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Abstract—The heart tissue is an excitable media. A Cellular 

Automata is a type of model that can be used to model cardiac action 
potential propagation. One of the advantages of this approach against 
the methods based on differential equations is its high speed in large 
scale simulations. Recent cellular automata models are not able to 
avoid flat edges in the result patterns or have large neighborhoods. In 
this paper, we present a new model to eliminate flat edges by 
minimum number of neighbors. 
 

Keywords—Cellular Automata, Action Potential Simulation, 
Isotropic Pattern.  

I. INTRODUCTION 
ARDIAC modeling and simulation have been the subject 
of important research during the last three decades [1]  . 

Computational models are able to offer unique insights into 
both normal action potential conduction and arrhythmias[2]  . 
Due to the large number of cells in cardiac tissue and the 
restrictions in the calculation of computer models, models 
with less computation are more considered. Cellular Automata 
(CA) model is one kind of cellular behavior models that has 
short computation in comparison with electrophysiological 
models. Many researchers have been used cellular automata 
for action potential propagation modeling. 

 CAs are discrete dynamic systems whose behaviors are 
completely based on local communications. They consist of a 
large number of relatively simple individual units, which is 
called cells. A network of these cells is represented the space. 
The state of a cell at each time is calculated from the states of 
some number of cells (called neighborhood) in previous time 
step. As time goes discretely, each of the cells can be in one of 
several finite numbers of states. All cells in CA are usually 
governed by the same rules. So, the state of neighbors and the 
rules of the CA determine how the states of a cell change. 

There are two common and well-known neighborhoods in 
CA models. The Moore neighborhood comprises the eight 
cells surrounding a central cell. (See fig. 1 (a) ) the other one, 
a diamond-shaped neighborhood contains four cells. The cell 
above and below, right and left from each cell are called the 
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von Neumann neighborhood of this cell. In this paper, both 
Moore and Von Neumann are studied.  

The cellular automaton model uses a simple set of rules to 
represent the complex physiological processes that result in 
electrical impulse generation, conduction and propagation. 
The simplicity of the assumptions allows one to simulate wave 
propagation within a realistic whole heart model [3]  To 
develop the simplest form of cellular automata model for 
cardiac conduction, we consider the nature of propagation of 
electrical activity by cardiac action potentials to represent a 
form of information transmission on a discrete lattice of points 
through space, representing the volume of the myocardium [4]   

The heart tissue is an excitable media. Some researchers 
have approached the spread of the activation process 
mathematically in the form of a wave propagation problem[3]  
. One of the most important properties of wave propagation in 
excitable Medias is their propagation patterns. Ring pattern 
and spiral wave pattern [5]  [5]   can be mentioned as some 
examples of propagation patterns (see fig. 1).  The model 
presented for action potential propagation in excitable media 
must be able to show these patterns. Ideally waves generated 
by computer models should be as circular as possible avoiding 
flat edges. 

 

 

(b)         (a) 

Fig. 1 a- Von Neumann neighborhood b- Moore neighborhood  
 

                  
(a)           (b) 

Fig. 2 Wave propagation patterns including a- target pattern b-spiral 
pattern 
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We discuss the effect of changing the parameters of the model 
on result patterns and analyze the results. We also find the 
minimum neighborhood between Moore and Von Neumann 
neighborhoods for optimization of our model. 

II. CELLULAR AUTOMATA MODELS OF PROPAGATION IN 
EXCITABLE MEDIA 

A. The Moe model 
Moe et al. [6]  had presented a primitive model for atrial 

fibrillation by using CA concepts. He considered five states 
for his model; consist of one state for resting, one state for 
being fully excited and three intermediate states for describing 
different refractory levels. He assumed six neighbors for each 
cell with regard to hexagonal shape cells. This model had 
been considered strongly as the first action potential 
propagation based on CA. The only problem of this model is 
its lack of isotropy means the model does not provide precise 
representation of the shape of cardiac spiral wave. Therefore, 
future models were presented more convenient model for 
excitable media relying on the principles used in this model. 

A spiral wave generated by Moe model in cardiac tissue 
after 127 sec. is shown in fig. 4 below. 

 
 

 

 

 

 

Fig. 3 a- schematic representation of the live states of activity. b- 6 
neighbours of a central cell in Moe method. 

