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Abstract—The P-Bigram method is a string comparison methods 
base on an internal two characters-based similarity measure. The edit 
distance between two strings is the minimal number of elementary 
editing operations required to transform one string into the other. The 
elementary editing operations include deletion, insertion, substitution 
two characters. In this paper, we address the P-Bigram method to 
sole the similarity problem in DNA sequence. This method provided 
an efficient algorithm that locates all minimum operation in a string. 
We have been implemented algorithm and found that our program 
calculated that smaller distance than one string. We develop P-
Bigram edit distance and show that edit distance or the similarity and 
implementation using dynamic programming. The performance of 
the proposed approach is evaluated using number edit and percentage 
similarity measures. 

 
Keywords—Edit distance, String Matching, String Similarity 

I. INTRODUCTION 
HE edit distance is a common similarity measure between 
two strings. It is defined as the minimum number of 
insertions, deletions or substitutions of single terminal 

needed to transform other of the strings into the other one. 
This distance is a key importance in several fields, such as 
Bioinformatics, Text processing consequently computational 
problems. Given a string S1 = [a1 a2 a3…an] and S2 = [b1 b2 
b3…bm] as the minimal cost of transforming S1 into S2 using 
the three operations insert, delete, and substitution, where only 
unit cost operations are considered in edit distance. The cost 
of elementary editing operations is given by some scoring 
function which induces a metrical on strings. The similarity of 
two strings is the minimum number of edit distance. DNA 
sequence can be seen as a pair of reverse complementary 
repeats in a string that are separated by a number of 
Nucleotide. The complementary relation on nucleotides (A T 
C G) means that A is complementary to T and C is 
complementary to G.In this paper, we develop two-letter edit 
distance. We compute the edit distance and the cost of 
operation with dynamic programming. The new algorithm is 
to find all minimal distance in a string.  

