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Abstract—In a perfect secret-sharing scheme, a dealer distributes
a secret among a set of participants in such a way that only qualified
subsets of participants can recover the secret and the joint share of the
participants in any unqualified subset is statistically independent of
the secret. The access structure of the scheme refers to the collection
of all qualified subsets. In a graph-based access structures, each vertex
of a graph G represents a participant and each edge of G represents a
minimal qualified subset. The average information ratio of a perfect
secret-sharing scheme realizing a given access structure is the ratio
of the average length of the shares given to the participants to the
length of the secret. The infimum of the average information ratio
of all possible perfect secret-sharing schemes realizing an access
structure is called the optimal average information ratio of that access
structure. We study the optimal average information ratio of the
access structures based on bipartite graphs. Based on some previous
results, we give a bound on the optimal average information ratio
for all bipartite graphs of girth at least six. This bound is the best
possible for some classes of bipartite graphs using our approach.

Keywords—Secret-sharing scheme, average information ratio, star
covering, deduction, core cluster.

I. INTRODUCTION

IN a secret-sharing scheme, there is a dealer who has a
secret, a finite set P of participants and a collection Γ of

subsets of P called the access structure. Each subset in Γ is
a qualified subset. A secret-sharing scheme is a method by
which the dealer distributes a secret among the participants
in P such that only the participants in a qualified subset can
recover the secret. If, in addition, the joint share of the par-
ticipants in any unqualified subset is statistically independent
of the secret, then the secret-sharing scheme is called perfect.
Since we only consider perfect ones, “secret-sharing scheme”
will be used for “perfect secret-sharing scheme” throughout
this paper. An access structure of a secret-sharing scheme must
be monotone which means that any subset of P containing a
qualified subset must also be qualified. Therefore, the family
of all minimal subsets of Γ, called the basis of it, completely
determine the access structure Γ.

The first secret-sharing schemes are the (t, n)-threshold
schemes introduced by Shamir [18] and Blakley [1] indepen-
dently in 1979. In such a scheme, the basis of the access struc-
ture consists of all t-subsets of the participant set of size n.
The problem regarding secret sharing has been widely studied
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since then. The information ratio and the average information
ratio of secret-sharing schemes have been the main subjects of
discussion. The information ratio of a secret-sharing scheme
is the ratio of the maximum length (in bits) of the share
given to a participant to the length of the secret. The average
information ratio of a secret-sharing scheme specifies the ratio
of the average length of the shares given to the participants to
the length of the secret. For the efficiency of a scheme, these
ratios are expected to be as low as possible. Given an access
structure Γ, the infimum of the (average) information ratio
of all possible secret-sharing schemes realizing this access
structure Γ is referred to as the optimal (average) information
ratio of Γ.

In this paper, we consider graph-based access structures. In
the access structure based on a simple graph G, each vetex
represents a participant and each edge represents a minimal
qualified subset. A secret-sharing scheme Σ for the access
structure based on G is a collection of random variables ζS

and ζv for v ∈ V (G) with a joint distribution such that

(i) ζS is the secret and ζv is the share of v;
(ii) if uv ∈ E(G), then ζu and ζv together determine the

value of ζS ; and
(iii) if A ⊆ V (G) is an independent set in G, then ζS and

the collection {ζv|v ∈ A} are statistically independent.

Given a discrete random variable X with possible values
{x1, x2, . . ., xn} and a probability distribution {p(xi)}n

i=1,
the Shannon entropy of X is defined as H(X) =
−∑n

i=1 p(xi) log p(xi) [13]. Using Shannon entropy, the in-
formation ratio of the scheme Σ can be defined as RΣ =
maxv∈V (G){H(ζv)/H(ζS)} and the average information ratio
of Σ is ARΣ = (

