
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:3, 2008

364

Abstract—Ad hoc networks are characterized by multi-hop
wireless connectivity and frequently changing network topology.
Forming security association among a group of nodes in ad-hoc
networks is more challenging than in conventional networks due to the
lack of central authority, i.e. fixed infrastructure. With that view in
mind, group key management plays an important building block of
any secure group communication. The main contribution of this paper
is a low complexity key management scheme that is suitable for fully
self-organized ad-hoc networks. The protocol is also password
authenticated, making it resilient against active attacks. Unlike other
existing key agreement protocols, ours make no assumption about the
structure of the underlying wireless network, making it suitable for
“truly ad-hoc” networks. Finally, we will analyze our protocol to show
the computation and communication burden on individual nodes for
key establishment.

Abstract—Ad-hoc Networks, Group Key Management, Key
Management Protocols, Password Authentication

I. INTRODUCTION

ET us assume that a small group of people at a conference
has come together in a room for an ad hoc meeting. They

would like to set up a wireless network session with their laptop
computers for the duration of the meeting. They want to share
information securely so that no one outside the room can
eavesdrop and learn about the contents of the meeting. The
people physically present in the room know and trust one
another. However, they do not have any a priori means of
digitally identifying and authenticating each other, such as
shared secrets or public key certificate authority or access to
trusted third party key distribution centers. An attacker can
monitor and modify all traffic on the wireless communication
channel and may also attempt to impersonate as a valid member
of the group. There is no secure communication channel to
connect the computers. The problem is: how can the group set
up a secure session among their computers under these
circumstances? The network in the scenario described above is
an example of an Ad-hoc network in which entities construct a
communication network with little or no infrastructural
support.

In recent years, mobile ad-hoc networks have received a
great deal of attention in both academia and industry because
they provide anytime-anywhere networking services. Ad-hoc
networks have overwhelming influence on military warfare
where troops can be deployed anywhere in the world and in any

hostile environment. Moreover, they need to establish a secure
communication channel among themselves quickly and also
they have to maintain the security of that channel in case of
group detachment and re-attachment. As wireless networks are
being rapidly deployed, secure wireless environment will be
mandatory. To ensure security, encryption can be used to
protect messages exchanged among group members. A vital
element of any encryption technique is the cryptographic key
(also called group key in ad-hoc networks). In ad-hoc networks,
secure distribution of the group key to all valid participants is a
very big issue.

In this paper, we are going to propose an efficient group key
distribution (most commonly known as group key agreement)
protocol which is based on multi-party Diffie-Hellman group
key exchange and which is also password-authenticated.

The rest of this paper is organized as follows. In the next
section, a review of related works is given. In section III, we
present the details of the various stages of the proposed
protocol. Finally, we discuss some performance issues in
section IV and conclude in section V.

II. RELATED WORKS

Key agreement in ad-hoc networks is divided into three main
classes:
1) Centralized group key management protocols: A single

entity called the Key Distribution Center (KDC) is
employed for controlling the whole group.

2) Decentralized group key management protocols: The
management of a large group is divided among subgroup
managers, trying to minimize the problem of concentrating
the work in a single place.

3) Distributed group key management protocols: There is no
explicit KDC, and all the members participate in the
generation of the group key and each member contributes
to a portion of the key.

A. Centralized Group Key Management Protocols
With only one managing entity, the central server is a single

point of failure. The group privacy is dependent on the
successful functioning of the single group controller; when the
controller is not working, the group becomes vulnerable
because the keys, which are the base for the group privacy, are
not being generated/regenerated and distributed. Furthermore,
the group may become too large to be managed by a single
party, thus raising the issue of scalability. The group key

A New Group Key Management Protocol for
Wireless Ad-Hoc Networks

Rony H. Rahman and Lutfar Rahman

L

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:3, 2008

365

management protocol used in a centralized system seeks to
minimize the requirements of both group members and KDC in
order to augment the scalability of the group management. The
efficiency of the protocol can be measured by: Storage
requirements, Size of messages, Backwards and forward
secrecy and Collusion. Some popular centralized protocols are:
Group Key Management Protocol (GKMP) [1], Logical Key
Hierarchy (LKH) [2], One-way Function Tree (OFT) [3],
Efficient Large-Group Key (ELK) Protocol [4] etc.