II. RELATED WORK 
The early works on finding similarity in strings deal with 

edit distance. The edit distance models were studied in two 
contexts, for string matching and for sequence similarity. A lot 
of works have been on string matching (see [6-11]). 
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We will focus on edit distance techniques as our main goal 
here is to concentrate on similarity. We decided to use the 
most common measure: the Levenshtein edit distance[4]. In 
the text is typically assumed to be random, i.e., each character 
is chosen uniformly and independently from the alphabet. A 
sequence alignment is a way of arranging the sequence of 
DNA, RNA or protein to identify regions of similarity that 
may be a consequence of functional, structural or evolutionary 
relationships between the sequences[2]. The first application 
of the edit distance algorithm for protein sequence was studied 
by Needleman-Wunsch[1].It is commonly used in 
bioinformatics to align protein or nucleotide sequences. To 
find the alignment with the highest score, a two-dimensional 
array. The algorithm is an example of dynamic programming 
matrix. There is one column for each character in sequence A, 
and one row for each character in sequence B. This algorithm 
progresses, the Fi,j will be assigned to be the optimal score for 
alignment of the first i = 0,…n characters in A and the first j = 
0,…m characters in B. This algorithm works in the same way 
regardless of length or complexity of sequences. The simplest 
and most common scoring function is the Levenshtein 
distance[4] which assigns a uniform score of string for every 
operation. Determining the edit distance between a pair of 
string is a fundamental problem in computer science in 
general, and in combinatorial pattern matching in particular, 
with applications ranging from database indexing and word 
processing, to bioinformatics[3][5]. The Levenshtein 
distance[4] between two strings is the minimum number of 
editing steps that convert one string into another. Given two 
string A[1…m] and B[1…n], one can calculate their edit 
distance by dynamic programming. We refer to matrix 
D[0..m, 0..n] as the edit distance table of string A and B. 
Initialy, D[i,0] = i  for 0 ≤ i ≤ m and D[0,j] = j  for 1 ≤ i ≤ n. 
Then the cell D[i,j], where i,j > 0, stores the edit distance of 
string A[1…i] and B[1…j]. We also say that the cells D[i,j], 
where j - i = d are on diagonal d of D[15]. We introduce some 
important properties of the edit distance table that are 
constantly used in later discussion. The Longest common 
subsequence(LCS)[14] problem is to find the maximum 
possible length of a common subsequence of two strings, ‘a’ 
of length |a| and b of length |b|. The sequence similarity 
analysis is the Longest Common Subsequence(LCS) problem, 
where we eliminate the operation of insertions deletions and 
substitutions[14]. Given strings S and T of lengths n and m, 
respectively, over an alphabet ∑, determine the lengths of the 
longest subsequence that is common to both s and t. Here, s 
subsequence of  S = s1s2,…sn is a string of the form si1 si2,… 
sik,  where each ij is between 1 and n and 1 ≤ i1 < i2 ,…< ik ≤ n. 
For example, if ∑ = {A, T, C , G}, S = AGCGA and T = 
CAGATAGAG, then CGA is a subsequence of length 3 of 
both S and T. However, it is not the longest common 
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subsequence of S and T, since the string AGGA is also a 
common subsequence of length 4 of both S and T. Since these 
two strings do not have a common subsequence of length of 
the longest common subsequence of S and T is 
4[16].Bioinformatics have developed several means to 
characterize the similarity between genetic sequences. One 
intuitively appealing measure is the edit distance. The edit 
distance was originally proposed by Levnshtein[4]. One of the 
major problems is that of edit distance. To compare two 
strings, a common technique is so called string edit distance, 
as a measure of their dissimilarity. Edit distance is equal to the 
minimum number of editing operations required to transform 
one sequence into the other. The three basic editing operations 
are insertion, deletion, and substitution[11]. The operations to 
transform one string into anther string using the basic 
character wise operation delete, insert and substitution. If each 
operation has cost of 1, then edit distance is the number of 
operations. The minimal number of these operations is called 
edit distance or Levenshtein[4] distance. Each operation has 
an associated cost, which is a function of characters involved 
in operation. The cost of transformation is the sum of cost the 
individual operations. Dynamic programming (DP) is a 
method used for optimizing a multistage process and that is 
particularity applicable to problems requiring a sequence of 
interrelated decisions.  Each decision transforms the current 
situation into a new situation. A sequence of decisions, which 
in turn yields a sequence of situations, is sought that 
minimizes some measure of value. The value of a sequence of 
decisions is generally equal to the sum of the values of the 
individual decisions and situations in the sequence. It is a 
“solution seeking” concept which replaces a problem of n 
decision variable. Such an approach allows analysts to make 
decisions stage by stage, until the final result is obtained. We 
use the following formulation[13].Let S = [s1,s2…sm] be the 
source sequence, T = [t1,t2…tn]  the target sequence, and di,j 
the distance between the subsequence [s1,s2,…si] and 
[t1,t2…tj]; 
Then for 1 ≤ i ≤ m, 1 ≤ j ≤ n, 
    d0,0        =  0 
    di,0         = di-1,0 + c(Si,Ø), 

di-1,j-1   = dj-1,0 + c(Ø,tj), 
 

and 
                            di-1,j + c(Si,Ø),  
      di,j  =  min       di-1,0 + c(Ø,tj), 

                        dj-1,0 + c(Si,tj), 
where c(Si,Ø) is the cost of deleting Si, c(Ø,tj) is the cost of 
inserting tj, and c(Si,tj) is the cost of substituting tj for si. The 
edit distance between S and T is simply dm,n. 

III. MATERIALS AND METHODS 
In this section we describe the algorithm for finding P-

Bigram similarity new edit distance. We first describe P-
Bigram Distance, following which we describe reduced 
operation to achieve a time and space efficient algorithm. The 
reduce use similar idea to those in Levenshtein[4] distance. 

 This P-Bigram edit distance is an importance of the edit 
distance for two characters which is also used for measuring 
the similarity. 

A. P-Bigram Edit Distance 
We define a P-Bigram Edit Distance as a character that is 

present in two nucleotide sequences. So, we estimate the 
minimum length for which a maximal match is significant, 
according to the length of the two compares sequences. Let S 
= {s1,s2,s3,…sn} be a set of n characters and T = {t1,t2,t3,…tm} 
in a text of m characters which are strings of nucleotide 
sequence characters of length i and j over the nucleotide 
alphabet S = {A, C, G, T}. 
 

