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A Neural Model of Object Naming
Alessio Plebe

Abstract—One astonishing capability of humans is to recognize
thousands of different objects visually, and to learn the semantic
association between those objects and words referring to them. This
work is an attempt to build a computational model of such capacity,
simulating the process by which infants learn how to recognize ob-
jects and words through exposure to visual stimuli and vocal sounds.
One of the main fact shaping the brain of a newborn is that lights and
colors come from entities of the world. Gradually the visual system
learn which light sensations belong to same entities, despite large
changes in appearance. This experience is common between humans
and several other mammals, like non-human primates. But humans
only can recognize a huge variety of objects, most manufactured by
himself, and make use of sounds to identify and categorize them. The
aim of this model is to reproduce these processes in a biologically
plausible way, by reconstructing the essential hierarchy of cortical
circuits on the visual and auditory neural paths.

Keywords—Auditory cortex, object recognition, self-organizing
maps

I. INTRODUCTION

THIS work is an attempt to build a model of object

naming, and how object recognition and name association

can emerge by exposure to an environment reach of objects

and vocal sounds.

One of the main fact shaping the brain of a newborn is that

lights and colors come from entities of the world. The exis-

tence of objects and their individuality is confirmed by other

sensorial modalities, like touch, and the possibility to move

and interact with some object, but the visual input is the main

responsible for building a world representation. Gradually the

visual system learn which light sensations belong to same

entities, despite large changes in appearance. This experience

is common between humans and several other mammals, like

non-human primates. But humans only can recognize a huge

variety of objects, most manufactured by himself, and make

use of sounds to identify and categorize them. Another fact

that, not later that the former, begins to shape the brain of

newborns is the presence in the environment of special sounds,

charged with intentionality. The auditory cortex refine itself

so to recognize the most common sound patterns heard, and

finally recognize distinct words. This is the time for grasping

the most difficult fact: that words sometimes refer to objects.

It is not by chance that the majority of the early vocabulary

is made by name of objects, the ones frequently seen by young

humans [13].

The interest in this work is to investigate this wonderful

phenomena by computational models able to shed light on

the main theater of these events: the cerebral cortex. The

challenge is to try at the same time to address a very complex
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high cognitive task, and to adhere as much as possible to

the reality of the computations taking place in the brain.

Necessarily the level of details will be far from the natural

neural networks involved in object cognition and naming.

Nevertheless, the biological plausibility is the only road to

mitigate the typical risk of all computational explanations:

the arbitrariness of the solution. Many different mathematical

constructs can approximate the same function, but only one is

actually realized in the biological system.

As far as our knowledge this is the first attempt in this

direction. There are several neural models of visual object

recognition [10], [33], [9]. Not many neural models have been

proposed for the auditory process [27], [39], and too little is

known yet about the kind of computation leading to word

recognition.

There are few computational model of lexical acquisition

from auditory and visual stimuli previously proposed [34], but

without any relation with the relevant brain processes.

There is a theoretical perspective in this work that could

make modeling even less arbitrary and closer to neural realism.

It is avoided any design of the mature functions reached by

the organism, the emergence of the final function in each

component of the system is leaved to the plastic development

of the neural circuits. In the cortex, there is very little differ-

entiation in the computational capability that neural circuits

will potentially perform in the mature stage. The interaction

between environmental stimuli and some basic mechanisms

of development is what drives differentiation in computational

functions. This position has large empirical support [17], [18],

[23], and not only is compatible with the current knowledge

about neural genetics [32], but appears to be a correct road for

the understanding of the complex interactions between genetic

expression and neural plasticity [25].

In pursuing those plans this work had to face with a large

gap between the available knowledge of cortical functions in

the visual and the auditory paths. Therefore while for the

vision subsystem it has been possible to replicate with a certain

degree of realism the layout of the main cortical components,

for the auditory path the structure of the components and the

resulting functions are much more abstract and speculative.

II. THE PROPOSED MODEL

The model will be here explained by first describing the

mathematics common to all modules, and then by outlining

the overall model, with details of the visual and the auditory

paths.