∑
v∈V (G) H(ζv))/(|V (G)|H(ζS)). For

simplicity, with the same symbol G, we will denote both the
graph as well as the access structure based on it. For instance,
“a secret-sharing scheme on G” refers to “a secret-sharing
scheme for the access structure based on G”. Furthermore,
the optimal information ratio R(G) of G and the optimal
average information ratio AR(G) of G are the infimum of the
information ratio RΣ and the average information ratio ARΣ

over all possible secret-sharing schemes Σ on G respectively.
It is well known that R(G) ≥ AR(G) ≥ 1 [8] and that
R(G) = 1 if and only if AR(G) = 1. A secret-sharing scheme
Σ with the optimal ratio RΣ = 1 or ARΣ = 1 is called ideal.
An access structure G is ideal if there exists an ideal secret-
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sharing scheme on it.
Most results regarding R(G) and AR(G) give bounds on

them [2]–[7], [9], [10], [14], [15], [19]–[21]. Stinson [21]
showed that R(G) ≤ d+1

2 , where d is the maximum degree of
G, and AR(G) ≤ 2m+n

2n , where n = |V (G)| and m = |E(G)|.
These are the most important bounds for general graphs. Due
to the difficulty of finding results on general graphs, most
efforts have been focused on graphs with better structures such
as paths and cycles [2], [5], [9], [21] and small graphs which
are of order no more than six [5], [14], [15]. The optimal
information ratio and the optimal average information ratio
of any tree were determined by Csirmaz and Tardos [12] in
2007 and by Lu and Fu [16] in 2011 respectively. Csirmaz
and Ligeti [11] showed that R(G) = 2 − 1/k, where k is
the maximum degree of G, in 2009 for some graphs of larger
girth. Lu and Fu [17] have determined the exact vlaues of the
optimal average information ratio of some bipartite graphs of
larger girth in 2014. Based on their results, we give bounds on
the optimal average information ratio of all bipartite graphs of
girth at least six.

This paper is organized as follows. In Section II, we recall
some basic definitions and state some previous results for
the discussion later. In Section III, we present our bound on
AR(G) for any bipartite graph G of girth at least six. Our
bound is the best possible for some classes of bipartite graphs
using our approach. A concluding remark will be given in the
final section.

II. PRELIMINARIES

In this paper, we only consider simple graphs without loops
and isolated vertices, not necessarily connected. For terms and
notations in Graph Theory, please refer to [22]. Birckell and
Davenport [6] have given complete characterization of ideal
graph-based access structures as follows.

Theorem 1 ([6]). Suppose that G is a connected graph.
Then R(G) = AR(G) = 1 if and only if G is a complete
multipartite graph.

A complete multipartite covering of a graph G is
a collection of complete multipartite subgraphs Π =
{G1, G2, . . . , Gl} of G such that each edge of G appears
in at least one subgraph in this collection. The sum mΠ =∑l

i=1 |V (Gi)| is called the vertex-number sum of Π. Using a
complete multipartite covering of G, Stinson [21] provides an
excellent method for building up a secret-sharing scheme on
G.

Theorem 2 ([21]). Suppose that Π = {G1, G2, . . . , Gl} is a
complete multipartite covering of a graph G of order n. Then
there exists a secret-sharing scheme Σ on G with average
information ratio ARΣ = mΠ/n.

According to this result, a complete multipartite covering
with the least vertex-number sum is what we need to con-
struct a secret-sharing scheme on a graph with lower average
information ratio. If each subgraph in a complete multipartite
covering is a star, then this covering is also called a star
covering. A star covering is most suitable for graphs of larger

girth. Finding a suitable star covering of G is the main tool
in [17] to obtain upper bounds on AR(G).

Let IN(G) = {v ∈ V (G)|degG(v) ≥ 2} and in(G) =
|IN(G)|. Given a star covering Π of G with vertex-number
sum mΠ, the deduction of Π is defined as dΠ = |V (G)| +
in(G) − mΠ. A star covering with the least vertex-number
sum gives the largest deduction. The largest deduction over all
star coverings of G is denoted as d∗(G), called the deduction
of G. A star covering Π with dΠ = d∗(G) is referred to as
an optimal star covering of G. An upper bound on AR(G)
obtained from Theorem 2 can be written in terms of deduction
as follows.

Corollary 1 ([21]). If Π is a star covering of a graph G with
deduction dΠ, then AR(G) ≤ |V (G)|+in(G)−dΠ

|V (G)| .

