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A New Approach to Optimal Control Problem
Constrained by Canonical Form

B. Farhadinia

Abstract—In this article, it is considered a class of optimal control
problems constrained by differential and integral constraints are
called canonical form. A modified measure theoretical approach is
introduced to solve this class of optimal control problems.

Keywords—Optimal control problem, Canonical form, Measure
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I. INTRODUCTION

CONSIDER a process described by the system of nonlin-
ear differential equations as follows:

dx(t)
dt

= f(t,x,u), ∀t ∈ (0, T ], (1)

with the initial and final conditions given by

x(0) = x0, (2)

x(T ) = xT , (3)

where x(t) = [x1(t), ..., xn(t)]� ∈ Rn, u(t) =
[u1(t), ..., um(t)]� ∈ Rm are the state and control vectors, re-
spectively, and f(t) = [f1(t), ..., fn(t)]� ∈ Rn is continuously
differentiable with respect to its respective arguments. Vectors
x0 = [x0

1, ..., x
0
n]� ∈ Rn and xT = [xT

1 , ..., x
T
n ]� ∈ Rn are

given constants. Let

Alu = {y(.) = [y1(.), ..., yn(.)]� ∈ Rn;
yi

l ≤ yi(.) ≤ yi
u, i = 1, ..., n}, (4)

Ulu = {v(.) = [v1(.), ..., vm(.)]� ∈ Rm;
vj

l ≤ vj(.) ≤ vj
u, j = 1, ...,m}, (5)

where lower and upper bounds are given real numbers. It is
obvious Ulu is a compact subset of Rm. A Boral measurable
function u : [0, T ] → Rm is called an admissible control
if u ∈ Ulu. Let U denote the class of all such admissible
controls. For each admissible control u ∈ Ulu, let x(.,u)
denote the corresponding solution of the system (1) and satisfy
the initial and final conditions (2)-(3). Such this state vector is
referred to as an admissible solution of system (1) and (2)-(3)
corresponding to u ∈ Ulu, if x ∈ Alu. Let A denote the class
of all such admissible states.
The canonical optimal control(COC) problem is now formu-
lated as the following.
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Problem COC: Subject to the dynamical system (1) and (2)-
(3), find a control u ∈ U such that the cost functional

G0(u) = Φ0(x(T |u)) +
∫ T

0

L0(t,x(t|u(t)),u(t)) dt, (6)

is minimized over U and subject to

Gi(u) = Φi(x(T |u)) +
∫ T

0

Li(t,x(t|u(t)),u(t)) dt = 0,

i = 1, ..., Nc, (7)

Gi(u) = Φi(x(T |u)) +
∫ T

0

Li(t,x(t|u(t)),u(t)) dt ≤ 0,

i = Nc + 1, ..., N, (8)

where Φi and Li for i = 0, 1, ..., N , are given real-valued
functions.

It is assumed that functions f and Li, i = 0, 1, ..., N ,
together with their partial derivatives respecting to each of
the components of x and u are piecewise constants on [0, T ]
for each (x,u) ∈ Rn ×Rm and continuous on Rn ×Rm for
each t ∈ [0, T ]. Functions Φi, i = 0, 1, ..., N , are continuously
differentiable respecting to x.

II. MEASURE THEORY

Firstly, without lose of generality, it may be suppose that
Φi = 0 for i = 0, 1, ..., N . A pair p = [x,u] is said to be an
admissible pair if x ∈ A and u ∈ U. Let Pad denote the class
of all such admissible pairs. Measure theoretical approach
developed in [3] deals with integral equations and then applied
by others [1][2]. Hence, it makes clear, using this approach
for solving COC problem needs the differential equations of
dynamical system (1) to be equivalent to integral ones. For
this purpose, let B be an open ball in Rn+1 containing J×A
where J = [0, T ]. Furthermore, C1(B) contains all real-valued
continuously differentiable functions on B. Suppose function
ϕf is defined as follows:

ϕf (t,x(t),u(t)) = ϕx(t,x(t))f(t,x(t),u(t)) + ϕt(t,x(t)),
∀ϕ ∈ C1(B), (9)
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for all p = [x,u] ∈ Pad and t ∈ J. Since p is an admissible
pair, it implies that

∫ T

0

ϕf (t,x(t),u(t)) dt =
∫ T

0

(
ϕx(t,x(t))f(t,x(t),u(t))

+ϕt(t,x(t))
)
dt

=
∫ T

0

d

dt
ϕ(t,x(t)) dt

= ϕ(T,x(T ))− ϕ(0,x(0))
= �ϕ. (10)