A. The mathematical abstraction of the cortical maps

All the modules composing this model are implemented

as artificial cortical maps, adopting the LISSOM (Laterally
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Fig. 1. Overall scheme of the model. All acronyms are listed in Tab. I

Interconnected Synergetically Self-Organizing Map) architec-
ture [36], [3]. This architecture has been chosen because of

its reproduction of the neural plasticity, by the combination

of Hebb’s principle and neural homeostasis, and because is

a good compromise between a number of realistic features

included, and the simplicity necessary for building complex

models. The LISSOM is a two dimensional arrangement of

neurons, where each cell is not just connected with the afferent

input vector, but receives excitatory and inhibitory inputs from

several neighbor neurons on the same map:

x
(k)
i = f

(
γA

1 + γN
�I · �vrA,i

�arA,i · �vrA,i + γE�erE,i · �x
(k−1)
rE,i

− γH
�hrH,i · �x

(k−1)
rH,i

)
,

(1)

where x
(k)
i is the activation of the neuron i at time step k.

All vectors are composed by a circular neighborhood of given

radius around the neuron i: vectors �x (k−1) are activations of

neurons on the same layer at the previous time step. Vector

�vrA,i comprises all neurons in the underlying layer, in a

circular area centered on the projection of i on this layer, with

radius rA. Vectors �arA,i, �erE,i, and �hrH,i are composed by

all connections strengths of, respectively afferent, excitatory

or inhibitory neurons projecting to i, inside circular areas of

radius rA, rE, rH. Vector �I is just a vector of 1’s of the

same dimension of �vrA,i. The scalars γA, γE, and γH, are

constants modulating the contribution of afferent, excitatory

and inhibitory connections. The scalar γN controls the setting

of a push-pull effect in the afferent weights, allowing in-

hibitory effect without negative weight values. Mathematically,

it represents dividing the response from the excitatory weights

by the response from a uniform disc of inhibitory weights over

the receptive field of neuron i. The map is characterized by the

matrices A,E,H, which columns are all vectors �a, �e, �h for

every neuron in the map. The function f is a monotonic non-

linear function limited between 0 and 1. The final activation

value of the neurons is assessed after a certain settling time

K.

All connections strengths to a neuron i adapt by following

the rules:

Δ�arA,i =
�arA,i + ηAxi�vrA,i

‖�arA,i + ηAxi�vrA,i‖
− �arA,i, (2)

Δ�erE,i =
�erE,i + ηExi�xrE,i

‖�arE,i + ηExi�xrE,i‖
− �erE,i, (3)

Δ�hrH,i =
�hrH,i + ηAxi�xrH,i∥∥∥�hrH,i + ηAxi�xrH,i

∥∥∥ − �hrH,i, (4)

where η{A,E,H} are the learning rates for afferent, excitatory

and inhibitory synaptic modifications. All rules are based on

the Hebb law, with an additional competitive factor, here

implemented as a normalization, that maintains constant the

integration of all connection strengths to same neuron, and

to the same type (afferent, excitatory or inhibitory). This

is a computational account for the biological phenomena of
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TABLE I

LEGEND AND SIZE OF ALL LAYERS COMPOSING THE MODEL.

LGN Lateral Geniculated Nucleus 120 × 120

MGN Medial Geniculated Nucleus 32 × 32

V1 Primary Visual Cortex 96 × 96

V2 Secondary Visual Cortex 30 × 30

A1 Auditory Primary Cortex 24 × 24

VO Ventral Occipital 30 × 30

LOC Lateral Occipital Complex 16 × 16

STS Superior Temporal Sulcus 16 × 16

PFC Pre-Frontal Cortex 12 × 12

homeostatic plasticity, that induce neurons in the cortex to

maintain an average firing rate by correcting their incoming

synaptic strengths.

B. The overall model

A sketch of all modules composing the model is visible in

Fig. 1. The name of all the components and their dimension

is in Tab. I. There are two main paths, one for the visual

process and another for the auditory channel. Both paths

include thalamic modules, which are not the objective of this

study, and therefore are hardwired according to the knowledge

of their functions. The two paths joint in the map called PFC.

Unlike the lower maps, this is an abstraction of processes

actually involving several brain areas in a complex way. Its

name is due to evidences of the prefrontal cortex as a locus

of multimodal categorical object representations [12], [1].

The functional parameters for the cortical layers are shown

in Tab. II. Some of the parameters, like rE or γA, are changed

during the training phase, the table presents the final values

only.