Definition 1. A P-Bigram Edit distance solution for 
computing the edit distance between a pair of string S = 
s1,s2…sN and T = t1,t2…tM involves filling in an (n+1) X 
(m+1) table P, with P[i,j] sorting the edit distance between 
s1,s2…si and t1,t2…tj. In addition let |S| and |T| denote the 
length of string S and T. We consider the Levenshten edit 
distance. The computation is done according to the base-case 
rules given by P[0,0] = 0, P[i,0] = T[i-1,0] + cost of deleting 
si, and P[0,j] = P[0,j-1] +1 cost of inserting tj, and according to 
the following dynamic programming step: 
 
       P[i-1,j] + the cost (1) of delete si 

P[i,j]  =  min  P[i,j-1] + the cost (1)   of insert tj. 
      P[i-1,j-1] + the cost (1) of substitute  si  with tj 

 
Definition 2. For a string S and value of Є, let P = Є |S| and 

string T and value of Є, let P = Є |T|. For example, the two-
letter alphabet {s, t}, if S = ATTCCGGTCAAG and T = 
ATTGGTTCCAAGGA. The first scans and match two-letter 
of sequence from left to right then a pair of string S is{ AT, 
TC, CG, GT, CA, AG } and a pair of- string T is { AT, TG, 
GT, TC, CA, AG, GA }. The P-Bigram Edit Distance between 
two characters with two strings. Given two strings S, T a 
standard technique for computing P-Bigram (S, T) is the 
dynamic programming method, where we compute the DP 
matrix of size (|S| + 1 ) for which DP [i,j] = P-Bigram (S 
[1..i]), T[1..j]) for 1 ≤ i ≤ |S|  and 1 ≤ j   ≤ | T|.  
 
The compute matrix is the following: 
 
        0                 if  i = 0 or j = 0, 
DP[i,j] =  max DP [i-1, j], DP[i, j-1])  if i,j >0 and S [i] ≠ T [j] 
     DP [i-1, j-1] +1            if i,j >0 and S [i] = T [j] 
 

Therefore, to compute P-Bigram = DP S and T of length |S| 
and |T| with a time complexity of O(| S| X |T|) and space 
complexity of O(min(| S| X |T)). 
 
 
 
 
 
 
 
 



International Journal of Biological, Life and Agricultural Sciences

ISSN: 2415-6612

Vol:5, No:10, 2011

600

 

 

ALGORITHM I 
P-BIGRAM EDIT DISTANCE 

1 EditDistance S(0…s-1) T(0…t-1)  
2  int m[i,j] = 0 
3  for    i  0 to n   
4  do  m[i,o] = i 
5     i = i + 1 
6  for    j  0 to m   
7   do  m[o,j] = j 
8     j = j + 1 
9  for    i  0 to n;  i ++ 
10 for    j  0 to m;  j ++  
11  if  s[i,i-1] = t[j,j-1] then 
12   cost  0 
13           m[i,j]  m[i,j] +1 
14    opt  delete(i,n)  // opt operation  of  i and j 
15  else 
16   if  s[i,i-1] ≠ t[j,j-1] then 
17   cost  1 
18           m[i,j]  m[i,j] +1 
19    opt  insert(n,i,j)  // opt operation  of  i and j 
20  else 
21   if  s[i,i-1] ≠ t[j,j-1] then 
22   cost  1 
23           m[i,j]  m[i,j] +1 
24    opt  substitution(n,i,j)  // opt operation  of  i and j 
25   for i  1 to |S| 
26  do for j  1 to |T| 
27   do m[i,j] = min{m[i-1,j-1]  
28           m[i-1,j] + 1, 
29           m[i,j-1] + 1}  
30 return m[ n,m] 
 

P-Bigram algorithm compute the edit distance. Suppose we 
wish to calculate the edit distance between the strings S = 
s1,s2…sn  and T = t1,t2…tm. 

1. We begin by forming an (n + 1) X (m + 1) matrix P 
initially containing all zeros, that is P(i,j) = 0 for i  = 
0,1,2,…,n and for j  = 0,1,2,…,m. 

