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 
Abstract—The use of decision support systems in agriculture 

may help monitoring large fields of crops by automatically detecting 
the symptoms of foliage diseases. In our work, we designed and 
implemented a decision support system for small tomatoes producers. 
This work investigates ways to recognize the late blight disease from 
the analysis of digital images of tomatoes, using a pair of multilayer 
perceptron neural networks. The networks outputs are used to 
generate repainted tomato images in which the injuries on the plant 
are highlighted, and to calculate the damage level of each plant. 
Those levels are then used to construct a situation map of a farm 
where a cellular automata simulates the outbreak evolution over the 
fields. The simulator can test different pesticides actions, helping in 
the decision on when to start the spraying and in the analysis of 
losses and gains of each choice of action. 

 
Keywords—Artificial neural networks, cellular automata, 

decision support system, pattern recognition. 

I. INTRODUCTION 

N Brazil, an important part of the economy depends on 
agriculture. In 2015, the agribusiness corresponded to 

21.46% of Brazilian GDP, or more than US$400.00 million 
[1], [2]. Particularly, the tomato (Solanum lycopersicon) crop 
occupies seventh position in the rank of food plant tons 
produced per year, with more than 1.9 tons produced in 2014 
[1], [3]. However, that plant is vulnerable to many diseases 
and it ranks the second position in pesticide consumption per 
planted area in Brazil [4], thus it is essential that farmers 
maintain a strict control over the quality of their crops. On the 
other hand, tomatoes are typically produced in small farms 
and require continuous monitoring from experts, which might 
be prohibitively expensive and time-consuming. 

The most common disease that affects tomato crops 
worldwide is the late blight, caused by Phytophthora infestans, 
a fungus that inhabits the soil and disseminates through spores. 
Farmers and workers visually recognize the disease by the 
appearance of dark brown lesions on tomato leaves that vary 
from brown or gray to pale green, often situated at the edges of 
the leaves. The disease first appears as water-soaked areas that 
enlarge rapidly, developing into large brown necrotic areas, 
causing loss of leaves and, in severe cases, the plant death [5]-
[7]. The disease occurs especially in cold and humid months 
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when the dispersion of spores is facilitated by wind and high 
humidity. The disease can spread quickly under favorable 
climatic conditions consisting of a combination of relative 
humidity under 90% and temperature around 20°C (68°F). As a 
result, we have an epidemic that can lead to considerable losses 
in production [5], [8], and [9]. 

After analyzing some samples of plants from the farm, the 
farmers estimate the mean infestation degree at the area and 
define a schedule of pesticide spraying. Unfortunately, we are 
facing the emergence of resistant fungus variants, and a second 
generation of fungicides began to be used, so it is critical to use 
fungicides in proper doses and intervals [10]-[13]. According 
to [9], [14]-[16], with the aid of information technology for 
early detection of crop diseases, it is possible to delay the 
beginning of pesticides spraying to obtain an average reduction 
of 50% in total sprays, reaching rates of 80% reduction in some 
cases. 

The goal of this paper is to present a computer-based 
solution that may help farmers to make better decisions to 
combat late blight on tomato crops, expanding previous works 
[17]-[19]. This research aims at helping the detection of late 
blight in tomato crops, and the measuring of the damage level 
at each plant, by using a pattern recognition system based on 
multilayer perceptron neural networks (MLP). We also 
developed a decision support system that generates 
simulations of spreading scenarios of contamination and tests 
alternatives for combating the disease, supported by 
meteorological data and well-known prediction models of the 
late blight. 

II. PATTERN RECOGNITION IN DIAGNOSIS OF TOMATO 

DISEASES 

Image processing is a useful tool for analysis in various 
agricultural applications and several studies have also 
investigated the use of broadband color, or chromaticity values, 
for plant species recognition [14], [20]-[23]. In this paper, we 
used the color tones from individual pixels of the leaves to 
classify them in one of the seven possible degrees of the scale 
defined by [6]. We also used a mean filter to reduce the details 
of abrupt color changes, which improved the performance of 
our pattern classifier. 

At the beginning of this research, we have decided to 
provide our target users the free use of our classification 
system, as soon as it would be in production. In addition, as 
they are small farmers, they may not afford expensive 
equipment or might be unable to operate it properly. Thus, we 
have not used any sophisticated machinery or proprietary 
software packages in order to lower the cost of the final 
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system. Based on that premise, we have worked upon digital 
images obtained by low-resolution built-in cell phone cameras. 
The pictures were taken in an open environment under natural 
sunlight conditions. The tomato plants were cultivated in the 
experimental fields of the Horticulture Department of our 
institution in a cropping area historically linked with the natural 
occurrence of late blight. Besides, the images may have some 
noise like soil, fruits, parts of the sky and the earth. 