C. The visual pathway

As visible in Fig. 1, the architecture used here includes

hardwired extracortical maps with simple on-center and off-

center receptive fields. There are three pairs of sheets in the

LGN maps: one connected to the intensity image plane, and

the other two connected to the medium and long wavelength

planes. The shape of the receptive field for the achromatic

channel is given, in a two dimensional coordinates r and c of

the retina, as:

x(r,c) = −
r2 + c2 − σ2

σ4
e−

r
2+c

2

2σ2 (5)

In the color channels the internal excitatory portion of the

receptive field is connected to the channel of one color, and

the surrounding inhibitory part to the opposite color. The

cortical process proceeds along two different streams: the

achromatic component is connected to the primary visual map

V1 followed by V2, the two spectral components are processed

by the map VO, the color center, called sometimes also hV4

or V8 [7]. The two streams rejoin in the cortical map LOC,

the area recently suggested as the first involved in object

recognition in humans [24], [16]. Details of the visual path

are in [30], [31].

TABLE II

FINAL PARAMETERS USED FOR THE CORTICAL LAYERS.

layer rA rE rH γA γE γH γN

V1 8.5 1.5 7.0 1.5 1.0 1.0 0.0
V2 7.5 8.5 3.5 50.0 3.2 2.5 0.7
VO 24.5 4.0 8.0 1.8 1.0 1.0 0.0
LPC 3.5 2.5 5.5 5.0 5.0 6.7 0.8
HPC 3.5 2.5 5.5 5.0 5.0 6.7 0.8
LOC 6.5 1.5 3.5 1.2 1.0 1.5 0.0
STS 3.5 2.5 2.5 2.0 1.6 2.6 0.0
PFC 3.5 1.5 2.5 1.0 1.0 1.0 0.0

D. The auditory pathway

The hardwired extracortical MGN component is just a

placeholder for the spectrogram representation of the sound

pressure waves, which is extracted with tools of the Festival
software [5]. It is justified by evidences of the spectro-

temporal process performed by the cochlear-thalamic circuits

[11]. The auditory primary cortex is simulated by a double

sheet of neurons, to take into account a double population

of cells found in this area [2], where the so-called LPC

(Low-Probability Connections) is sensitive to the stationary
component of the sound signal and the HPC (High-Probability
Connections) population responds to transient inputs mainly.
The next map in the auditory path of the model is STS, because

the superior temporal sulcus is believed to be the main brain

area responsive to vocal sounds [4]. It should be noted that

this is the first use on the LISSOM architecture in non visual

cortical maps. To adopt LISSOM in the auditory path is fully

justified by evidences of a topological organization in two

dimensions of the auditory cortex [22], [21].

III. RESULTS

In this section the training strategies of the experiments will

be briefly described, and then the main results achieved will

be presented.

A. Exposure to stimuli

The visual path in the model develops in two stages. At

the beginning the inputs to the network are synthetic random

blobs, simulating pre-natal waves of spontaneous activity,

known to be essential in the early development of the visual

system [35]. In the second stage, corresponding to the period

after eyes opening, natural images are used. In order to address

one of the main problem in recognition, the identity of an

object under different views, the COIL-100 collection has been

used [26] where for each of the 100 objects 72 different views

are available.

In the auditory path there are different stages too. At

the beginning the maps are exposed to random patches

in frequency-time domain, with shorter duration for HPC

and longer for LPC. Later all the auditory maps are

exposed to the 7200 most common English words (from

http://www.bckelk.uklinux.net/menu.html) with

length between 3 and 10 characters. All words are converted
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Fig. 2. Functional organizations emerging in the maps of the model.
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from text to waves using Festival [5], with cepstral order 64
and a unified time window of 2.3 seconds.

Eventually the last stage of the training simulate events

when simultaneously an object is viewed, and a word cor-

responding to its basic category is heard. The 100 objects has

been grouped manually into 38 categories. Some category, like

cup or medicine count 5 exemplars in the object collection,
while others, like telephone, have only one exemplar.

B. Functions developed in the cortical maps

At the end of the development each map in the model

has evolved its own function, a synthesis is given in Fig. 2.

It is remarkable that different functions have emerged from

identical computational architectures, the differences are due

to:

• different localization of a map in the hierarchy of mod-

ules;

• different exposure to environmental stimuli;

• different structural parameters, as from Table II.