B. Decentralized Group Key Management Protocols
In the decentralized subgroup approach, the large group is

split into small subgroups. Different controllers are used to
manage each subgroup, minimizing the problem of
concentrating the work on a single place. In this approach,
more entities are allowed to fail before the whole group is
affected. We use the following attributes to evaluate the
efficiency of decentralized frameworks: Key independence,
Decentralized controller, Local rekey, Keys vs. data and Rekey
per membership. Scalable Multicast Key Distribution [5],
Kronos [6], Intra-Domain Group Key Management (IGKMP)
[7], Hydra [8] are some of the popular protocols that follow the
decentralized architecture.

C. Distributed Group Key Management Protocols
The distributed key management approach is characterized

by having no group controller. The group key can be either
generated in a contributory fashion, where all members
contribute their own share to computation of the group key, or
generated by one member. In the latter case, although it is
fault-tolerant, it may not be safe to leave any member to
generate new keys since key generation requires secure
mechanisms, such as random number generators, that may not
be available to all members. Moreover, in most contributory
protocols (apart from tree-based approaches), processing time
and communication requirements increase linearly in term of
the number of members. Additionally, contributory protocols
require each user to be aware of the group membership list to
make sure that the protocols are robust. Our proposed protocol
falls in this category. We use the following attributes to
evaluate the efficiency of distributed key management
protocols:

Number of rounds: The protocol should try to minimize
the number of iterations among the members to reduce
processing and communication requirements.
Number of messages: The overhead introduced by every
message exchanged between members produces
unbearable delays as the group grows. Therefore, the
protocol should require a minimum number of messages.
DH key: Identify whether the protocol uses Diffie-Hellman
(DH) to generate the keys. The use of DH to generate the
group key implies that the group key is generated in a
contributory fashion.
Number of Exponentiations: Since exponentiations impose
more overhead than additions/multiplications, the number
of exponentiations performed by a node should be kept to

as low as possible.
Some popular protocols in this category are Burmester and

Desmedt (BD) Protocol [9], Group Diffie-Hellman Key
Exchange (G-DH) [10], Octopus Protocol [11], Conference
Key Agreement (CKA) [12], Diffie-Hellman Logical Key
Hierarchy (DH-LKH) [13], Password Authenticated
Multi-Party Diffie-Hellman Key Exchange (PAMPDHKE)
Protocol [14].

III. THE PROPOSED PROTOCOL

The basic idea of the protocol is to securely construct and
distribute a secret session key, K, among a group of nodes/users
who want to communicate among themselves in a secure
manner. The group is formed in an ad hoc fashion (i.e. a small
group of people at a conference coming together in a room for
an ad hoc meeting, a small military troop deployed in a hostile
environment wanting to maintain secure communication with
each other etc.) and hence no pre-assumption can be made
about the overall physical structure of the group. Our proposed
protocol is based on the Password Authenticated Multi-Party
Diffie-Hellman Key Exchange (PAMPDHKE) Protocol
described in [14]. The protocol described in [14] does not give
us any idea about the structure of the ad hoc network and is
described in a very vague way without mentioning the details of
every action. Without detailed description, some actions beg
the question of validity in ad hoc scenario. So we will try to
better it by giving it some kind of structure. Also the structure
of the final session key is not the same as the one described in
[14].

The proposed protocol starts by constructing a spanning tree
on-the-fly involving all the valid nodes in the scenario. It is
assumed, like all other protocols, that each node is uniquely
addressed and knows all its neighbors (i.e. the protocol runs on
top of the network layer and it assumes that a valid route among
the nodes have already been constructed by some underlying
routing protocol). It is also assumed that each valid member of
the scenario shares a password (also called a weak secret) P.
After that the tree is traversed from bottom-to-top where each
node i, sends to its parent, its Diffie-Hellman contribution

ig , where is a generator of the multiplicative group *
p

(i.e. the set {1,2,…p – 1}) and gi is node i’s secret. In this way
every contribution ultimately reaches the root of the tree. Then
the root creates separate messages for each of its children where
each message contains sufficient information so that the child
can compute the secret session key K. This process continues in
a top-to-bottom fashion from every internal node to all its
children. In the end, all the valid nodes in the tree contain
sufficient information to construct the session key K. The
messages passed from one node to another may be encrypted by
the shared weak secret P according to necessity. When all the
valid nodes in the group have K, they can communicate with
one another in a secure manner by encrypting every message
with K.

