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Abstract—We introduce a new model called the Marshall-Olkin 

Rayleigh distribution which extends the Rayleigh distribution using 

Marshall-Olkin transformation and has increasing and decreasing 

shapes for the hazard rate function. Various structural properties of 

the new distribution are derived including explicit expressions for the 

moments, generating and quantile function, some entropy measures, 

and order statistics are presented. The model parameters are 

estimated by the method of maximum likelihood and the observed 

information matrix is determined. The potentiality of the new model 

is illustrated by means of a simulation study. 

estimation, maximum likelihood.  

I. INTRODUCTION 

HE Rayleigh distribution is a special case of the Weibull 

distribution and useful for several areas including 

engineering, statistics, life testing and reliability which age 

with time as its hazard rate is a linear function of time. It is a 

popular distribution for the lifetime of components that age 

rapidly with time since its probability density function (pdf) 

has a linearly increasing failure rate. The Rayleigh distribution 

was originally introduced by Rayleigh [1] in the field of 

acoustics; since its introduction, many researchers have used 

the distribution in different fields of science and technology. 

The pdf of a Rayleigh random variable X, with scale 

parameter 0σ >  is given by 
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and the corresponding cumulative distribution function (cdf) 

of X is  
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Several extensions of the Rayleigh distribution proposed in 

the literature and these extensions provided great flexibility in 

modelling data in practice. Vodà [2] introduced the 

generalized Rayleigh distribution, its mathematical properties, 

and left-truncated form of the distribution. Leao et al. [3] 

derived the beta inverse Rayleigh distribution. Recently, 
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Ahmad et al. [4] have proposed the transmuted inverse 

Rayleigh distribution and some of its properties. 

The parameter(s) induction to the baseline distribution has 

received increased attention in recent years to explore 

properties and for efficient estimation of the parameters. 

Marshall & Olkin [5] introduced a new family of distributions 

by adding a new parameter. The resulting distribution, known 

as Marshall-Olkin distribution, includes the baseline 

distributions are also known as the proportional odds family or 

family with parameter. 

Let F(x) 1 F(x)= −  be the survival function of any 

distribution, then, the survival function of Marshall-Olkin 

(MO) family of distributions is given by 

 

F(x)
G(x)

1 (1 )F(x)

γ
=

− − γ
                              (3) 

 

where γ  is an additional positive parameter and Marshall & 

Olkin [5] have called it the tilt parameter.  For 1γ = , we have 

G F= . The cdf and pdf for the new distribution are given by 
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respectively. 

The main aim of this paper is to provide another extension 

of the Rayleigh distribution using the MO transformation. We 

propose the new Marshall-Olkin Rayleigh (“MOR” for short) 

distribution by adding extra parameter to the Rayleigh model. 

The objectives of the research are to study some structural 

properties of the proposed distribution. 

II. PROPERTIES OF MARSHALL-OLKIN RAYLEIGH DISTRIBUTION 

A. The Probability Density and Cumulative Distribution 

Functions 

We obtain the cdf of the MOR distribution by inserting (2) 

in (4) as  
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where x,  ,  0σ γ > . Then, the pdf of corresponding to (6) is 

given by 
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Fig. 1 The probability density function of the MOR distribution for 

several parameter values (for fixed 5γ = ) 

 

 

Fig. 2 The probability density function of the MOR distribution for 

several parameter values (for fixed 7σ = ) 

 

Fig. 1 shows the plot for the probability density function of 

the MOR distribution for several parameter values. As seen 

from Figs. 1 and 2, the density function can take various forms 

depending on the parameter values. Its density function is 

symmetrical, left-skewed, and right-skewed. It is evident that 

the MOR distribution is much more flexible than the Rayleigh 

distribution, i.e. the additional parameter γ  allow for a high 

degree of flexibility of the MOR distribution.  

B. Survival Function 

The survival function G(x)  for the MOR distribution are 

given by 
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The MOR distribution can be applied in survival analysis, 

hydrology, economics, among others, as the Rayleigh 

distribution and can be used to model reliability problems. 

The other characteristic of the random variable is the hrf 

which is an important quantity characterizing life 

phenomenon. It can be loosely interpreted as the conditional 

probability of failure, given it has survived to time t. Then, the 

hrf of X is given by 
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Figs. 3 and 4 illustrate some of the possible shapes of the 

hazard functions of the MOR distribution, respectively, for 

several parameter values. We can verify that this distribution 

can have an increasing hrf depending on the values of its 

parameters. 