Now all the functions obtained in the experiment will be

discussed, with reference to Fig. 2, starting with the visual

path.

Orientation selectivity is the main organization in the

primary visual cortex, where the responsiveness of neurons

to oriented segments is arranged over repeated patterns of

gradually changing orientations, broken by few discontinuities

[6], [37]. This sort of arrangement emerge in the model V1,

as already demonstrated in [36] and [31]. In the secondary

visual cortex the main phenomena recently discovered [15] is

the selectivity to angles, especially in the range between 60

and 150 degrees. This kind of selectivity is acquired in the

model map V2, details are in [29]. Color constancy is is the

tendency of the color of a surface to appear more constant than

it is in reality. This property is helpful in object recognition,

and develops sometimes between two and four months of

age [8]. In the model VO only the essential feature of color

constancy is reproduced, which is the ability of neurons to

respond to specific hues, regardless of the intensity. One of the

main function shown by the layer LOC in the model is visual

invariance, the property of neurons to responding to peculiar

object features despite changes in the object’s appearance due

to different points of view. Invariance indeed is one of the

main requirement for an object-recognition area, and is found

in the human LOC [14], [16]. More details on the invariance

properties in the model LOC are in [28].

Tonotopic mapping is a known feature of the primary

auditory cortex to represent the dimensions of frequency

and time sequence in a sound pattern [38]. In the model is

split into a sheet where neurons have receptive fields more

elongated along the time dimension (LPC) and another where

the resulting receptive fields are more elongated along the

frequency dimension (HPC). The spectrotemporal mapping

obtained in STS is a population coding of features, in fre-

quency and time domains, representative of the sound patterns

heard during the development phase. Therefore it reflects

the statistical phonemic regularities in the common spoken

English, extracted from the 7200 samples used in the training.

As mentioned in the introduction, it is difficult to include the

reproduction of more specific and detailed cortical functions,

operating in phoneme and syllable categorization, since almost

nothing is known about such functions in the brain yet.

C. Recognition and categorization in PFC

The upper map PFC in the model reflects how the system

has learned the association of certain sound forms with the

visual appearances of objects. In order to evaluate what has

been achieved in the PFC map its content has been analyzed

by clustering into a ordinary SOM (Self Organized Map) [19].
Being o an object of the COIL set O, W the set of names

of categories, and x a node of the SOM, several labeling

functions can be established:

l(I|c)(x) = arg max
o∈O{∣∣∣{I

(o)
i : x = v

(
I
(o)
i , c(o)

)}∣∣∣} ,
(6)

l(c|I)(x) = arg max
c∈W{∣∣∣{I

(o)
i : c = c(o) ∧ x = v

(
I
(o)
i , c

)}∣∣∣} ,

(7)

l(I|u)(x) = arg max
o∈O{∣∣∣{I

(o)
i : u �= c(o) ∧ x = v

(
I
(o)
i , u

)}∣∣∣} ,

(8)

l(I)(x) = arg max
o∈O

{∣∣∣{I
(o)
i : x = v

(
I
(o)
i , ε

)}∣∣∣} , (9)

l(c)(x) = arg max
c∈W

{|{c : x = v (ε, c)}|} , (10)

with I
(o)
i an image of the COIL database representing object

o at viewpoint i, c(o) : O → W the lexical category of the

object o, and v(·, ·) the function associating an image and a
word given as input to the model with a winner neuron in the

SOM. The input ε to v(·, ·) means null input. The notation
|·| is used here as the cardinality of a set. The labeling of
the joint recognition of objects by visual aspect and category

is l(I,c)(·) from (6), the labeling of recognized categories of
objects is l(c,I)(·) from (7).
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jam car car car cigaret- cheese cheese cheese cheese hanger hanger fruit fruit fruit pepper

jam jam mug mug mug piece piece cheese cheese cheese pig fruit fruit cigaret-

jam mug piece piece piece piece cheese pot car mug fruit pig cigaret- cigaret- cigaret-

truck truck sweets piece piece piece car piece pot plug mug mug pig tool

sauce truck sweets sweets piece piece piece piece piece piece pot plug plug plug plug tool tool jug