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:3, 2008

366

A. Construction of the Spanning Tree
Our key agreement protocol functions in an arbitrary rooted

tree structure. For this purpose, a spanning tree over the graph
has to be constructed first. This can be done in several ways.
Below we will describe one possible protocol for constructing a
spanning tree where the node initiating the protocol becomes
the root. The tree is indexed using universal addresses. In the
initial state it is assumed that the nodes know their neighbors.
The initiator sends a message to each of its neighbors. It thereby
becomes the root of the tree and the neighbors become its
children. After receiving a message, a node acknowledges it
and sends a similar message to all its neighbors, except to the
parent. The nodes that acknowledge a message from a node
become its children in the tree. If a node gets more than one of
these messages, it acknowledges and processes only the
message that it receives first. Consequent messages are
ignored. This continues until every node has received this kind
of a message. A leaf is a node that does not receive
acknowledgements from any of its neighbors. The initial
network is shown in Fig. 1 and the spanning tree constructed by
applying the above protocol is shown in Fig. 2. It should be
noted that the structure of the final spanning tree might be
different based upon the order in which messages are received
by each individual node.

B. Phase I of the Protocol

Let *
pZ (i.e. the set {1,2,…p – 1}) be a finite multiplicative

group where p is a prime and let be the generator of the

group. A participant/node, i, is assumed to pick his/her secret

exponent ig randomly where 11 pgi . The steps of phase I
are described below:
1) Every internal node gets the contributions from all its

children.
2) Each node generates its own contribution and multiplies all

its descendants’ contributions with its own.
3) If node i is not the root, then it executes this step. Node i

sends the product obtained from step (2) to its parent along
with its own contribution and all the other contributions (of
i’s descendant nodes) that was forwarded to i from its
immediate children.

4) If node i is the root, then it executes this step. The product
obtained from step (2) represents the final group session
key K. Phase I stops here.

Formally,
In phase I, each node x sends a message M = {M1, M2, M3}
(having 3 parts) to its parent y, where M1 = the product of
x’s contribution and all contributions from the descendants
of x, M2 = x’s own contribution and M3 = all contributions
from the descendants of x.

If x is a leaf node with contribution xg and y is its
parent, then, x sends to y a message containing the quantity

xg , i.e. :yx },,{ xx gg .

If x is an internal non-root node with contribution xg , y
is its parent and a, b, c etc. are its children (with
contributions ag , bg , cg etc. respectively) and if x
receives messages Ma, Mb, Mc etc. from a, b, c etc.
respectively, then, x sends to y a message containing the

quantity }',,....{ MDCBA xx gg , i.e.

:yx }',,....{ MDCBA xx gg , where,

.}}{.}{
}{}{
}{}{

}{}{{'

32

32

32

32

etcofpartMetcofpartM
MofpartMMofpartM
MofpartMMofpartM

MofpartMMofpartMM

cc

bb

aa

,

.
;;;

1

111
etcofpartMD

MofpartMCMofpartMBMofpartMA cba .

If x is the root node with contribution xg and a, b, c etc.

are its children (with contributions ag , bg , cg etc.
respectively) and if x receives messages Ma, Mb, Mc etc.
from a, b, c etc. respectively, then, x computes the final

session key K, DCBAK xg , where,

.
;;;

1

111
etcofpartMD

MofpartMCMofpartMBMofpartMA cba

The quantity DCBAxg indicates the product of xg ,
A, B, C and D.

C. Phase II of the Protocol
Before the beginning of phase II, first, the root takes the

union of all the M2 parts and all the M3 parts of all the messages
it has received from its immediate children. Then it raises each

Fig. 1 The Initial Network

Fig. 2 The Final Spanning Tree

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:3, 2008

367

quantity of this newly formed set by its own secret exponent.
The steps of phase II are described below:
1) Every internal node x sends to its child i sufficient

information needed by i to construct the session key K. The
node x also sends to i a quantity encrypted by K for
authentication purpose and forwards sufficient information
so that descendants of i may successfully construct the
session key K.

