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A New Derivative-Free Quasi-Secant Algorithm For
Solving Non-Linear Equations
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Abstract—Most of the nonlinear equation solvers do not converge
always or they use the derivatives of the function to approximate the
root of such equations. Here, we give a derivative-free algorithm that
guarantees the convergence. The proposed two-step method, which
is to some extent like the secant method, is accompanied with some
numerical examples. The illustrative instances manifest that the rate
of convergence in proposed algorithm is more than the quadratically
iterative schemes.
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I. INTRODUCTION

W ITH the booming growth of science and technology,

the need of some faster methods which guarantee the

convergence is a challenge. Finding the simple root of the

non-linear equations is very important in numerical analysis

and has many applications in engineering and other applied

sciences. After the classical Newton’s method

xn+1 = xn − f(xn)

f ′(xn)
,

for finding the simple zeros of the following nonlinear equa-

tion

f(x) = 0, (1)

many methods have been proposed. Almost all of them have

their own limitations and convincing points. To explain more,

the Newton’s method converges quadratically. As well as

condition f ′(x) �= 0 in the neighborhood of root x∗ is severe

indeed for its convergence so its applications is restricted [1].

Recently some methods for improving the order of conver-

gence had been proposed [3,4]. Although the calculation of

the higher derivatives is so time consuming, but all of the

improvements consist one or two additional iteration of the

function or its derivatives to boost up the order of convergence,

see for example [8]. To gain a better understanding of this

issue, see the new family of seventh-order methods that has

been studied in [5].

Ostrowski’s method [9], which is defined as below and is a

fourth-order method

yn = xn − f(xn)

f ′(xn)
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xn+1 = yn − f(yn)(xn − yn)

f(xn)− 2f(yn)
, (2)

has been improved and a new variant of it with eighth-order

convergence for solving non-linear equations is proposed in

[7]. These are the interesting works in this field, but all of these

methods contain the calculation of more derivatives which is

indeed time-consuming and are failed for a non-differentiable

function in the neighborhood of the root. On the other hand,

the methods do not guarantee the convergence for any starting

point x0.

The Secant method do not use the derivatives of the function,

but its convergence order is
(
1 +

√
5
)
/2. Another derivative-

free method, Inverse Quadratic Interpolation (IQI) [10] which

is totally better than derivative-free Muller’s method of the

second-order can be defined as follows.

IQI converges quadratically and does not use any derivative

of the function, but the computational cost of this method is

so much. Since, this is a three-point method. IQI is a similar

generalization of the Secant method to parabolas. However,

the parabola is of form x = p(y) instead of y = p(x), as in

Muller’s method. This parabola will intersect the x-axis in a

single point, so there is no ambiguity in finding the new value

of the root per iteration (unlike the Muller’s method). The

second-degree polynomial x = p(y) that passes through the

three points, i.e. three previous guesses, (a,A), (b, B), (c, C)
is

p (y) = a
(y −B) (y − C)

(A−B) (A− C)
+ b

(y −A) (y − C)

(B −A) (B − C)

+c
(y −A) (y −B)

(C −A) (C −B)
.

If q = f(a)/f(b), r = f(c)/f(b), and s = f(c)/f(a).
Then we have

p (0) = c− r (r − q) (c− b) + (1− r) s(c− a)

(q − 1) (r − 1) (s− 1)
,

Note that, this is an example of Lagrange interpolation.

If we assume a = xi, b = xi+1, c = xi+2, and A = f(xi),
B = f(xi+1), C = f(xi+2), then the next guess xi+3 = p(0)
is

xi+3 = xi+2−r (r − q) (xi+2 − xi+1) + (1− r) s (xi+2 − xi)

(q − 1) (r − 1) (s− 1)

where

q =
f(xi)

f(xi+1)
,

r =
f(xi+2)

f(xi+1)
,
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and

s = f(xi+2)/f(xi).

Definition 1. The efficiency index of an iterative scheme for

solving the non-linear equation (1) when p is the order of

method is defined as:

p1/κ,

where κ is the number of function evaluations per iteration.

One of the well-known methods which guarantee the

convergence is Brent iterative scheme. Brent method [2], is a

hybrid method. It is most desirable to combine the property

of guaranteed convergence, from the Bisection method, with

the property of fast convergence from the more sophisticated

methods. It was originally proposed by Dekker and Van

Wijngaarden in the 1960s.

The method is applied to a continuous function f and an

interval bounded by a and b, where f(a)f(b) < 0. Brent’s

method keeps track of a current point xi that is best in the

sense of backward error, and a bracket [ai, bi] of the root.

Roughly speaking, the IQI method is attempted, and the

result is used to replace one of xi, ai, bi if (one) the backward

error improves and (two) the bracketing interval is cut at

least in half. If not, the Secant method is attempted with

the same goal. If it fails as well, a Bisection method step is

taken, guaranteeing that the uncertainty is cut at least in half.

MATLAB’s comment fzero implements a version of Brent’s

method, along with a preprocessing step, to discover a good

initial bracketing interval if (one) is not provided by the user.

The stopping criterion is of a mixed forward/backward

error type. The algorithm terminates when the change from

xi to the new point xi+1 is less that 2εmachinemax (1, xi) or

when the backward error |f(xi)| achieves mac hine zero.

The preprocessing step is not triggered if the user provides

an initial bracketing interval.