Next, we introduce some definitions and notations in order
to describe the lower bound on AR(G) in [17]. A subset
V0 ⊆ V (G) is said to be connected if it induces a connected
subgraph in G. Csirmaz et al [11] defined a core of G as a
connected subset V0 ⊆ V (G) satisfying that (i) each vertex
v ∈ V0 has a designated outside neighbor v̄ which is defined
as a neighbor of v that is outside V0 and is not adjacent to any
other vertex in V0, and (ii) {v̄|v ∈ V0} is an independent set
in G. A core cluster g of G of size cg is defined in [16] as a
vertex labeling g : IN(G) → N ∪ {0} such that each g−1(i),
i ∈ g(IN(G)), is a core of G, where cg = |g(IN(G))|. We
also denote the minimum size of a core cluster of G as c∗(G),
called the core number of G. The core number of K1,1 is
naturally defined as c∗(K1,1) = 0. A core cluster of size c∗(G)
is referred to as an optimal core cluster of G.

Theorem 3 ([16]). If g is a core cluster of a graph G, then
AR(G) ≥ |V (G)|+in(G)−cg

|V (G)| .

By Theorem II and Corollary II, the following results are
straightforward.

Theorem 4 ([16]). The inequality cg ≥ dΠ holds for any star
covering Π and core cluster g of a graph G. In particular,
c∗(G) ≥ d∗(G).

Corollary 2 ([16]). If there exists a star covering Π and a
core cluster g of a graph G such that cg = dΠ, then c∗(G) =
d∗(G) = cg = dΠ and AR(G) = |V (G)|+in(G)−c∗(G)

|V (G)| .

Therefore, the equality c∗(G) = d∗(G) makes a criterion for
examining whether the lower bound and the upper bound on
AR(G) will match. G is called realizable if c∗(G) = d∗(G)
holds. An infinite class of realizable bipartite graphs of larger
girth proposed by Lu and Fu [17] will be introduced later.

Let G = (X, Y ) be a bipartite graph with partite sets X
and Y where |X| ≥ |Y |. For Ṽ = X or Y , we denote as
Ṽ k+

the set {x ∈ Ṽ |degG(x) ≥ k}. A component H in
G−X3+

with |X ∩ V (H)| ≥ |Y ∩ V (H)| is called a proper
component in G−X3+

. A component in G−X3+
is improper

if it is not proper. Lu and Fu define an adjacency graph of
improper components AG as follows. Let U0 = {Ti|i ∈ I0}
be the collection of improper components in G−X3+

and let
X̃3+

= {v ∈ X3+ |v is adjacent to some Ti ∈ U0 in G}. The
adjacency graph of improper components is a bipartite graph
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AG = (U0, X̃
3+

) such that for all Ti ∈ U0 and v ∈ X̃3+
,

(Ti, v) is an edge in AG if and only if v is adjacent to some
vertex of Ti in G. Suppose that M0 = {(Tj , vj)|j ∈ J0}
(J0 ⊆ I0) is a maximum matching in AG. The number |I0\J0|
is independent of the choices of maximum matchings and is
denoted as exc(G).

Theorem 5 ([16]). If G = (X, Y ) and |X| ≥ |Y |, then
there exists a star covering Π of G with dΠ = |Y 2+ | −∑

v∈X3+ (degG(v) − 2) + exc(G).

Let us denote the value |Y 2+ | −∑
v∈X3+ (degG(v)− 2) +

exc(G) as β(G) in the remainder of this paper. A cycle is
called feasible if it contains two vertices of degree two which
are of distance at least four. A feasible cycle is of length at
least eight. If every cycle in a graph G is feasible, then G is
called feasible as well.

Theorem 6 ([16]). Let G = (X, Y ) and |X| ≥ |Y |. If G is
feasible, then G is realizable and c∗(G) = β(G).

Based on these results, we derive a bound on AR(G) in the
next section.

III. A BOUND ON AR(G)

A k-subdivision of an edge in a graph is the operation of
replacing the edge with a path of length k. An unfeasible
graph can be made feasible by suitably subdividing some
edges of it. This suggests a possibility to derive bounds
on the optimal average information ratio of the graph. We
investigate the effect of subdividing an edge of G on the
values of c∗(G) and d∗(G) first. In the discussion of the
following results, we assume that G′ is obtained by replacing
an edge u0u1 of G with a path which has consecutive vertices
u0 = w0, w1, . . . , w2l+1 = u1.