0 10 20 30 40127  

Fig. 4 Spiral wave produced by Moe model in arbitrary time (t=127) 
is displayed in which black colors shows fully excited cells. It also 
shows resting and refractory states by White and gray colored cells 
respectively 

B. The Gerdhardt model 
Gerhardt et al. [7]  introduced two variable u and v for the 

excitation and the recovery value of a cell to reproduce wave 
curvature with CA concept. The variable u can have a value of 
0 or 1, while the variable v can have a value between 0 and 
vmax which is determined before. This model presented a near 
isotropic pattern by using square neighborhood with a radius 
of 3(containing 48 neighbors for a central cell). Although the 
model used large number of neighbors for a central cell, flat 
edges in result patterns were observed. The other problem 

with this model is its running time. By using this amount of 
neighbors, the advantage of applying CA was ignored and the 
speed of simulation in large scale reduced significantly. 

C. The Markus model 
Another model was proposed by Markus and Hess [8]  by 

creating some changes in Gerhardt idea. He used a variable S 
instead of two variables u and v. this new variable can have 
the value between 0 and N+1. S=0 and S=N+1 were the 
representative of resting state and fully exciting state, 
respectively. The recovery state of a cell was shown by any 
value of S between 1 and N. a special kind of neighborhood 
was used in this model. Each cell had a point placed at a 
random position inside of it. A cell’s neighbors are those 
which have their random point within a circular radius of the 
local cell’s own random point (figure 5 (a)). By this kind of 
method, Markus achieved Isotropy. The achieved spiral 
pattern was shown in figure 5 (b). using this kind of 
neighborhood and calculating circular distance were this 
model’s problem. Because of this circular neighborhood, a 
square root operation was needed for each pair of 2 points and 
therefore the simulation was taken long time. 

D. The Weimar models 
The other models were presented by Weimar [10]  [9]   

containing weighted mask for expressing the premiership of 
nearer and farther neighbors. These weights were proceeded 
to 19 or 20 for close neighbors. A square neighborhood with 
the radius of 7 was used in this model. Applying this large 
amount of neighbors is one of the important disadvantages of 
this model.  

 

          

                (a)                                    (b) 

Fig. 5 a- an example of Circular neighborhood of the Markus 
mode[8]  b- A spiral wave generated by the Markus model 

 

 

Fig. 6 Spiral wave on a 686*960 cell domain [10]   
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III. METHOD 
In this paper, we simulate action potential propagation by 

using fewer neighborhoods with the idea of Markus model. In 
this case, we consider both Moore and Von Neumann 
neighborhoods. (See fig. 1). In addition, we introduced St

mn 

variable like the one in Markus model. M, n and t variables 
denotes the row number, column number, and the time step, 
respectively, when the situation will be studied. 

Here St
mn is defined by the sum of values of the states ut

mn at 
the time t over the neighboring cells. In fact, we use this 
method to eliminate flat edges in result patterns. ut

mn and vt
mn 

variables are introduced like Gerhard’s ones. But in our 
model, each of the state variables can take values from 0 up to 
N-1. N is a parameter of the model which shows the number 
of discrete states between resting and fully excited in both 
excitability (ut

mn) and recovery (vt
mn) variables. 

The cell first increases its u value by uup at each time step 
until u=N-1. Then; v rises by vup at each time step until v=N-1. 
Next; u decreases by uDown at each time step until u=0. Finally; 
v begins decreasing by vDown at each time step until v=0. At 
this point; u=0 and v=0, and the cell is back at its relaxed 
state.  

In other words; the transition rule is as follows: 
(1) If St

mn is greater than the threshold of excitation (Δ) and 
vt

mn =ut
mn=0, the cell will be excited in next time step. In this 

case, ut+1
mn= uup and vt+1

mn=0. 
 (2) If St

mn < Δ and vt
mn =ut

mn=0, the cell stays at its 
previous state. This means vt+1

mn =ut+1
mn= vt

mn =ut
mn=0. We 

should remind that Δ is a positive constant and must be in the 
range of 0<Δ<2N in Moore neighborhood and 0<Δ<N in Von 
Neumann neighborhood. 

 (3) Once vt
mn+ut

mn≠0 and a cell has enough excited 
neighbors to meet its excitability variable, the cell moves 
through the transitions given in figure 7. 

After discussing the model with constant parameter Δ, two 
different threshold Δ1 and Δ2 with probability of P will be used 
in fallowing sections. We can achieve the isotropy by adding 
Δ1 and Δ2 randomly over the cells as shown in figure 8.  