2. Assign values P0j = j, j = 0,1,2,…,m and P0i = i, i = 
0,1,2,…,n. 

3. Starting from the second top row and going from left to 
right, we fill in the values Pi,j according to the 
following step: 

 
Insertion = Pi-1, j-1 + cost  Deletion = Pi-1, j  + 1 
Substitution = Pi, j-1  + 1 Pi,j  = min(substitution, 
deletion , insertion). 
 

   Where cost = 0 if si = tj and cost = 0 if si ≠ tj. 
4. After computing a row, move to the row below, until 

the bottom row is reached. 
5. The value Pnm is the edit distance between the string S 

and T. 
 
 
 

Example Here is an example of computing the P-Bigram edit 
distance of two characters in two strings. 
 
 Tj AT TG GT TC CA AG GA 
Si 0 1 2 3 4 5 6 7 
AT 1 0 1 2 3 4 5 6 
TC 2 1 1 2 2 3 4 5 
CG 3 2 2 2 3 4 5 6 
GT 4 3 3 2 3 4 5 6 
TC 5 4 4 3 2 3 4 5 
CA 6 5 5 4 3 2 3 4 
AG 7 6 6 5 4 3 2 3 

Fig. 1 P-Bigram edit distance of  Si = ATTCCGGTCAAG and Tj = 
ATTGGTTCCAAGGA. 

 
The values of the above table have been obtained with the 

following unitary costs(Fig. 1, Fig. 2) Sub(s, t) = 1 if s ≠ t and 
Sub(s,t) = 0, Insert(t) = Delete(t) for s,t Є P. 
 A score (instead of a cost) is associated with each 
elementary edit operation. For s,t Є P: 

- Sub(s,t) denotes the score of substituting the character t 
for  the character s, 

- Del(t) denotes the score of deleting the character t, 
- Ins(t) denotes the score of inserting the character t. 

 

 
 
 

Fig. 2 The DP matrix for P-Bigram(S,T), where S = 
ATTCCGGTCAAG and T = ATTGGTTCCAAGGA 

 
The main idea behind the P-Bigram edit distance described 

above is that each entry Pi,j corresponds to the minimal 
number of editing operations required to transform the 
substring Si = s1,s2…si into the substring Tj = t1,t2… tj. 
Initially, an empty string to transformed into a string of k 
characters by using exactly k additions (Step2). Explanation 
of Step3: 

- If we can transform Si into Tj-1 in Pi,j -1 operations, then 
we can transform Si into Tj in insertion = Pi-1,j-1 + 1 
operations by simply adding the characters si to Tj-1. 

- If we can transform Si-1 into Tj in Pi-1, j operations, then 
we can transform Si into Tj in deletion = Pi-1,j + 1 
operations by simply deleting the characters si from to 
Si. 

- If we can transform Si-1 into Tj-1 in Pi-1,j-1 operations, 
then we can transform Si into Tj in substitution = P i,j-1 + 
1 cost operations by simply substitution the characters si 
with Tj if they are different (cost = 1). 

S

T 
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- The minimal number of operations required to 
transform Ti into Sj is the minimum of the three 
quantities: Pij = min(substitution, deletion , insertion). 

IV. EVALUATION AND RESULTS 
In this section, we want to evaluate a similarity measure, so 

our evaluation will focus on edit distance a set of source 
nucleotide to a set of target nucleotide. We suppose that the 
size of the target set is a part of nucleotide to contain possible 
other similar nucleotides. The P-Bigram Edit Distance task 
consist of comparing two characters with two strings that 
contain nucleotide virus in order to decide whether two strings 
refer to the same entity. A data set used for testing the 
nucleotide virus dynamic programming techniques is usually 
represented as two sets of strings and subset of their Cartesian 
product that defines valid matches. We measured percentage 
similarity and edit of the matched characters in the string. It 
follows from definitions that the following (Table 1). 
 

TABLE I 
 NOTATION 

sim Similarity between S and T is 
related to their commonality

sim edit (x,y) Similarity of edit  
editDist(x,y) Minimum number of character 

(insertion, deletion, substitution) 
 

Several metrics to evaluate effectiveness of character 
identification techniques have been proposed, combining such 
criteria. The problem of DNA similar measure is a different 
measures how many match is identified in relation to the total 
number of edit. The Results given in Table1 are the percent 
similarity and number of edit[12][17]. 
   
  sim edit (x,y)   =                    1 
                                      1 + editDist(x,y) 
 
Where editDist(x,y) is the minimum number of data(DNA) 
insertion deletion and substitution operations needs to 
transform one string to the other. 
 