Proposition 1. If G′ is a graph obtained by (2l + 1)-
subdividing a nonpendant edge of G where l ≥ 3, then
d∗(G′) = d∗(G) + l.

Proof. Let Π be a star covering of G, then a star covering of
G′ can be constructed in a natural way. Let us denote the star
with only two edges wi−1wi and wiwi+1 as Si. Since we may
assume that u0u1 belong to a star Su0 centered at u0 in Π,
Π′ = (Π\{Su0})∪{(Su0−u0u1)+w0w1, Sw2 , Sw4 , . . . , Sw2l

}
is a star covering of G′ with vertex-number sum mΠ′ = mΠ+
3l. The deduction of Π′ will then be dΠ′ = (|V (G)| + 2l) +
(in(G) + 2l) − (mΠ + 3l) = dΠ + l. Therefore, we have
d∗(G′) ≥ d∗(G)+l. On the other hand, if Π′ is an optimal star
covering of G′, then a star covering of G can be constructed
from Π′ as follows. First, if none of w0 and w2l+1 is the center
of any star in Π′ which has some leaves in V (G), then we let S
be the star with a unique edge u0u1. For the rest case, since the
w0w2l+1-path which replaces u0u1 is of odd length, we may
assume that only w0 is the center of a star S′

w0
in Π′ which has

leaves in both V (G) and {wi|i = 1, . . . , 2l}, and that w2l+1

is not the center of such kind of stars. In this case, we let
S = (S′

w0
−{w1})+u0u1. Now, discarding all stars containing

vertices in {w1, w2, . . . , w2l} from Π′ and adding the star S
to it, we have a star covering Π of G which has vertex-number

sum mΠ = mΠ′ − 3l where mΠ′ is the vertex-number sum of
Π′ and the deduction dΠ = (|V (G′)| − 2l) + (in(G′)− 2l)−
(mΠ′ − 3l) = dΠ′ − l. This gives d∗(G) ≥ d∗(G′)− l and the
result follows.

The gap between c∗(G) and c∗(G′) depends largely on the
edge that is being subdivided. We classify the edges of G as
follows. An edge u0u1 is said to be of type 1 if either one
of the following two conditions is true: (1) u0u1 does not
belong to any cycle in G, or (2) it belongs to some cycle
(u0u1 · · ·ul) and there is no path in G which connects u0

and some ui, i ∈ {1, 2, . . . , l}, without traversing any edge of
the cycle. In case (1), any vertex in NG(u0)\{u1} is called
a friendly neighbor of the edge u0u1. In case (2), the vertex
ul of u0 is assigned to be the friendly neighbor of u0u1. An
edge not of type 1 is said to be of type r + 1, r ∈ N, if
it is the unique common edge of exactly r cycles and any
two of these r cycles have no common vertices other than u0

and u1. In the proof of the next two lemmas, the construction
of desired core cluster involves fiddly description. We make
use of the following notations and an operation to facilitate
the discussion. If g is a core cluster of G and u ∈ IN(G),
then we denote the designated outside neighbor of u as (u)∗g
and let (Ṽ )∗g = {(u)∗g|u ∈ Ṽ }. Besides, if Ṽ is a connected
subset of V (G) which induces a connected subgraph K of G,
and A0 and A1 are disjoint connected subsets of Ṽ , then we
define a splitting operation on Ṽ as follows. Suppose that U =
{Oi|i ∈ I} is the collection of all components in K −A0 and
O1 ∈ U is the component containing A1. Let Ṽ [1] = V (O1)
and Ṽ [0] = Ṽ \Ṽ [1], then both Ṽ [0] and Ṽ [1] are connected.
By applying the splitting operation to Ṽ w.r.t. A0 and A1,
we have two disjoint subsets Ṽ [0] and Ṽ [1] with Ai ⊆ Ṽ [i],
i = 0, 1, such that Ṽ [0]∪ Ṽ [1] = Ṽ . Let us denote this process
as Split(Ṽ ; A0, A1) = (Ṽ [0], Ṽ [1]).