2) When every leaf node gets messages from its parent, phase
II stops. Every valid node now has the session key K and
has been authenticated.

Formally,

In phase II, each internal node x sends a message *
iM =

{P(1M), 2M , 3M , 4M } (having 4 parts) to each of its
child i, where 1M = i’s contribution raised to the power
of root’s secret exponent, 2M = all contributions from
all other nodes except the root and the descendants of i,

3M = all contributions of the descendants of i raised to
power of the root’s secret exponents and 4M = K(n) = a
quantity encrypted with the session key K needed for
authentication.

If x is an internal node with contribution xg , y is its
parent (may be null if x is the root) and a, b, c etc. are its
children (with contributions ag , bg , cg etc.
respectively) and if x receives messages Ma, Mb, Mc etc.
from a, b, c etc. respectively and creates the message M
in phase I and receives *

xM from y, then, x sends to its

child .},,,{ etccbai a message *
iM containing the

quantity)}(,,),({ xii
gg nKHGP rooti , i.e.

:yx)}(,,),({ xii
gg nKHGP rooti for .},,,{ etccbai where,

rooti gg is obtained from 3M part of *
xM or is already

 present in x (if x = root),

]}[{&.,

}}{}{}{{ 1
*

2

rootxifij}etc{a,b,cjwhere

MofpartMMofpartMG

x

x

g
j

g
xi

,

}{}{ 3 i
g

i MofpartMkwherekH root ,
KkeysessionbyencryptedxofIDnK x)(.

If a non-root node x receives the message *
xM and also

creates the message M in phase I, then, it calculates the
key K as follows,
i) It first decrypts 1M with the weak password P to

retrieve L = rootxgg .

ii) Then it retrieves rootg by performing xgL

1

.

iii) }{,.. *
21 x

g MofpartMsMofpartMsK root

So now all the nodes have the key igK , where i is
a node of the network and ig is its secret exponent.

After that, each node decrypts 4M with K and verifies
whether the quantity is the identity of its parent. This
step authenticates the parent to all of its children.

Fig. 3, Fig. 4, Fig. 5, Fig. 6 and Fig. 7 demonstrate the
aforementioned phases I and phase II of the proposed protocol.

},,{;},,{;},,{

},,{;},,{;},,{
449988

776655

498

765
gggggg

gggggg

MMM

MMM

Fig. 3 Phase I, Round 1

}},{,,{

}}{,,{

}},{,,{

983983

7272

651651

3

2

1

gggggg

gggg

gggggg

M

M

M

Fig. 4 Phase I, Round 2

}}},,,{},,{},,,{{

,,{
498372651

04983726510
0

ggggggggg

gggggggggggM

Fig. 5 End of Phase I and Start of Phase II

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:3, 2008

368

IV. PERFORMANCE EVALUATION

A. Security
In our protocol, it is assumed that a weak secret/password P is

shared among the valid users/nodes. This P helps in the
authentication process and prevents man-in-the-middle attack.
This assumption is not at all inappropriate. The ad-hoc
scenarios that were mentioned in the beginning of this paper
(people coming together in a conference or a military troop
deployed in an hostile environment) indicate that the people
involved in those scenarios trust each other. So it is possible for
them to decide on a simple password because they will
definitely come in contact with each other before forming the
actual ad-hoc network. That password may be written down on
piece of paper and circulated to all the trusted parties. The

recipients can then enter the password in his/her computer and
use it as the weak shared secret for the protocol described in
this paper. It may be noted that this password will never be used
to encrypt data traffic. It will merely help to authenticate the
nodes. Then the paper may be destroyed to remove all physical
existence of the password.