Obviously, if Ω = J×A×U then, one may verify that integral
equations (10) for any (t,x(t),u(t)) ∈ Ω are equivalent
to differential equations (1). Moreover, it is known that the
more constraints are appended in an optimization problem,
the better optimal solution if there exists, is attained. Let
D(J◦) be the space of all infinitely differentiable real-valued
functions with compact support in open interval J◦. Regarding
to dynamical system (1) and p ∈ Pad, function φi, i = 1, ..., n,
is constructed such that:

φψ
i (t,x(t),u(t)) = xi(t)

dψ(t)
dt

+ fi(t,x(t),u(t))ψ(t),

∀ψ ∈ D(J◦). (11)

As follows from integrating of the above definition, it admits

∫ T

0

φψ
i (t,x(t),u(t)) dt =

∫ T

0

xi(t)
dψ(t)
dt

dt+
∫ T

0

fi(t,x(t),u(t))ψ(t) dt =

xi(t)ψ(t)|T
0
−

∫ T

0

(
dxi(t)
dt

−
fi(t,x(t),u(t)))ψ(t) dt. (12)

Since ψ ∈ D(J◦) has a compact support in J◦, indeed, ψ(0) =
ψ(T ) = 0, and the dynamical system (1) is satisfied, the right-
hand side of (12) becomes zero. So, the following appendant
constraints to COC problem can be given by

∫ T

0

Φψ(t,x(t),u(t)) dt = 0, (13)

where Φψ = [φψ
1 , ..., φ

ψ
n ]�. Furthermore, choosing functions

depended only on the variable t ∈ J leads to

∫ T

0

h(t,x(t),u(t)) dt = ah, ∀h ∈ C1(Ω), (14)

where C1(Ω) as a subspace of C(Ω), contains all continuous
functions on Ω depending only on t ∈ J. From the above
assumptions it follows that the COC problem in integral form
can be shown as the following:

Problem COCI: Minimize

G0(u) =
∫ T

0

L0(t,x(t),u(t)) dt, (15)

subject to

Gi(u) =
∫ T

0

Li(t,x(t),u(t)) dt = 0,

i = 1, ..., Nc, (16)

Gi(u) =
∫ T

0

Li(t,x(t),u(t)) dt ≤ 0,

i = Nc + 1, ..., N, (17)∫ T

0

ϕf (t,x(t),u(t)) dt = �ϕ, ∀ϕ ∈ C1(B), (18)

∫ T

0

Φψ(t,x(t),u(t)) dt = 0, ∀ψ ∈ D(J◦), (19)

∫ T

0

h(t,x(t),u(t)) dt = ah, ∀h ∈ C1(Ω). (20)

The key to modified measure theoretical(MMT) approach
lies in establishing the integral form of constraints and how-
ever cost functional. Note that the requirement for using MMT
approach is justified so far. To begin with, respecting to
p ∈ Pad the functional

Λp : F →
∫

J
F (t,x(t),u(t)) dt, ∀F ∈ C(Ω), (21)

defines a positive linear functional on C(Ω), the space of all
bounded continuous functions on Ω. Based on the proposed
positive linear functional and the injective property of the
mapping p �→ Λp from Pad into C∗(Ω), Problem C may

be considered on the dual space of C(Ω), in words, C∗(Ω)
instead of Pad.

Associated with functional (21), functional representation
of problem COCI described by (16)-(20), becomes a new
problem as follows.

Problem COCIF: Minimize

Λp(L0), (22)

subject to

Λp(Li) = 0, i = 1, ..., Nc, (23)

Λp(Li) ≤ 0, i = Nc + 1, ..., N, (24)

Λp(ϕf ) = �ϕ, ∀ϕ ∈ C1(B), (25)

Λp(Φψ) = 0, ∀ψ ∈ D(J◦), (26)

Λp(h) = ah, ∀h ∈ C1(Ω). (27)

Linear functional Λp can be uniquely defined in term of a
positive Radon measure such that

Λp(F ) =
∫

J
F dt =

∫
Ω

F dμ ≡ μ(F ), ∀F ∈ C(Ω), (28)

This result is a direct corollary of Riesz’ representation
theorem. In conjunction with positive Radon measure given
by (28), problem COCIF is stated in the sense of measure
exhibition.
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Problem COCIM: Minimize

μ(L0), (29)

subject to

μ(Li) = 0, i = 1, ..., Nc, (30)

μ(Li) ≤ 0, i = Nc + 1, ..., N, (31)

μ(ϕf ) = �ϕ, ∀ϕ ∈ C1(B), (32)

μ(Φψ) = 0, ∀ψ ∈ D(J◦), (33)

μ(h) = ah, ∀h ∈ C1(Ω), (34)

where μ belongs to the space of all positive Radon measures
on Ω, denoted by M+(Ω).
Let Q be a subset of M+(Ω) whose elements satisfy (30)-(34).
If M+(Ω) is to be equipped by weak*-topology, as follows
from Alaoghlu theorem one can prove that Q is a compact
set. In the sense of this topology, the functional I : Q → R
defined by I(μ) = μ(L0) is a linear continuous functional on
the compact set Q. In fact, the functional I has at least a
minimum on Q.