Recently, the Cauchy method

xn+1 = xn − 2

1 +
√

1− 2Lf (xn)

f(xn)

f ′(xn)
,

Lf (xn) =
f ′′(xn)f(xn)

[f ′(xn)]
2 , (3)

of local order three has been improved [6] as below, and

the efficiency index of the obtained derivative-free method

increased to 2.618. For removing the second derivative of

(3), some variants of Cauchy’s method are obtained by the

approach of replacing the second derivative with the values of

the function on different points. This derivative-free iterative

scheme is defined as follows

xn+1 = xn − f(xn)

f(yn)− f(xn)
(yn − xn)

where

yn+1 = xn+1 − f(xn+1)

f(yn)− f(xn)
(yn − xn).

But the problem of this method is that its convergence is

not guaranteed as well.

In this paper, the important characteristic of the new

method is that per iteration, it requires four evaluations of

the function (without any evaluation of the derivatives) and

it guarantees the convergence while even the aforementioned

methods do not converge always or the order of convergence

is lower. Some numerical examples are given to show the

efficiency of the new method. From a practical standpoint,

it is interesting to improve the well-known methods. So in

the other words in this work, we simply increase the order of

convergence of a method that guarantees the convergence.

The following two-step iterative scheme [11], for solving

nonlinear equations converges quadratically to the simple root

and the convergence is guaranteed.

Theorem 1. Suppose the equation (1) has a simple

root x∗ on an interval (a, b). Then the following iterative

scheme converges quadrayically

xn+1 = xn − 2(xn − xn−1)f(xn)

f(2xn − xn−1)− f(xn−1)
(4)

where x−1 = a and x0 = (a+b)
2 . and the convergence is

guaranteed.

II. MAIN RESULT

In the following we present a technique that consists in an

iterative method in two steps

zn = ϕ(xn), (5)

xn+1 = zn − f(zn)

f ′(zn)
, (6)

where ϕxn) is the two-step method of second-order as (4)

ϕ(xn) = xn − 2(xn − xn−1)f(xn)

f(2xn − xn−1)− f(xn−1)
(7)

x−1 = a; x0 =
(a+ b)

2
(8)

and f ′(zn) defined as below to avoid one calculation of the

first derivative of the function

f ′(zn) =
f(zn)− f(xn)

zn − xn
(9)

Algorithm 1. The following two-step iterative scheme for the

function f : D = (a, b) → R converges to the root of (1).

zn = xn − 2(xn − xn−1)f(xn)

f(2xn − xn−1)− f(xn−1)
,

xn+1 = zn − f(zn)
f(zn)−f(xn)

zn−xn

.

The stopping criterion is just like Brent’s method. The

algorithm terminates when the change from xi to the new

point xi+1 is less than

2εmac hinemax(1, xi)

or when the backward error |f(xi)| achieves machine zero.
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III. NUMERICAL IMPLEMENTATIONS

We consider some examples in this section, by taking into

account of the proposed method. All of the calculations are

done with MATLAB, up to eight floating point.

Example 1. We solve the following equation on the

real open interval D = (0, 6). The root of the equation is

2. The starting point is x0 = 3 in the Newton’s method and

Ostowski’s method which need an initial guess to start the

iteration.

f1(x) = (x− 2)4(x+ 1)

TABLE I

THE APPROXIMATION OF THE ROOT BY SOME VARIANT METHODS FOR f1,

AFTER 20 ITERATIONS.

Method Root Approximation Analysis of Convergence
Newton’s Method 2.00348128 Not-guaranteed

Ref [11] 2.00748897 Guaranteed
Ostrowski’s Method 2.00000575 Not-guaranteed
Proposed Algorithm 2.00031922 Guaranteed

In the above example the proposed Algorithm convergence

is guaranteed. As well as the required computational iteration

to get the approximation up to two decimal points is 13, while

in [11] it required 20 iterations. (Note that the choice of x0 = 4
or worse in Newton’s method Ostrowski’s method derives to

failure in root-finding).

Example 2. Now we consider the simple zero-finding of the

following equation in D = (1, 4). In the following table we

provide the numbers of needed steps to gain the root for each

method. (The starting point x0 = 3 can be taken for Newton’s

method and Ostrowski’s method.)

f2(x) = 10xe−x2 − 1, x∗ = 1.67963061042845.

TABLE II

Numbers of needed steps by some variant methods for f2 to gain the exact root.

Method Number of Steps Analysis of Convergence
Newton’s Method - Divergent

Ref [11] 5 Guaranteed
Ostrowski’s Method - Divergent
Proposed Algorithm 4 Guaranteed

In this example, the choice of x0 = 3 in Newton’s method

and Ostrowski’s method derives to failure in root-finding,

whereas the convergence of the zero-finding in the proposed

method is guaranteed. As well as, its convergence is more than

[11].

Example 3. We consider the problem of simple zero-finding in

the following continuous function in the interval D = (2, 4.5).
The starting point will be taken x0 = 4 for iterative schemes

which need an initial guess.

f3(x) = ex
2+7x−30 − 1, x∗ = 3.

TABLE III

Numbers of needed steps by some variant methods for f3 to gain the exact root.

Method Number of Steps Analysis of Convergence
Newton’s Method - Divergent

Ref [11] 7 Guaranteed
Ostrowski’s Method - Divergent
Proposed Algorithm 5 Guaranteed

As the instance illustrates, whilst the other well-known

methods such as Newton’s method or Ostrowski’s method

diverge for the initial point, and the rate of convergence in

(4) is low, the proposed algorithm converge faster and the

convergence is guaranteed.

IV. CONCLUDING REMARKS

As we have seen, the new algorithm is more efficient and its

order of convergence is not local, i.e., by allocating x−1, x0 as

in (8), the convergence of the iterative scheme is guaranteed.

The new algorithm which is generally a generalization of [11]

includes four evaluation of the function. The remarkable fact

of this new algorithm is that after the first iteration, one of

the past evaluations of the function can be used in the new

iteration, and then it reduces the computational cost of the

algorithm per iteration.
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