password (also called a weak secret) P.
After that the tree is traversed from bottom-to-top where each 
node i, sends to its parent, its Diffie-Hellman contribution 

ig , where  is a generator of the multiplicative group *
p

(i.e. the set {1,2,…p – 1}) and gi is node i’s secret. In this way 
every contribution ultimately reaches the root of the tree. Then 
the root creates separate messages for each of its children where 
each message contains sufficient information so that the child 
can compute the secret session key K. This process continues in 
a top-to-bottom fashion from every internal node to all its 
children. In the end, all the valid nodes in the tree contain 
sufficient information to construct the session key K. The 
messages passed from one node to another may be encrypted by 
the shared weak secret P according to necessity. When all the 
valid nodes in the group have K, they can communicate with 
one another in a secure manner by encrypting every message 
with K.
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A. Construction of the Spanning Tree 
Our key agreement protocol functions in an arbitrary rooted 

tree structure. For this purpose, a spanning tree over the graph 
has to be constructed first. This can be done in several ways. 
Below we will describe one possible protocol for constructing a 
spanning tree where the node initiating the protocol becomes 
the root. The tree is indexed using universal addresses. In the 
initial state it is assumed that the nodes know their neighbors. 
The initiator sends a message to each of its neighbors. It thereby 
becomes the root of the tree and the neighbors become its 
children. After receiving a message, a node acknowledges it 
and sends a similar message to all its neighbors, except to the 
parent. The nodes that acknowledge a message from a node 
become its children in the tree. If a node gets more than one of 
these messages, it acknowledges and processes only the 
message that it receives first. Consequent messages are 
ignored. This continues until every node has received this kind 
of a message. A leaf is a node that does not receive 
acknowledgements from any of its neighbors. The initial 
network is shown in Fig. 1 and the spanning tree constructed by 
applying the above protocol is shown in Fig. 2. It should be 
noted that the structure of the final spanning tree might be 
different based upon the order in which messages are received 
by each individual node. 

B. Phase I of the Protocol 

Let *
pZ (i.e. the set {1,2,…p – 1}) be a finite multiplicative 

group where p is a prime and let   be the generator of the 

group. A participant/node, i, is assumed to pick his/her secret 

exponent ig  randomly where 11 pgi . The steps of phase I 
are described below:  
1) Every internal node gets the contributions from all its 

children.  
2) Each node generates its own contribution and multiplies all 

its descendants’ contributions with its own. 
3) If node i is not the root, then it executes this step. Node i

sends the product obtained from step (2) to its parent along 
with its own contribution and all the other contributions (of 
i’s descendant nodes) that was forwarded to i from its 
immediate children. 

4) If node i is the root, then it executes this step. The product 
obtained from step (2) represents the final group session 
key K. Phase I stops here. 

Formally,  
In phase I, each node x sends a message M = {M1, M2, M3}
(having 3 parts) to its parent y, where M1 = the product of 
x’s contribution and all contributions from the descendants 
of x, M2 = x’s own contribution and M3 = all contributions 
from the descendants of x.

If x is a leaf node with contribution xg  and y is its 
parent, then, x sends to y a message containing the quantity

xg , i.e. :yx },,{ xx gg .

If x is an internal non-root node with contribution xg , y
is its parent and a, b, c etc. are its children (with 
contributions ag , bg , cg  etc. respectively) and if x
receives messages Ma, Mb, Mc etc. from a, b, c etc. 
respectively, then, x sends to y a message containing the 

quantity }',,....{ MDCBA xx gg , i.e. 

:yx }',,....{ MDCBA xx gg , where, 
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If x is the root node with contribution xg  and a, b, c etc. 

are its children (with contributions ag , bg , cg  etc. 
respectively) and if x receives messages Ma, Mb, Mc etc. 
from a, b, c etc. respectively, then, x computes the final 

session key K, DCBAK xg .... , where, 

.
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The quantity DCBAxg ....  indicates the product of xg ,
A, B, C and D.

C. Phase II of the Protocol 
Before the beginning of phase II, first, the root takes the 

union of all the M2 parts and all the M3 parts of all the messages 
it has received from its immediate children. Then it raises each 

Fig. 1 The Initial Network 

Fig. 2  The Final Spanning Tree 
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quantity of this newly formed set by its own secret exponent. 
The steps of phase II are described below:  
1) Every internal node x sends to its child i sufficient 

information needed by i to construct the session key K. The 
node x also sends to i a quantity encrypted by K for 
authentication purpose and forwards sufficient information 
so that descendants of i may successfully construct the 
session key K.