Let g′ be an optimal core cluster of G′. In the proof of
Lemma 1 and Lemma 2, we initially define a labeling g
on IN(G) as g = g′|IN(G) and let (u)∗g = (u)∗g′ for all
u ∈ IN(G) when there is no specification. The labeling g
may require some modification accordingly in order to reach
to a core cluster of G. There are many cases to discuss.
Let (g′)−1(i) ∩ V (G) = Vi. One situation that worsens
our problem the most is when {u0, u1} ⊆ (Va)∗g′ for some
a ∈ g′(IN(G′)) where u0u1 is the edge been subdivided.
This situation is referred to as Situation (S∗). In what fol-
lows, we assume that u0 = (yi

0)
∗
g′ and u1 = (yi

1)
∗
g′ where

{yi
0, y

i
1} ⊆ Vai

for all i = 1, 2, . . . , t, and {u0, u1} � (Vi)∗g′

for all i ∈ g′(IN(G′))\{ai|i = 1, . . . , t}. Naturally, t > 0
when Situation (S∗) occurs and t = 0 otherwise. When t > 0,
we use V

[0]
ai and V

[1]
ai to denote the resulting subsets from

applying the splitting operation to Vai
w.r.t. {yi

0} and {yi
1},

i.e. Split(Vai
; {yi

0}, {yi
1}) = (V [0]

ai , V
[1]
ai ), for all i = 1, . . . , t.

Moreover, the numbers c0, c1, . . . , ct, d0 and d1 that will
be used in the proof always represent distinct integers in
N\g′(IN(G′)). The girth of G is written as girth(G) in the
following results. With the aid of these notations, we can
present our construction of core clusters of G in a more
systematic way.

Lemma 1. Let G′ be a graph obtained by (2l+1)-subdividing
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a nonpendant edge u0u1 of a simple graph G with girth(G) ≥
6, where l ≥ 3. If g′ is an optimal core sequence of G′ and
g′(u0) = g′(u1), then c∗(G) ≤ c∗(G′) − l + r provided that
u0u1 is an edge of type r.

Proof. If {(u0)∗g′ , (u1)∗g′} ⊆ V (G), then |{g′(wi)| i =
1, . . . , 2l}\{g′(u0)}| ≥ l − 1 and the labeling g = g′|IN(G)

is a core cluster of G with |g(IN(G))| ≤ |g′(IN(G′))| −
(l − 1). Now, we assume that g′(u0) = g′(u1) = 0
and {(u0)∗g′ , (u1)∗g′} � V (G), then |{g′(wi)|i = 1, . . .,
2l}\{0}| ≥ l and g may no longer be qualified as a core
cluster of G. We shall make some local modifications of
g and assign (u0)∗g = u1 and (u1)∗g = u0 to reach our
goal. Set A0 = {u0} ∪ ((NG(u0)\{u1}) ∩ V0) and A1 =
{u1} ∪ ((NG(u1)\{u0}) ∩ V0). Since u0 and u1 have no
common neighbors, A0 and A1 are disjoint connected subsets
of the connected set V0. Applying the splitting operation
Split(V0; A0, A1) = (V [0]

0 , V
[1]
0 ), we have two disjoint con-

nected subsets V
[0]
0 and V

[1]
0 with V

[0]
0 ∪ V

[1]
0 = V0.

(1) Suppose first that t = 0, that is, Situation (S∗) does
not occur. By redefining g(V [0]

0 ) = {c0}, we claim that the
resulting labeling g is a core cluster of G. Note that now
g(u0) = c0 	= g(u1), and u0 is adjacent to u1 ∈ V

[1]
0 and no

other vertices in V
[1]
0 . Besides, {u0}∪ (V [1]

0 )∗g′ is independent
because (g′)−1(0) is a core in G′ containing {u0} ∪ V

[1]
0 and

each (w)∗g′ ∈ (V [1]
0 )∗g′ is adjacent to the unique vertex w in

(g′)−1(0). Hence, (u1)∗g = u0 and (w)∗g = (w)∗g′ , for all
w ∈ V

[1]
0 \{u1}, are qualified designated outside neighbors

of vertices in V
[1]
0 and then V

[1]
0 = g−1(0) is a core of G.