 
 

 

 

 

 

 

Fig. 7 The diagram which represent the state transitions of a cell  

 

 

 

 

 

 

 

Fig. 8 two different thresholds (Δ1 and Δ2) are distributed randomly 
over the lattice 

IV. RESULTS 
The Cellular Automata model described above was 

implemented in both dev-C++ and Matlab software package. 
The source code is available to interested parties as per 
request to the author. 

It is obvious that this model is faster than Markus model as 
it needs no complex operations such as square root 
calculations. The Markus model used circular neighborhoods 
but the calculation of distances using square root calculations 
proved extremely slow. However, in our model the transition 
rule depend on the summation of the excitability attributes of 
excited neighboring cells.  

The effects of model parameters are tested in network with 
50×50 and 150×150 cells. The results are as follows: 

A. The effect of Δ and N 
The effect of Δ on producing or eliminating flat edges in 

result patterns is studied in this section. As shown in fig. 9, 
action potential propagation is simulated with uup=3, uDown=2, 
vup=vDown=1, the N value of 4, Δ=2 and Δ=3. This figure 
shows that the threshold value of 3 gets octagonal pattern. 
And a Quadrilateral pattern is obtained for Δ=2 and a 
dodecagonal pattern for Δ=6. By greater Δ, the result pattern 
has less flat edges and it is more similar to spiral pattern. 

Fig. 10 shows the effect of N on result patterns (in only ring 
pattern). It is obvious that the result do not impress by various 
values of N. By greater N, the thickness of pattern is 
increased.   

 

           
(a)           (b) 

Fig. 9 Spiral pattern obtained by above method with N=4 and a- Δ=3 
b- Δ=2. Part a in this figure is more similar to fig. 2 which is shown 

ideal spiral pattern. 
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(a)           (b) 

Fig. 10 effect of N on presented model at a network of 2500 cells 
with uup=3, uDown=2, vup=vDown=1, Δ=3 and a- N=4 b- N=10 

 
According to fig. 9 and fig. 10, we can control the shape 

and propagation speed of the generated patterns by choosing 
an appropriate value of the threshold. 

B. The effect of different neighborhoods 
In fig. 11 and fig. 12, the comparison of two different 

neighborhoods used in this paper is mentioned. It can be seen 
that using Moore neighborhood has appropriate result in 
eliminating flat edges. In fact, Generating isotropy by 
reducing the neighbors from Moore up to von Neumann 
proved less successful. So we will continue to use a Moore 
neighborhood for the remainder of our work. 

 

        
(a)         (b) 

Fig. 11 spiral wave generated by using a- Moore neighborhood b- 
Von Neumann neighborhood  

         
 (a)         (b) 

Fig. 12 ring pattern obtained by using a- Von Neumann 
neighborhood b- Moore neighborhood 

 

C. The effect of using distinct values of Δ1 and Δ2 
In fig. 13 (a), wave propagation with Δ=4 is shown in a 

network of 22500 cells. However in part b of this figure, two 
different threshold values Δ1 and Δ2 are used. Using this 
method can generate isotropic patterns as shown in fig. 13. 

        
(a)          (b) 

Fig. 13 A network of 22500 cells with N=6 and a- Δ=4 b- Δ1=6 and 

Δ2=4 

A. Action Potential Propagation in a 2-D cardiac tissue 
In this section, we show propagation of AP on a 2-D square 

lattice with the above simple rule, using Moore neighborhood.  
The membrane potential is represented depolarized and 
hyperpolarized tissue by white and black colors, respectively. 

Abnormal action potential in 2-D cardiac tissue based on 
our method is shown in fig. 15. As it can be seen, the spiral 
wave is more isotropic and is similar to ideal one shown in 
fig. 2-b.  

           
 
 

              
           
Fig. 14 Linear wavefront propagation in 2-D cardiac tissue. The 
membrane potential is color-coded according to the bar in the figure, 
with red representing depolarized tissue and blue hyperpolarized 
tissue. 

 
Fig. 15 Spiral wave generated by presented model. 

V. CONCLUSION 
CA models aiming for wave propagation without curvature 

(square wave propagation) can easily achieve adequate 

wave propagation 
through y- direction 

wave propagation through x- direction 
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performance when curvature is attempted the calculation 
becomes too complex to maintain such performance. In this 
paper, a new cellular automata model for wave propagation is 
presented with fewer neighbors compared to previous studies. 

It was seen that the calculation is simple enough to be 
performed across a large grid of cells in short period of time. 
The effect of model parameters (Δ and N) on the isotropy and 
speed of run time was survived in this research. At last, the 
minimum neighborhood was achieved for the presented 
model. 
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