We used a combination of two artificial neural networks 
(ANN) to perform, for each pixel, its classification into one of 
three possible categories: healthy, injured or background. The 
combination of the results of two ANN’s would provide the 
final classification of each pixel. After classifying all the pixels 
of one single image, we used the class information of all these 
pixels to compute the final classification of the whole leaf, 
assigning it a degree of contamination, as defined in [6]. 

For each image, we generated a text file containing, for each 
pixel, the X-Y coordinates of the pixel and its RGB and HSL 
values. Next, all variables were linearly normalized, generating 
a new data table containing RGB and HSL values, varying 
from 0 to 1, which suits better to the training process of an 
ANN. We chose that normalization technique because the 
variable scales are similar (R, G, and B varies from 0 to 255; H 
vary from 0 to 359; S and L varies from 0 to 100) and because, 
as the domain is limited, there is no possibility of occurring 
outliers. 

A. Pattern Recognition System 

We conducted an experiment using two different ANNs. The 
first ANN was trained to recognize the green tones of the leaf 
or, in other words, healthy pixels. If a pixel was recognized as 
healthy, the ANN answer would be 1 (class 1), but if it was 
considered as belonging to the non-healthy class, the ANN 
answer should be 0 (class 0). The training of the latter ANN 
was similar, but it was conducted to recognize brown tones of 
the leaf, or injured pixels. For the ANN’s training, we fist 
chose some pixels from specific areas of our available pre-
processed images. As each image can give us around 1,500 
pixels, we have used no more than four images to construct the 
training subset for the ANN’s, where each record contained the 
color information plus the class label. The classification of 
each pixel considers the values of their R, G and B components 
from the RGB color system plus H, S, and L components from 
the HSL color system. We selected over 6,000 different labeled 
pixels, where around 2,000 came from each class. The classes 
could be green (corresponding to the different green tones a 
healthy leaf could have), red (the different brown tones a leaf 
affected by late blight could have), or background (which 
includes earth, sky, sticks and other noise colors). Examples of 
healthy pixels, injured pixels and backgrounds are shown in 
Fig. 1. 

After labeling each pixel according to their classes, the three 
datasets were joined, shuffled, and linearly normalized, as 
explained above. We divided the resulting dataset in a 5:2 
proportion, and then circa 5,000 records were used for the pair 
of ANN’s training and around 2,000 for testing them. 

 

(a)       (b)       (c) 

Fig. 1 Each image shows one subset of pixels used to train the pair of 
ANN´s. Each subset corresponds to one different class and was built 
by pixels extracted from digital images of tomato leaves (a) Green: 
pixels from healthy areas of the leaves, (b) Red: pixels from injured 

areas and (c) background pixels 
 
We have evaluated many ANN configurations, varying the 

learning rate from 0.4 up to 0.8 (with steps of 0.2), the 
momentum from 0.5 up to 0.9 (with steps of 0.2), and the 
number of hidden neurons from 4 up to 20, for one or two 
hidden layers of neurons. We have also tested different 
activation functions (such as hyperbolic tangent, sigmoid and 
purelin) in different combinations through the neuron layers.  

Each different configuration was trained and tested 20 times 
in order to find the best one on average, in a total of 1,728 
different ANN models. For each training, 1,200 records were 
randomly chosen from our labeled training dataset. Similarly, 
for each test, we randomly selected 500 labeled records from 
the testing dataset. 

Finally, we chose the configuration with the best 
performance for each ANN. For the green-ANN, the best 
configuration was the 16-8-1 network, with training rate equal 
to 0.8, momentum equal to 0.9, and sigmoid activation function 
at all levels and a value of 0.5 for the threshold between the 
outputs. After analyzing each network from the total amount of 
20 networks trained and tested with this configuration, we 
chose to use the one that achieved the best accuracy rate, which 
was a rate of about 97.99% in correct pixel classification. For 
the red-ANN, the best configuration was the 16-16-1 network, 
with training rate equal to 0.6, momentum equal to 0.7, and 
sigmoid activation function at all levels and the same value of 
0.5 for the threshold. For that configuration, we chose the one 
with a rate of about 97.92% in correct pixel classification. 