2) When every leaf node gets messages from its parent, phase 
II stops. Every valid node now has the session key K and 
has been authenticated. 

Formally,  

In phase II, each internal node x sends a message *
iM  = 

{P( 1M ), 2M , 3M , 4M } (having 4 parts) to each of its 
child i, where 1M = i’s contribution raised to the power 
of root’s secret exponent, 2M  = all contributions from 
all other nodes except the root and the descendants of i,

3M  = all contributions of the descendants of i raised to 
power of the root’s secret exponents and 4M  = K(n) = a 
quantity encrypted with the session key K needed for 
authentication.

If x is an internal node with contribution xg , y is its 
parent (may be null if x is the root) and a, b, c etc. are its 
children (with contributions ag , bg , cg etc.
respectively) and if x receives messages Ma, Mb, Mc etc. 
from a, b, c etc. respectively and creates the message M
in phase I and receives *

xM  from y, then, x sends to its 

child .},,,{ etccbai  a message *
iM  containing the 

quantity )}(,,),({ xii
gg nKHGP rooti , i.e. 

:yx )}(,,),({ xii
gg nKHGP rooti  for .},,,{ etccbai  where,

rooti gg  is obtained from 3M part of *
xM  or is already 

     present in x (if x = root), 
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If a non-root node x receives the message *
xM  and also 

creates the message M in phase I, then, it calculates the 
key K as follows,
i) It first decrypts 1M  with the weak password P to 

retrieve L = rootxgg .

ii) Then it retrieves rootg  by performing xgL

1

.

iii) }{,.. *
21 x

g MofpartMsMofpartMsK root

So now all the nodes have the key igK , where i is 
a node of the network and ig is its secret exponent. 

After that, each node decrypts 4M  with K and verifies 
whether the quantity is the identity of its parent. This 
step authenticates the parent to all of its children. 

Fig. 3, Fig. 4, Fig. 5, Fig. 6 and Fig. 7 demonstrate the 
aforementioned phases I and phase II of the proposed protocol. 
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IV. PERFORMANCE EVALUATION

A. Security
In our protocol, it is assumed that a weak secret/password P is 

shared among the valid users/nodes. This P helps in the 
authentication process and prevents man-in-the-middle attack. 
This assumption is not at all inappropriate. The ad-hoc 
scenarios that were mentioned in the beginning of this paper 
(people coming together in a conference or a military troop 
deployed in an hostile environment) indicate that the people 
involved in those scenarios trust each other. So it is possible for 
them to decide on a simple password because they will 
definitely come in contact with each other before forming the 
actual ad-hoc network. That password may be written down on 
piece of paper and circulated to all the trusted parties. The 

recipients can then enter the password in his/her computer and 
use it as the weak shared secret for the protocol described in 
this paper. It may be noted that this password will never be used 
to encrypt data traffic. It will merely help to authenticate the 
nodes. Then the paper may be destroyed to remove all physical 
existence of the password. 

It is very obvious from the example given in the previous 
section, that, every valid node has necessary and sufficient 
information to construct the session secret key K, which will be 
the group key for that session. Now it remains to show that a 
passive adversary as well as an active adversary will never be 
able to construct K from the messages that travel through the 
wireless network. First of all, it is very clear that the secret 
exponent gx for some node x, is never exposed to the network. 
To construct K, an adversary needs the contribution xg of

each valid node x. Each contribution xg of each valid 
non-root node x, is passed through the network in plaintext. But 
one can see, very obviously, from phase II of the protocol that 

the contribution of the root, rootg , is never sent into the 

network by itself, i.e. it is always sent in the form xroot gg ,
where gx is the secret exponent of a valid non-root node x.
Without knowing gx, no one (not even another valid node y) can 

obtain rootg  from xroot gg . Since gx is never exposed to the 

network by x, only x can extract rootg  from xroot gg . The 
only way that an adversary (active or passive) can get a hold of 
gx from x, is to hack into node x and compromise it. And if a 
node is compromised by an adversary, then any session key, 
past, present or future, can always be obtained by that 
adversary. This is true for all existing security protocols (both 
in wired and wireless networks). Dealing with such events is 
beyond the scope of this paper. Moreover, the problem of 

calculating rootg  by using xroot gg  and rootg  is a 
Decision Diffie-Hellman Problem (DDHP) which is 
intractable. In a nutshell, unless a valid node is compromised, 
an adversary (passive or active) will never be able to construct 
any session key K by observing/obtaining the messages of 
phase I and phase II of the protocol. 