sauce sweets sweets sweets mug mug mug piece hanger hanger plug

soap sweets mug mug mug mug can can can car bird plug car car

soap soap soap sauce sauce mug mug mug cup cup bird jug kitten kitten car car

soap soap soap soap mug car cup cup cup cup jug kitten car car

soap soap soap jam jam mug cup cup cup cup cup car car car

soap soap soap toast toast dummy dummy cup boat cup car car

soap soap tape tape tape toast toast dummy dog boat cup cup car

spoon chewing- toast drink drink dog dog boat cigaret- boat boat

truck spoon chewing- chewing- chewing- chewing- pottery drink boat fruit boat boat boat ring

truck pottery chewing- chewing- pottery pottery pepper pepper pepper boat boat boat boat boat boat

drink drink pottery chewing- chewing- chewing- pottery fruit fruit boat ring frog boat boat

drink drink chewing- chicken chicken fruit fruit fruit toast truck frog frog frog

teleph- teleph- medicine chicken pottery fruit toast truck truck boat

bottle bottle bottle medicine medicine medicine medicine medicine medicine truck truck truck soap

bottle bottle bottle bottle medicine medicine medicine medicine medicine medicine tomato truck truck truck soap

Fig. 3. Organization of visual (left) and lexical (right) categories from PFC, as revealed by SOM clustering.

TABLE III

ACCURACY IN RECOGNITION ACHIEVED BY PFC, FOR THE
RECOGNITION CONDITIONS SEE THE REFERENCED EQUATIONS IN

THE TEXT.

rcognition conditions equation accuracy

vision + word (6) 0.88
categories (7) 0.98
vision - word (8) 0.07
images only (9) 0.16
words only (10) 0.55

These two labeling are shown in Fig. 3, and give the idea of

the categorization within the visual and the lexical space. In

both maps there is a strong evidence of clustering of similar

objects, but in the visual map there are more cases when group

of similar objects are split into more then one cluster. It is the

case of the wooded pieces visible in the middle and also in the

lower right corner. This is a typical phenomena of objects with

strong dissimilarity between two or more ranges of viewpoints.

There are less split clusters of categories in the lexical map.

From the labeling functions immediately follows the pos-

sibility of estimate the accuracy of recognition, simply by

weighting the number of cases where the category or the object

has been classified as the prevailing one in each node of the

SOM. For example, in the case (6), recognition of objects by

visual aspect and category, the corresponding accuracy is:

a(I,c)(o) =

∣∣∣{I
(o)
i : l

(
v
(
I
(o)
i , c(o)

))
= o
}∣∣∣∣∣∣{I

(o)
i

}∣∣∣ . (11)

The accuracy of the various labeling functions are shown

in Table III. The first two rows clearly prove that the system

has learned a high capacity of object recognition and naming,

with respect to the small world of object and names of the

experiment. The third line is the accuracy for the case where

a word is heard while an object of different category is seen.

It is evident how the mismatch of the name almost hampers

the correct recognition. It has to be taken into account that

for the COIL library, the accuracy of recognition by chance

is of 0.01, therefore 0.07 is still higher that by chance, but

drastically reduced from the case of joint recognition. The last

two lines are the cases when one of the two inputs is missed.

Being the outcome of PFC, these accuracy figures are not the

accuracy of the separate outcome of the visual or the auditory

paths, which would be higher. Those figures can be interpreted

as the chance of guessing a category name by seeing a related

object, or of imaging an object view by hearing its name. The

larger accuracy in guessing a correct object from the category

name is also a consequence of the small number of categories,

38, compared with object views, 7200.

IV. CONCLUSIONS

The model here described is a first attempt in simulating
the interaction of the visual and the auditory cortex in learning
object recognition and naming. Being a model of high level
complex cognitive functions, it necessarily lacks several details
of the biologic cortical circuits. It lacks even more biological
plausibility in the auditory path because of the current knowl-
edge of the processes going on there. Moreover, being a first
attempt, it is certainly oversimplified in aspects that can be
improved and refined in further development of this model.
Examples can be the inclusion of backprojections between
maps in the hierarchy, and trials on preliminary categorization
at the level of phonemes and syllable in the auditory path.
An important result achieved so far is the emergence of
naming and recognition abilities only by exposing the system
to environmental simulations, in term of pre-natal spontaneous
activities, and later to natural images and vocal sounds. For
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this reason the model is believed to be a useful computational
tool for future investigations on phenomena known in develop-
mental psychology, like the effect of shape in learning object
names [20], [13].
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