The fact g−1(c0) = V
[0]
0 is also a core of G can be shown by

similar reasoning. We then conclude that g is a core cluster of
G and |g(IN(G))| ≤ |g′(IN(G′))| − l + 1.

(2) Suppose that t > 0, then r ≥ t + 1. Besides making
g(V [0]

0 ) = {c0}, we further redefine g(V [0]
ai ) = {ci} for all

i = 1, . . . , t. Since g(yi
0) = ci 	= g(yi

1) = ai, V
[0]
ai and V

[1]
ai are

cores of G. g is then a core cluster of G with |g(IN(G))| ≤
|g′(IN(G′))| − l + (t + 1).

Lemma 2. Let G′ be a graph obtained by (2l+1)-subdividing
a nonpendant edge u0u1 of a simple graph G with girth(G) ≥
6, where l ≥ 3. If g′ is an optimal core cluster of G′ and
g′(u0) 	= g′(u1), then c∗(G) ≤ c∗(G′) − l + r provided that
u0u1 is an edge of type r.

Proof. We split the discussion into two cases.

Case 1. Assume that g′(u0) = 0 	= g′(u1) = 1 and {(u0)∗g′ ,
(u1)∗g′} ⊆ V (G), then |{g′(wi)|i = 1, . . . , 2l}\{0, 1}| ≥ l− 1
and g = g′|IN(G) is not a core cluster of G only when any
of the following three situations occurs. Situation (S1) : u1 =
(x1)∗g′ for some x1 ∈ V0; Situation (S2) : u0 = (x0)∗g′ for
some x0 ∈ V1; and the stated Situation (S∗). We shall fix
the problem by shifting some vertices between V0 and V1 or
adding some extra values to g(IN(G)) as follows.

Subcase 1-1. Suppose that both Situation (S1) and (S2) do
not occur, then t > 0. If r = t = 1, let us assume that y1

0

is the friendly neighbor of u0u1. We redefine g(V [0]
a1 ) = {0}

and then assign (u0)∗g = u1 and choose a neighbor of y1
0

in V
[1]
a1 to be (y1

0)∗g . Since u0u1 is of type 1, each vertex in
V

[0]
a1 is not adjacent to any vertex in V0\{u0} and {(y1

0)∗g} ∪
(V [0]

a1 \{y1
0})∗g′ ∪ (V0)∗g′ is independent. This guarantees that

g−1(0) = V0 ∪ V
[0]
a1 is a core of G. Besides, g(y1

0) 	= g(y1
1)

implies that V
[1]
a1 is also a core. Hence, g is a core cluster of G

with |g(IN(G))| ≤ |g′(IN(G′))| − (l − 1) = c∗(G′) − l + r.
If r > 1, then r ≥ t + 1. By redefining g(V [0]

ai ) = {ci} for all
i = 1, . . . , t, and letting (u)∗g = (u)∗g′ for all u ∈ IN(G), we
have a core cluster g of G with |g(IN(G))| ≤ |g′(IN(G′))|−
(l − 1) + t ≤ c∗(G′) − l + r.
Subcase 1-2. Suppose that Situation (S1) occurs and (S2)
does not, then either t = 0 and r ≥ 1 or t > 0 and r ≥ t + 2.
Let Split(V0; {u0}, {x1}) = (V [0]

0 , V
[1]
0 ). When r ∈ {1, 2}

(t = 0), we redefine g(V [0]
0 ) = {1}. One can easily verify

that g−1(1) = V
[0]
0 ∪ V1 is a core of G and therefore g is a

core cluster of G with |g(IN(G))| ≤ |g′(IN(G′))| − (l − 1).
When r ≥ 3, redefining g(V [0]