III. THE NEURAL NETWORK CLASSIFIER 

After the training phase, we tested the ANN system with 60 
new different leaf images. First, each image was pre-processed, 
having its definition reduced and being mean-filtered, as 
explained above. Second, for each image, we extracted the x 
and y coordinates and the RGB and HSL values of each pixel, 
and that information was stored in a different file for each 
image. Last, each record of a file was classified by the pair of 
ANN's and this final classification of each pixel from one 
single image was used to reconstruct the leaf image, and 
converted into a three-colored codification, where the new 
image contains only green, red or black pixels. During the 
conversion processes, we also calculated the ratio of red pixels 
over green pixels for each image. Finally, that ratio was then 
used to define the degree of late blight infestation of each leaf. 
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The detailed algorithm, from the original digital image until 
the definition of infestation degree of a single leaf, is conducted 
as follows: 
1) A JPEG image of a leaf, took in the open field, has its 

definition reduced, is mean-filtered and processed into a 
text file that contains, for each pixel, its x and y 
coordinates, RGB values, and HSL values. 

2) Each line of the text file generated in step 1 was converted 
into a register in a CSV spreadsheet. Each column, or 
variable, from the spreadsheet is linearly normalized. 

3) Each record from the CSV file is presented to both ANNs, 
already trained, and a new text file is built. That last file 
contains, for each pixel, only its x and y coordinates, and 
its final class, assigned from the combination of answers of 
the two ANNs, as follows: 

3.1) The responses of each ANN are rounded to zero or one. 
3.2) If the green-ANN response is greater than the red-ANN 

response, which corresponds to an answer equal to 1 for 
the green-ANN and 0 for the red-ANN, the pixel will be 
classified as healthy, and will be converted into just green, 
or RGB=(0,255,0). 

3.3) If the red-ANN response is greater than the green-ANN 
response, which corresponds to an answer equal to 1 for 
the red-ANN and 0 for the green-ANN, the pixel will be 
classified as injured, and will be converted into just red, or 
RGB=(255,0,0). 

3.4) If the red-ANN and green-ANN answers are equal, which 
corresponds to both answers being equal to 1 or equal to 0, 
the pixel will be classified as background and will be 
turned to black, or RGB=(0,0,0). 

The text file constructed for each image in step 3 was used to 
reconstruct the JPEG image, and to calculate the injured level, 
based on [6], of the whole image, as shown in (1): 

 

݈݁ݒ݈݁	݀݁ݎݑ݆݊݅ ൌ
ݏ݈݁ݔ݅݌	݀݁ݎݑ݆݊݅	݂݋	ݎܾ݁݉ݑ݊

ݏ݈݁ݔ݅݌	݂݈ܽ݁	݂݋	ݎܾ݁݉ݑ݊	݈ܽݐ݋ݐ
ൈ 100 (1)

 
In (1), the total number of leaf pixels accounts only for 

pixels belonging to the leaf itself (healthy plus injured), 
despising all background pixels, whereas the injured level 
indicates the percentage of injured areas over one leaf. We did 
not count black pixels, as they were not relevant to the final 
goal, which is to discover the damage extension of the leaf. The 
injured level was then used to assign, for each image, a status 
number, as shown in Table I. That status represents the health 
condition of the corresponding tomato plant and Fig. 2 shows 
some examples of original images and their respective codified 
images. 

 
TABLE I 

STATUS FOR EACH RANGE OF DAMAGE PERCENTAGE, BASED ON [6] 

Status 0 1 2 3 4 5 6 

% of damage = 0 0-3 3-12 12-22 22-40 40-76 >=77 

 

(a)         (b) 
 

 

(c)         (d) 

Fig. 2 Examples of injured leafs from tomatoes, taken in our 
experimental field, infected by P. infestans. The images illustrate the 
images before and after the classification process. (a) was accounted 
as having a 15% of damage, or status 2, whereas (d) was accounted 
for 32%, or status 4. It is important to notice that the account was 

made considering the whole group of leave captured by the camera, 
which was considered to belong to the same plant 

IV. THE DECISION SUPPORT SYSTEM 

According to the Integrated Pest Management Program of 
California University [24], there are several reputable 
prediction models of late blight propagation in tomato and 
potato crops. Among those, we have chosen the Hyre’s 
prediction model [25] that indicates that an initial outbreak of 
late blight will occur between seven to 14 days after 10 
consecutive favorable days. A favorable day, in turn, occurs 
after five consecutive days where the mean temperature stays 
between 7.0°C and 25.5°C (48°F and 78°F) and, at the same 
time, after 10 days with a total precipitation equal to, or higher 
than, 30 millimeters (1.2 inches).  