It is very obvious from the example given in the previous
section, that, every valid node has necessary and sufficient
information to construct the session secret key K, which will be
the group key for that session. Now it remains to show that a
passive adversary as well as an active adversary will never be
able to construct K from the messages that travel through the
wireless network. First of all, it is very clear that the secret
exponent gx for some node x, is never exposed to the network.
To construct K, an adversary needs the contribution xg of

each valid node x. Each contribution xg of each valid
non-root node x, is passed through the network in plaintext. But
one can see, very obviously, from phase II of the protocol that

the contribution of the root, rootg , is never sent into the

network by itself, i.e. it is always sent in the form xroot gg ,
where gx is the secret exponent of a valid non-root node x.
Without knowing gx, no one (not even another valid node y) can

obtain rootg from xroot gg . Since gx is never exposed to the

network by x, only x can extract rootg from xroot gg . The
only way that an adversary (active or passive) can get a hold of
gx from x, is to hack into node x and compromise it. And if a
node is compromised by an adversary, then any session key,
past, present or future, can always be obtained by that
adversary. This is true for all existing security protocols (both
in wired and wireless networks). Dealing with such events is
beyond the scope of this paper. Moreover, the problem of

calculating rootg by using xroot gg and rootg is a
Decision Diffie-Hellman Problem (DDHP) which is
intractable. In a nutshell, unless a valid node is compromised,
an adversary (passive or active) will never be able to construct
any session key K by observing/obtaining the messages of
phase I and phase II of the protocol.

The second line of defense is the weak shared secret P. P is
only used to encrypt the first part of a message in phase II. This
is used to prevent active adversaries from carrying out
man-in-the-middle attack. The adversary does not know P. So
if it tries to mislead a valid node x by sending dummy or
meaningless messages or by impersonating as a valid node, it
will always fail because it does not have the capability to
encrypt the first part of a message in phase II. So when a valid
node gets such a message in phase II, and if it can not decrypt
the first part of that message, it will immediately know that the
message has come from an adversary. Then the valid node can
take appropriate actions. So, although there may be a delay,
ultimately the active adversary will definitely be caught by a
valid node in some round of phase II. One thing needs to be
mentioned that our protocol is not free from DoS (Denial of
Service) attacks. An active adversary can disrupt or delay the

)}(,},,,{),({

)}(},,{},,,{),({

)}(},{},,,{),({

)}(},,{},,,{),({

0
*
4

0
*
3

0
*
2

0
*
1

9837265140

908047265130

70498365120

605049837210

IDKPM

IDKPM

IDKPM

IDKPM

gggggggggg

gggggggggggg

ggggggggggg

gggggggggggg

Fig. 6 Phase II, Round 1

)}(,},,,,,{),({

)}(,},,,,,{),({

)}(,},,,,{),({

)}(,},,,,,{),({

)}(,},,,,,{),({

3
*
9

3
*
8

2
*
7

1
*
6

1
*
5

8347265190

9347265180

2498365170

5149837260

6149837250

IDKPM

IDKPM

IDKPM

IDKPM

IDKPM

gggggggggg

gggggggggg

gggggggggg

gggggggggg

gggggggggg

Fig. 7 Phase II, Round 2

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:3, 2008

369

protocol by sending huge amount of junk messages for a period
of time.

B. Efficiency
As the topology of the spanning tree is arbitrary, the number

of children is not limited and exact figures are not always
possible. We estimate the figures by assuming that the tree is a
balanced perfect k-ary tree. In phase I, every node except the
root sends a message. This makes the number of messages in
phase I n-1. In phase II, every node except the root receives a
message. So the total number of messages in the protocol is
2n-1. Broadcast/multicast is a serious bottleneck for wireless
networks. Unlike many other protocols, ours does not need
broadcast/multicast capability. Our protocol uses
Diffie-Hellman key shares, and hence it is contributory. The
protocol needs no explicit leader election technique. Anyone
wishing to form a secure group can start constructing the
spanning tree and thereby can become the root of tree. And the
root implicitly becomes the leader of the group. If 2 or more
nodes start to construct the tree simultaneously, only the
messages originating from the root node with the lowest ID
(highest priority) will be considered by all other nodes.
Messages originating from other root nodes will be discarded.
In both phases of the protocol, the number of rounds/iterations
needed is O(logkn). In phase I, each member generates its own
contribution and so the total number of exponentiations in this
phase is n. At the start of phase II, the root raises each
member’s contribution to the power of its own exponent, i.e.
performs n exponentiations. In the remaining rounds of phase
II, each non-root node performs one exponentiation to retrieve
the root’s contribution. So the total number of exponentiations
in the protocol is 3n-1 = O(n). So by amortized analysis, the
number of exponentiations performed (on an average) by a
single node is O(n) / n = O(1). Finally, during the construction
of the spanning tree, each node can send at most n request
messages and at most 1 reply message. So the total number of
messages during this stage is O(n2). This quantity may seem
high but it is a price one must pay if one wants this protocol (or
any other security protocol) to work under any circumstances
and any “truly ad-hoc” environment. But unfortunately none
of the other existing protocols take this issue under
consideration. More or less all of the existing protocols
pre-assume some sort of infrastructure among the nodes. This
assumption is made based on the working principle of the
respective protocol. Since one can not predetermine the
structure of an ad-hoc network, the suitability as well as
applicability of those existing protocols, to a certain extent,
depend on the structure of the wireless network. So they are not
suited for “truly ad-hoc” (fully infrastructure less)
environment. So we will leave out the issue of “the
communication complexity of initial setup” when comparing
with other existing protocols. But it is very clear from the above
discussion that our protocol has the capability to work under
and adapt to any “truly ad-hoc” environment.