The second line of defense is the weak shared secret P. P is 
only used to encrypt the first part of a message in phase II. This 
is used to prevent active adversaries from carrying out 
man-in-the-middle attack. The adversary does not know P. So 
if it tries to mislead a valid node x by sending dummy or 
meaningless messages or by impersonating as a valid node, it 
will always fail because it does not have the capability to 
encrypt the first part of a message in phase II. So when a valid 
node gets such a message in phase II, and if it can not decrypt 
the first part of that message, it will immediately know that the 
message has come from an adversary. Then the valid node can 
take appropriate actions. So, although there may be a delay, 
ultimately the active adversary will definitely be caught by a 
valid node in some round of phase II. One thing needs to be 
mentioned that our protocol is not free from DoS (Denial of 
Service) attacks. An active adversary can disrupt or delay the 
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protocol by sending huge amount of junk messages for a period 
of time. 

B. Efficiency 
As the topology of the spanning tree is arbitrary, the number 

of children is not limited and exact figures are not always 
possible. We estimate the figures by assuming that the tree is a 
balanced perfect k-ary tree. In phase I, every node except the 
root sends a message. This makes the number of messages in 
phase I n-1. In phase II, every node except the root receives a 
message. So the total number of messages in the protocol is 
2n-1. Broadcast/multicast is a serious bottleneck for wireless 
networks. Unlike many other protocols, ours does not need 
broadcast/multicast capability. Our protocol uses 
Diffie-Hellman key shares, and hence it is contributory. The 
protocol needs no explicit leader election technique. Anyone 
wishing to form a secure group can start constructing the 
spanning tree and thereby can become the root of tree. And the 
root implicitly becomes the leader of the group. If 2 or more 
nodes start to construct the tree simultaneously, only the 
messages originating from the root node with the lowest ID 
(highest priority) will be considered by all other nodes. 
Messages originating from other root nodes will be discarded. 
In both phases of the protocol, the number of rounds/iterations 
needed is O(logkn). In phase I, each member generates its own 
contribution and so the total number of exponentiations in this 
phase is n. At the start of phase II, the root raises each 
member’s contribution to the power of its own exponent, i.e. 
performs n exponentiations. In the remaining rounds of phase 
II, each non-root node performs one exponentiation to retrieve 
the root’s contribution. So the total number of exponentiations 
in the protocol is 3n-1 = O(n). So by amortized analysis, the 
number of exponentiations performed (on an average) by a 
single node is O(n) / n = O(1). Finally, during the construction 
of the spanning tree, each node can send at most n request 
messages and at most 1 reply message. So the total number of 
messages during this stage is O(n2). This quantity may seem 
high but it is a price one must pay if one wants this protocol (or 
any other security protocol) to work under any circumstances 
and any “truly ad-hoc” environment. But unfortunately none 
of the other existing protocols take this issue under 
consideration. More or less all of the existing protocols 
pre-assume some sort of infrastructure among the nodes. This 
assumption is made based on the working principle of the 
respective protocol. Since one can not predetermine the 
structure of an ad-hoc network, the suitability as well as 
applicability of those existing protocols, to a certain extent, 
depend on the structure of the wireless network. So they are not 
suited for “truly ad-hoc” (fully infrastructure less) 
environment. So we will leave out the issue of “the
communication complexity of initial setup” when comparing 
with other existing protocols. But it is very clear from the above 
discussion that our protocol has the capability to work under 
and adapt to any “truly ad-hoc” environment.  

V. CONCLUSION

In this paper we have proposed a new group key agreement 
protocol suitable for wireless ad-hoc networks of arbitrary 
topology. Several lines of future work are possible. Formal 
security analysis is a missing step. Moreover, changes in the 
physical topology of the group during and after the execution of 
the protocol have to be studied thoroughly. Finally, we 
conclude that group key agreement is still an open research 
area. Much work is still needed to secure group communication 
in an ad-hoc network with perfection and efficiency. 
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