A. The Forecasting Model 

A forecasting model should perform multi-day simulations 
and, for that reason, we needed to use more than 10 days of 
meteorological prediction and from very specific regions. To 
solve that requirement, we have used historical data, obtained 
through the National Institute of Meteorology [26], to calculate 
the mean of some meteorological variables in specific periods 
of the year, chosen by the system user during the simulation. 
We tested the system using the data from the city of Paty do 
Alferes, one of the main tomato producing regions of Brazil. 
Thus, we collected meteorological data from that region from 
01/01/1999 until 01/01/2015, which includes temperature, 
relative humidity, minimum temperature, maximum 
temperature and precipitation. 

The system user can choose the size of the data window that 
will be used in the historical average calculation, which can be 
five, 10 or 15 years, for all available variables. Finally, those 
historical averages are used to estimate the meteorological 
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variables for each day of the period of simulation, as 
exemplified in Table II. 

B. The Cellular Automata Model 

We have used a cellular automata (CA) to model the 
dynamics of late blight, defined in the two-dimensional 
domain, with Moore's neighborhood and a probabilistic 
transition function. The CA works over a matrix that represents 
a cultivated area of tomatoes where each cell represents a 
tomato plant that has a health condition value, or status, 
associated with it (Fig. 3 (a)). 

The user defines the variable CA parameter wind direction 
that controls the direction of the status changes. The status of 
any cell would only change if it can be reached by an infected 
cell in its neighborhood and if the wind direction allows this 
contact (Fig. 3 (b)). 

 
TABLE II 

EXAMPLE OF CALCULATION OF THE EXPECTED TEMPERATURE FOR JUNE 6TH, 
2016, USING THE HISTORICAL AVERAGE TEMPERATURES AND A 5-YEARS 

WINDOW 

Day to be 
Simulated 

2010 2011 2012 2013 2014 
Average 
Result

06/06/16 17.42 11.24 21.64 18.48 16,88 17,13 

 

 

(a)         (b) 

Fig. 3 (a) CA matrix where each cell the plants of a farm. (b) 
Example of a cell, which has an infection status 3, affecting their 

neighbors according to the wind direction 
 

TABLE III 
RULES FOR CALCULATION OF WEIGHT P 

1 2 3 4 5 6

Qs> 1 
Qd> = 10 0.1 0.8 1.4 1.6 1.8 2 

10> Qd> = 7 0.1 0.5 1 1.1 1.2 1.4 
Qs> 3 7> Qd> = 5 0.2 0.4 0.6 0.7 0.8 0.9 

 

,ᇱ൫ܿሺ݅ܧ ݆ሻ൯ ൌ ,ሺܿሺ݅ܧ ݆ሻ ൅	෍ܲ ቀݒ௡൫ܿሺ݅, ݆ሻ൯ቁ

଼

௡ୀଵ

െ ܥ ∗ ,ሺܿሺ݅ܧ ݆ሻሻ (2)

 

The next status of each cell c(i,j), where i is the line and j is 
the column, depends on its current status, E(c(i,j)), and on the 
current status of all its neighbors, in a neighborhood of size 8. 
An infected cell could have its status worsened when there are 
infected cells in its neighbor, or improved, when a technique C 
for combating the disease is being used. Each neighbor can 
affect a cell c(i,j) in a weighted way, according to the factors 
indicated by Hyre’s model. The weighted influence of each 

neighbor is calculated following the rules shown in Table III, 
which considered the number of outbreaks Qo, the number of 
favorable days Qf, and the current status E of cell c(I, j). Each 
cell in a neighborhood would also change its value in the next 
step, and the combination of all changes would build the new 
status matrix. 

We have tested two forms of combat and, according to the 
literature [27], the combat type 1, which uses Dimethimorph, 
could decrease the status of a cell by 30% of the current status. 
On the other hand, combat type 2, which uses Metalaxyl-
M+Mancozeb, could decrease the status by 20%. Thus, when 
using a combat method, the CA dynamics can be summarized 
by Table III and (2). 