 

 

Fig. 3 The hazard functions of the MOR distribution for several 

parameter values (for fixed 2γ = ) 
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Fig. 4 The hazard functions of the MOR distribution for several 

parameter values (for fixed 7σ = ) 

C. Quantile Function 

Quantile functions are in widespread use in general 

statistics and often find representations in terms of lookup 

tables for key percentiles. Inverting F(x) u= , the quantile 

function of the Rayleigh distribution is given by 

 

( )
1/ 2

1 2F (u) 2 log 1 u−  = − σ −  ,  0 u 1< < . 

 

Let G(x)  be the cdf of MOR and let ( )1
G u

−  be the 

quantile function of the distribution for 0 u 1< <  and obtained 

as  
 

( ) [ ]{ }1/ 2
1 2G u [ 2 ln(1 u) ln(1 u u )− = − σ − − − + γ      (10) 

D. Entropy Function 

The entropy of a random variable X with density function 

f(x)  is a measure of variation of the uncertainty [6], [7]. Here, 

we derive expressions for the Rényi entropies of the MOR 

distribution. The Rényi entropy of a random variable with 

f(x)  is defined as  
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for 0δ >  which implies that  
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Then, the Rényi entropy for (0,1)γ ∈  is given as 
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For 1δ > , we have  
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Then, the Rényi entropy for 1γ >  is given as 
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III. MAXIMUM LIKELIHOOD ESTIMATION 

Several approaches for parameter estimation have been 

proposed in the literature but the maximum likelihood method 

is the most commonly employed. Here, we consider 

estimation of the unknown parameters of the MOR 

distribution by the method of maximum likelihood. Let 

n21 x,...,x,x  be observed values from the MOR distribution 

with parameters γ  and σ . The likelihood function for ( , )γ σ  

is given by 
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and the corresponding log-likelihood function is given by 
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The first derivatives of the log-likelihood function with 

respect to the parameters γ  and σ  are 
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The MLEs of ( , )γ σ , say ˆ ˆ( , )γ σ , are the simultaneous 

solutions of the equations log L
0

∂
=

∂γ
 and log L

0
∂

=
∂σ

. 

Maximization of (14) can be performed by using nlm or 

optimize in R statistical package. For interval estimation of 

( , )γ σ  and tests of hypothesis, we require the Fisher 

information matrix. 

IV. SIMULATION STUDY 

We conduct Monte Carlo simulation studies to assess on the 

finite sample behavior of the Mean Squared Errors (MSEs) of 

γ  and σ . All results were obtained from 1000 Monte Carlo 

replications and the simulations were carried out using the 

statistical software package R. In each replication, a random 

sample of size n is drawn from X ~ MO Rayleigh( , )− γ σ  

distribution and the BFGS method has been used by the 

authors for maximizing the total log-likelihood function log L. 

The MOR random number generation was performed using 

the inversion method. The true parameter values used in the 

data generating processes are 0.5γ = , 2σ =  and 3γ = , 5σ = . 

Table I lists the means of the MSEs of the four parameters that 

index the MOR distribution along with the respective biases 

for sample sizes n 50= , n 100= , n 150= , n 200= . Table I 

indicates that the MSEs of ( , )γ σ  decay as the sample size 

increases, as expected. 
 

TABLE I 

 MSES OF ( , )γ σ  

 Real Parameters 

 0.5γ = , 2σ =  3γ = , 5σ =  

n Estimated Parameters (Mean Squared Error) 

50 
0,6383807 

(0,152058) 

1,9695970 

(0,132218) 

3,6452330 

(4,033918) 

4,9614980 

(0,266293) 
10

0 

0,5644994 

(0,053041) 

1,9857230 

(0,067304) 

3,2980440 

(1,464633) 

4,9804960 

(0,132438) 

15
0 

0,5436154 
(0,031194) 

1,9877790 
(0,043940) 

3,1850690 
(0,838079) 

4,9897920 
(0,087561) 

20

0 

0,5306474 

(0,021708) 

1,9931910 

(0,033041) 

3,1377940 

(0,597327) 

4,9898750 

(0,066841) 

V. CONCLUSION 

In this study, we propose a two parameter lifetime 

distribution, so-called the Marshall-Olkin Rayleigh 

distribution which is an extension of the Rayleigh distribution. 

Our proposed model has increasing and decreasing hazard rate 

functions. We provide a mathematical treatment of this 

distribution including reliability and entropy. We examine a 

maximum likelihood estimation of the parameters. A 

simulation study is given to demonstrate that it can be used 

quite effectively to provide better fits than other available 

models. We hope that this generalization may attract wider 

application in statistics. 
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