Problem COCIM is an infinite-dimensional linear program-
ming(LP) problem. It is proceed with making up an approx-
imate finite-dimensional LP problem whose optimal solution
converges to minimizer of problem COCIM.
Let {ϕk, k = 1, 2, ...}, {ψj , j = 1, 2, ...} and {hs, s =
1, 2, ...} be sets of total functions in C1(B), D(J◦) and C1(Ω),
respectively. If Q(M1,M2, L) denotes the subset of M+(Ω)
containing of all measures which satisfy

μ(Li) = 0, i = 1, ..., Nc, (35)

μ(Li) ≤ 0, i = Nc + 1, ..., N, (36)

μ(ϕf
k) = �ϕk, k = 1, 2, ...,M1, (37)

μ(Φψj ) = 0, j = 1, 2, ...,M2, (38)

μ(hs) = ahs , s = 1, 2, ..., L, (39)

Then, if M1, M2 and L tend to infinity

{η(M1,M2,L) = inf
Q(M1,M2,L)

μ(L0)}

converges to η = inf
Q
μ(L0).

In what follows, purpose is to characterize optimal measure,
say, μ∗ in the space Q(M1,M2, L) at which I(μ) = μ(L0)
taken minimum value.
As follows from Theorem A.5 of [3] and from [4], measure
μ∗ ∈ Q(M1,M2, L) the minimizer of I(μ) = μ(L0) has the
form

μ∗ =

M1+M2+L∑
r=1

α∗
rδ(z∗

r ), (40)

where z∗r ∈ Ω and α∗
r for r = 1, 2, ...,M1 +M2 +L, are non-

negative coefficients. In the above formula δ(z∗
r ) is a unitary

atomic measure defined by

δ(z)(F ) = F (z), ∀F ∈ C(Ω). (41)

Consider the finite-dimensional optimization problem with
objective functional I(μ) = μ(L0) and constraints (35)-(39).
If μ in the latter optimization problem is substituted by μ∗

defined by (40), then, the recent optimization problem is a non-
linear problem because there exist unknown coefficients α∗

r

and supports z∗r for r = 1, 2, ...,M1+M2+L. It is convenient
to be focused on a LP problem taking into account only α∗

r ,
however, it will be done by taking fixed and determined points
zr approximating z∗r , which zr are chosen from a countable
and dense subset of Ω.

There is a measure μ̂ ∈ M+(Ω) such that

|(μ∗ − μ̂)(ζl)| < ε, l = 0, 1, ..., N + 1 +M1 +M2 + L, (42)

and μ̂ has the form

μ̂ =

M1+M2+L∑
r=1

α∗
rδ(zr), (43)

where coefficients α∗
r are the same as in (40), zr ∈ ω and

{ζl, l = 0, ..., 1+N +M1 +M2 +L} are {Li, i = 0, ..., N},
{ϕf

k, k = N + 1, ..., N + 1 + M1}, {Φψj
, j = N + 1 +

M1, ..., N + 1 + M1 + M2} and {hs, s = N + 1 + M1 +
M2, ..., N + 1 +M1 +M2 + L}.

Based on the concepts mentioned above, finite-dimensional LP
problem may be constructed as follows:

Problem COCILP: Minimize

N∑
r=1

α∗
rL0(zr), (44)

subject to

N∑
r=1

α∗
rLi(zr) = 0, i = 1, ..., Nc, (45)

N∑
r=1

α∗
rLi(zr) ≤ 0, i = Nc + 1, ..., N, (46)

N∑
r=1

α∗
rϕ

f
k(zr) = �ϕ, k = 1, 2, ...,M1, (47)

N∑
r=1

α∗
rΦψj (zr) = 0, j = 1, 2, ...,M2, (48)

N∑
r=1

α∗
rhs(zr) = ah, s = 1, 2, ..., L, (49)

α∗
r ≥ 0, r = 1, 2, ..., N, (50)
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III. CONCLUSION

This paper proposes a new approach based on measure
theory to solve a class of optimal control problems constrained
by the canonical form of constraints. In this procedure the
computations of the approximate optimal solution can be
carried out easily by solving an LP problem which its optimal
solution approximates the one of original optimal control
problem.
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