Example Here is an example of computing the P-Bigram 
similarity of two characters in two strings(ATTCCGGTCAAG, 
ATTGGTTCCAAGGA). 
 
 sim edit (s,t)   =                  1 
                                      1 + 3 (s,t) 
 
      = 0.25     
    Similarity      = 25.00% 
 

Our training set is an export of the NCBI(National Center 
for Biotechnology Information) data. To simplify the 
evaluation, we had to set a threshold to decide if a nucleotide 
is a small edit operation. Using our trained similarity measure 
we computed the similarity between two characters in two 
strings and look for minimum edit distance (similarity) that 
was able to reduce edit operations. Our evaluation 

concentrates on trying to match two characters nucleotide. We 
summarize the results using edit and similarity in Table1, 
Table II, Table III, Figure 4, Figure 5. 

    
TABLE II 

 NUMBER EDIT FOR PAIR OF DNA SEQUENCE 
Source Destination LD LCS ND PB 

Edit Edit Edit Edit 
ATTCCG 
GTCAAG 

ATTGGTT 
CCAAGGA 

6 10 7 3 

GAATTC 
AGTTA 

ATTGGTTC 
CCAAGGA 

5 6 8 4 

GCATCG 
GTAATT 

ATCTCG 
GACG 

7 6 6 5 

GCCCTA 
GCG 

GCGCAA 
TG 

4 5 8 3 

TGATCG 
ATC 

CTGATCG 
ATC 

1 9 7 1 

 
By using the edit distance we find the possible edit of 

sequence. Now to edit distance in many algorithms we used to 
compare edit. A better approach is to edit in such a way which 
minimum edit. 

 
TABLE III 

 SIMILARITY FOR PAIR OF DNA CHARACTERS IN MANY ALGORITHM 
Source Destination LD LCS ND PB 

Similarit
y 

Similarit
y 

Similarit
y 

Similarit
y 

ATTCCG 
GTCAAG 

ATTGGTT 
CCAAGGA 

14.29% 9.09% 12.50% 25.00% 

GAATTC 
AGTTA 

ATTGGTTC 
CCAAGGA 

16.67% 14.29% 11.11% 20.00% 

GCATCG 
GTAATT 

ATCTCG 
GACG 

12.50% 14.29% 14.28% 16.67% 

GCCCTA 
GCG 

GCGCAA 
TG 

20.00% 16.67% 11.11% 25.00% 

TGATCG 
ATC 

CTGATCG 
ATC 

50.00% 10.00% 12.50% 50.00% 
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Fig. 4 Number Edit 

 
Fig. 4 Show the comparisons of different algorithms with 

the sim edit metrics. The current metrics gives good 
performance in reducing the number of editions compared 
with other popular methods.  
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Fig. 5 Comparison of different algorithms with percentage similarity 
 

Fig. 5 The cross line shows the P-Bigram algorithm where 
as longest common subsequence algorithm and Needleman 
algorithm and Levenshtein shown by square, triangle, 
diamond. The P-Bigram Edit distance is a cheap distance 
measure which always returns a distance rather smaller than 
the Unigram edit distance, there are shown for typical results 
in Fig. 4 and Fig. 5. For given string S and T this distance can 
be calculated in O(n2). The P-Bigram Edit distance is then 
divided to this transformation the P-Bigram distance similarity 
measure will always be smaller than the edit distance 
similarity measure.  

V. CONCLUSION 
We proposed an edit distance of the P-Bigram method 

integrating the dynamic programming concept to compared 
similarity. That edit distance implements a heuristic of giving 
grater importance in the combined measure to the pairs of 
strings whose similarity is higher in comparison with the 
similarity of other pairs. The proposed method was tested on 5 
dna-matching datasets with representative two characters-
based string measures: Levenshtein distance. The result 
showed that the performance of the P-Bigram method can be 
improved. The result of such process can then compute 
similarities between two characters two nucleotide with quit 
high accuracy. However there are several improvements we 
will try to address in the future. 
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