V. CONCLUSION

In this paper we have proposed a new group key agreement
protocol suitable for wireless ad-hoc networks of arbitrary
topology. Several lines of future work are possible. Formal
security analysis is a missing step. Moreover, changes in the
physical topology of the group during and after the execution of
the protocol have to be studied thoroughly. Finally, we
conclude that group key agreement is still an open research
area. Much work is still needed to secure group communication
in an ad-hoc network with perfection and efficiency.

REFERENCES

[1] H. Harney, and C. Muckenhirn. “Group Key Management Protocol
(GKMP) Specification”. RFC 2093, 1997.

[2] D. Wallner, E. Harder, and R. Agee. “Key Management for Multicast:
Issues and Architectures”. RFC 2627, 1999.

[3] D. A. McGrew, and A. T. Sherman. “Key establishment in large dynamic
groups using one-way function trees”. Tech. Rep. No. 0755 (May), TIS
Labs at Network Associates, Inc., Glenwood, Md, 1998.

[4] A. Perrig, D. Song, and J.D. Tygar. “ELK, a new protocol for Efficient
Large-group Key distribution”. IEEE Security and Privacy Symposium,
May 2001.

[5] A. Ballardie. “Scalable Multicast Key Distribution”. RFC 1949, 1996.
[6] S. Setia, S. Koussih, S. Jajodia, and E. Harder. “Kronos: A scalable group

re-keying approach for secure multicast”. IEEE Symposium on Security
and Privacy, May 2000.

[7] B. DeCleene, L. Dondeti, S. Griffin, T. Hardjono, D. Kiwior, J. Kurose,
D. Towsley, S. Vasudevan, and C. Zhang. “Secure group communications
for wireless networks”. MILCOM, June 2001.

[8] S. Rafaeli, and D. Hutchison. “Hydra: a decentralized group key
management”. 11th IEEE International WETICE: Enterprise Security
Workshop, June 2002.

[9] M. Burmester, and Y. Desmedt. “A secure and efficient conference key
distribution system”. EUROCRYP’94, LNCS(950):275–286, 1994.

[10] M. Steiner, G. Tsudik, and M. Waidner. “Diffie-Hellman key distribution
extended to group communication”. 3rd ACM Conference on Computer
and Communications Security, pages 31–37, March 1996.

[11] C. Becker, and U. Wille. “Communication complexity of group key
distribution”. 5th ACM Conference on Computer and Communications
Security, November 1998.

[12] C. Boyd. “On key agreement and conference key agreement”. Information
Security and Privacy: Australasian Conference, LNCS(1270):294–302,
1997.

[13] Y. Kim, A. Perrig, and G. Tsudik. “Simple and fault-tolerant Key
Agreement for Dynamic Collaborative groups”. 7th ACM Conference on
Computer and Communications Security, November 2000.

[14] N. Asokan, and P. Ginzboorg. “Key Agreement in ad hoc networks”. In
Elsevier Journal of Computer Communications. Computer
Communications 23 (2000) 1627 – 1637.