0 ) = {c0} is sufficient if t = 0.
After assigning u1 = (x1)∗g , g is a core cluster of G with
|g(IN(G))| ≤ |g′(IN(G′))| − (l − 1) + 1 ≤ c∗(G′) − l + 2.
If t > 0, we further redefine g(V [0]

ai ) = {ci} for all i =
1, . . . , t. The resulting labeling g is a core cluster of G with
|g(IN(G))| ≤ |g′(IN(G′))|−(l−1)+ t+1 ≤ c∗(G′)− l+r.
Subcase 1-3. Suppose that Situation (S1) and (S2) occur
simultaneously, then r ≥ t + 3. When t = 0, we redefine
g(V [0]

0 ∪ V
[0]
1 ) = {d0} if r = 3, and redefine g(V [0]

0 ) = {d0}
and g(V [0]

1 ) = {d1} if r ≥ 4. In both cases, g is a core
cluster of G with |g(IN(G))| ≤ c∗(G′)− l + 3. When t > 0,
besides making g(V [0]

0 ) = {d0} and g(V [0]
1 ) = {d1}, we

further redefine g(V [0]
ai ) = {ci} for all i = 1, . . . , t. This

results in a core cluster g of G that meets our requirement
where |g(IN(G))| ≤ c∗(G) − l + r.

Case 2. Assume that g(u0) = 0 	= g(u1) = 1 and {(u0)∗g′ ,
(u1)∗g′} � V (G), then |{g′(wi)|i = 1, . . . , 2l}\{0, 1}| ≥ l.
When we try to assign (u0)∗g = u1 and (u1)∗g = u0, the
labeling g = g′|IN(G) will not be a core cluster of G only
when any of the following three situations occurs. Situation
(T1) : NG(u1) ∩ V0 	= ∅ or NG(u1) ∩ (V0)∗g′ 	= ∅; Situation
(T2) : NG(u0) ∩ V1 	= ∅ or NG(u0) ∩ (V1)∗g′ 	= ∅; and the
Situation (S∗).

Subcase 2-1. Suppose that both Situation (T1) and (T2) do
not occur and t > 0, then either r = t = 1 or r > 1 and
r ≥ t + 1. We redefine g(V [0]

ai ) = ci, for all i = 1, . . . , t, and
assign (u0)∗g = u1 and (u1)∗g = u0. The resulting labeling g is
obviously a core cluster with |g(IN(G))| ≤ |g′(IN(G′))| −
l + t.
Subcase 2-2. Suppose that Situation (T1) occurs and (T2)
does not, then either t = 0 and r ≥ 1 or t > 0 and r ≥ t + 2.
Now, let x1 be a vertex in NG(u1)∩ V0 if NG(u1)∩ V0 	= ∅,
and x1 be a vertex in V0 such that (x1)∗g′ ∈ NG(u1) otherwise.
Choose a vertex z0 ∈ NG(u0) which is on a u0x1-path whose
vertices are in V0, and then consider Split(V0; {u0}, {z0}) =
(V [0]

0 , V
[1]
0 ). After redefining g(V [0]

0 ) = {c0} and assigning
(u0)∗g = z0 and (u1)∗g = u0, one can easily verify that V

[0]
0 =

g−1(c0) is a core. If t > 0, we further redefine g(V [0]
ai ) = {ci}

for all i = 1, 2, . . . , t. Then the labeling g is a core cluster of
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G with |g(IN(G))| ≤ |g′(IN(G′))| − l + t + 1.
Subcase 2-3. Suppose that both Situation (T1) and (T2)
occur, then r ≥ t + 3. Using the manner we chose z0

in the previous subcase, we select z1 ∈ NG(u1) such that
z1 is on a path with vertices in V1 connecting u1 to a
vertex x0 where x0 ∈ NG(u0) ∩ V1 if NG(u0) ∩ V1 	= ∅,
and x0 ∈ V1 such that (x0)∗g′ ∈ NG(u0) if NG(u0) ∩
V1 = ∅. Consider Split(V0; {u0}, {z0}) = (V [0]

0 , V
[1]
0 ) and

Split(V1; {u1}, {z1}) = (V [0]
1 , V

[1]
1 ). By redefining g(V [0]

0 ) =
{d0} and g(V [0]

1 ) = {d1} and assigning (ui)∗g = zi, i = 0, 1,
g−1(d0) = V

[0]
0 and g−1(d1) = V

[0]
1 are both cores of

G. If t > 0, we further redefine g(V [0]
ai ) = {ci} for all

i = 1, . . . , t. Then the core cluster g of G has |g(IN(G))| ≤
|g′(IN(G′))| − l + t + 2.