V. RESULTS AND DISCUSSION 

Our approach was to convert the original JPEG images into 
codified red/green images, which proved to be effective in 
highlighting the injuries of the leaves. On the other hand, the 
codification process was able to overcome problems such as 
low resolution, focus, and image blur of the digital images, 
with no need to use more sophisticated digital image 
algorithms (e.g. contour detection). 

Since we have worked with images captured in the field, in 
natural sunlight and taken by cell phones cameras, it was 
expected that they would contain a large amount of noise. As 
future work, we will include more image filtering processes, 
aiming at noise removal or attenuation. We are currently 
working in a module that uses the low-pass Median Filtering, 
and some Background Subtraction techniques to improve the 
data quality, and the results will be presented soon. 

The simulation system is capable of mapping the streets and 
lines of a farm, registering georeferenced images of infected 
tomatoes. It can simulate scenarios of contagion spreading in a 
determined period of days and is possible to stop the simulation 
at any time to choose a combat method for the disease and then 
resume the simulation. The system’s main functions are the 
module for processing and classification of digital tomato 
images described in previous sections, and the simulator that 
generates scenarios of the spreading of contamination and 
alternatives to combat the disease. 

In the module for processing and classification, the images 
are classified within the status scale. Thus, they are placed in a 
matrix based on their real georeferenced information and the 
cell is painted with a different color for each different status 
(Table IV). The resulting matrix thus conceptually represents a 
map of the cultivated area being monitored by the system (Fig. 
4 (a)). In the map, it is possible to select any cell and retrieve 
the corresponding sample information, including the original 
leaf image, the current health condition of the plant and the 
location of the plant in the field (Fig. 4 (b)). 

 
TABLE IV 

CORRESPONDENCE OF MAP CELLS FOR EACH POSSIBLE STATUS 

Status 0 1 2 3 4 5 6 
Cell 
color

Dark 
green 

Green
Light 
green

Yellow Orange 
Dark 

Orange
Reddish 
orange 
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(a) 
 

 

(b) 

Fig. 4 (a) Conceptual map of a cultivated area of tomatoes from a 
monitored farm. (b) Details from a selected tomato on the map 

In the simulation module, it is possible to run simulations of 
late blight spreading and visualize it in the conceptual map of 
the cultivated area (Fig. 5). It is also possible to analyze 
strategies to combat the disease. The simulation is interactive 
and simple, and the user can pause, resume or restart the 
simulation at any stage. 

If a combat is tested during the simulation, a new dynamic 
could occur, reducing the status of tomatoes, depending on the 
contamination level of the field as a whole, the climatic factors, 
and the type of combat chosen. Fig. 6 shows what happens 
when combat type 2 is used on the 12th day of simulation. 
Starting from the same situation of Fig. 5 (a), it is possible to 
see that the losses could be minimized in the end of the 30th day 
of simulation. 

We are already working on a panel of statistics that will 
show the performance of the simulation, displaying the 
financial results obtained by the chosen specific combat 
strategy, and comparing the costs of using the pesticides 
against not using any at all. 

We have modeled the dynamics of two chemical fungicides 
to be available in this first version of our simulator because 
they are the most common in Brazil for tomato blight control. 
However, it is relatively simple to model new chemical control 
methods, and we are working on a tool that enables the user to 
do so. 

We believe that this research is a suitable contribution to 
help small farmers in the early detection of late blight. The 
alternative we presented can accelerate the identification of the 
disease and help measuring the extension of the infestation. 
Plus, it can help small farmers to plan better the best time for 
spraying fungicides, protecting the environment while reducing 
the plantation costs. 

 

 

(a) 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:4, 2017

460

 

 

 

(b) 
 

 

(c) 

Fig. 5 A non-combat simulation starting at 06/24/2016, having wind direction from west to east and conducted during 35 iterations on a matrix 
with 1200 elements, where each cell represents one tomato plant. (a) At the beginning, before the simulation starts, with cells containing the 

original status of each plant, collected in loco (cells marked with an ‘*’ represents one photographed plant, while the others have their status all 
settled to 0-healhy); (b) The map situation at iteration number 12, which means that the map represents the farm situation after 12 days from 

the initial day; (c) The map situation at the 35th day, when the simulation ends
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(a) 
 

 

(b) 

Fig. 6 A combat type 2 simulation starting at 06/24/2016, having wind direction from west to east and conducted during 35 iterations on a 
matrix with 1200 elements, where each cell represents one tomato plant. (a) On the 12th day of simulation, the combat type 2 was selected and 

the simulation was resumed; (b) The map situation at iteration number 35, when the simulation ends 
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