Proposition 1, Lemma 1 and Lemma 2 jointly guarantee the
following lemma.

Lemma 3. Let G′ be a graph obtained by (2l+1)-subdividing
a nonpendant edge e of a simple graph G with girth(G) ≥ 6,
where l ≥ 3. If c∗(G′) − d∗(G′) = k, then c∗(G) − d∗(G) ≤
k + r provided that e is an edge of type r.

This lemma gives rise to a bound on AR(G). Let E′ be a
set of edges of G. If 7-subdividing each edge in E′ results
in a feasible graph, then E′ is called a feasiblizer of G. The
minimum cardinality of all feasiblizers of G is denoted as
φ(G), called the feasiblizing number of G. Let Δ(G) be the
maximum degree of G. If an edge u0u1 of G is of type r,
then r ≤ min{degG(u0), degG(u1)} ≤ Δ(G).

Theorem 7. Let G = (X, Y ) with |X| ≥ |Y | and girth(G)
≥ 6. If E′ is a feasiblizer of G in which there are αr type-r
edges and α =

∑Δ(G)
r=1 rαr, then c∗(G) − d∗(G) ≤ α and

|V (G)|+in(G)−(β(G)+α)
|V (G)| ≤ AR(G) ≤ |V (G)|+in(G)−β(G)

|V (G)| .

The feasiblizing number is analogous to the decycling num-
ber of G. One major difference lies in that we only deal with
unfeasible cycles instead of all cycles in G. More importantly,
we choose edges as opposed to vertices to destroy unfeasible
cycles. This gives a lot more freedom on the choices of edges
in a feasiblizer. It should be clarified that choosing common
edges of cycles does not necessarily lessen the number of
edges needed to feasiblize a graph. For instance, let G be a
16-cycle (w0w1 · · ·w15) with a chord w0w7, then φ(G) = 2
and both edges in a minimum feasiblizer can be chosen to be
of type 1. Choosing the common edge w0w7 of two cycles
does not result in a feasiblizer with lesser edges. For a graph
which has a feasiblizer consisting of type-1 edges, the bound
of Theorem 7 can be very good.

Corollary 3. Let G = (X, Y ) with |X| ≥ |Y | and girth(G)
≥ 6. If E′ is a feasiblizer consisting of type-1 edges with
|E′| = φ(G), then c∗(G) − d∗(G) ≤ φ(G) and
|V (G)|+in(G)−(β(G)+φ(G))

|V (G)| ≤ AR(G) ≤ |V (G)|+in(G)−β(G)
|V (G)| .

This bound is best possible using our c∗(G)-and-d∗(G)
approach. We show this fact by proposing an infinite class of
graphs attaining this bound. Consider the class of connected
graphs with the pattern given in Figure 1. The one with k
cycles is denoted as G(k). For each k ∈ N, φ(G(k)) = k

is obviously true. By direct calculation, one can verify that
the labeling giving all vertices of the i-th cycle the label
i, for all i = 1, . . . , k, is an optimal core cluster, hence
c∗(G(k)) = k. On the other hand, the covering given in
Theorem 5 is an optimal star covering of G(k) and then
d∗(G(k)) = 0. Therefore, the bound c∗(G) − d∗(G) ≤ φ(G)
is attained by each G(k). For the classes of bipartite graphs
described in this corollary, our bound on AR(G) is the best
possible using our approach.

Fig. 1. The family G(k) of bipartite graphs.

IV. CONCLUSION

In this paper, we have investigated the gap between c∗(G)
and d∗(G) for any bipartite graph of girth at least six. and
have derived a bound on c∗(G)−d∗(G), which naturally gives
rise to a bound on the optimal average information ratio of
G. We have also shown that our bound is the best possible
using our approach for some infinite classes of graphs. To
determine the exact values of the optimal average information
ratio for them, new technique must be imposed. Furthermore,
the feasiblizing number φ(G) has not been characterized yet.
Having a close examination of the value of φ(G) will be an
interesting problem to consider.
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