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Abstract—This paper proposes, for the first time, how the 

challenges facing the guard-band designs including the margin 

assist-circuits scheme for the screening-test in the coming process 

generations should be addressed. The increased screening error 

impacts are discussed based on the proposed statistical analysis 

models. It has been shown that the yield-loss caused by the 

misjudgment on the screening test would become 5-orders of 

magnitude larger than that for the conventional one when the 

amplitude of random telegraph noise (RTN) caused variations 

approaches to that of random dopant fluctuation. Three fitting methods 

to approximate the RTN caused complex Gamma mixtures 

distributions by the simple Gaussian mixtures model (GMM) are 

proposed and compared. It has been verified that the proposed 

methods can reduce the error of the fail-bit predictions by 4-orders of 

magnitude. 

 

Keywords—Mixtures of Gaussian, Random telegraph noise, EM 

algorithm, Long-tail distribution, Fail-bit analysis, Static random 

access memory, Guard band design.  

I. INTRODUCTION 

HE guard band (GB) designs including the margin assist 

circuits (MRASST) scheme for the static random access 

memory (SRAM) [1]-[3] will face an unprecedentedly crucial 

challenge in the coming process generations. This stems from 

the facts originated with that the time-dependent (TD) 

margin-variations (MV) after the screening will become much 

larger than that of ordinary non-TD-MV [4]-[8]. This trend 

indicates that the number of failures caused by the TD-MV 

after the screening will have a dominant influence over the 

whole yield loss unless adequately treated at the GB designs 

including the MRASST designs in the coming process 

generations. These failures can’t be screened out by the 

ordinary functional test based on the conventional GB designs 

any more without a huge chip yield-loss. This results from the 

facts that it is really hard to predict the amount of the margin 

degradation of the SRAM operating voltage (Vdd) caused by 

the TD-MV during the guaranteed lifetime period.  

The main reason behind the challenges facing the statistical 

predictions of the TD-MV caused failures is a big change of the 

statistical distribution of the whole MV from the simple 

Gaussian to the complex Gamma mixtures distributions.  Since 
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the threshold voltage (Vth) distribution is the dominant 

contributor to the MV, the trend of the Vth is explained in the 

following. 

The Vth distributions of the nano-scaled CMOS have clearly 

shown that we have to consider not only the non-TD spatial 

random dopant fluctuation (RDF) but also the TD temporal Vth 

variations due to the random telegraph noise (RTN) [4]-[8].  It 

has been well shown in [4]-[8] that distributions for the 

amplitude of Vth modulation (∆Vth) due to RDF and RTN are 

obeyed to a Gaussian and a complex sloped Gamma mixtures 

distribution, respectively. In addition, the increasing paces of 

∆Vth amplitude are differently dependent on the MOSFET 

channel-size (LW) like the following (1) and (2). 

 

(1) 

(2) 

 

where AVt(RDF) and AVt(RTN) are Pelgrom coefficients for 

RDF and RTN, respectively. Assuming the LW is scaled down 

to 0.5 every process generation, the ∆Vth increasing paces of 

the RTN is a 1.4x faster than that of RDF. This means that the 

TD-∆Vth(RTN) will soon exceed the non-TD  ∆Vth(RDF) and 

becomes a dominant factor of the whole margin variations. 

According to [5]-[7], there will come the time soon around a 

15nm scaled CMOS era.   
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This indicates that the GB designs including the MRASST 

designs should rely almost entirely on the statistical predictions 

of the amounts of TD-MV. 

Because the required GB voltages will be no longer small 

fraction of the whole margins, as shown in Fig. 1, the 

conventional GB design criteria with the screening test won’t 

be effective any more for avoiding the out of spec after the 

screening.   

To make clear the issues we will address in this paper, the 

concepts of what will happen in the coming process generations 

are shown in Figs. 1 and 2. The GB(TD) in Fig. 1 refers to the 

GB voltages corresponding to the shifting amount of TD-MV 

due to RTN.  The required GB(TD) for avoiding the out of spec 

becomes larger due to ever increased RTN and exceeds soon 

the GB(non-TD) for RDF. As a result, the number of discarding 

chips after the screening will be no longer neglected, as shown 

in Figs. 1 and 2. The percentage of the number of discarding 

chip required to avoid the out of spec after the screening can be 

increased by 5 orders of magnitude until the 15nm process 

generation compared to that of 40nm, as shown in Fig. 2.  It has 

been indicated that almost chips have to be discarded around 

the 15nm process generation to avoid the out of spec in the 

market unless adequately treated with the MRASST designs.  

 

 
 

 

 

 

 

 

 

 

In order to discuss the impacts of rapidly increased the 

TD-MV on the GB designs, the three cases of the ∆Vth ratios of 

RTN/RDF: (1/4, 1/1, 4/1) are assumed in this discussion, as 

shown in Fig. 3.   

Marked (1), (2), and (3) in Fig. 4 represent for the three cases 

of the relationship of the ratios of RTN/RDF, respectively.  

Here, we also assumed the three cases for RDF: RDF1, RDF2, 

and RDF3. These trends also make differently impacts on the 

trend of the RTN/RDF ratios. Since the advanced CMOS 

device tends to change to much less-dopant body devices like 

FinFET, ultra-thin body SOI, and nano-wire FET, there is the 

potential that the increasing paces of RDF are varied between 

1/0.7, 1/0.84, 1/1 for RDF1, RDF2 and RDF3, respectively if 

assumed the LW is scaled down to 0.5 every process generation, 

as shown in Fig. 4.  

In this paper, the yield-loss impacts made by the 

approximation-errors of the complex RTN distribution by 

various statistical models are discussed while considering the 

trend of the RTN/RDF ratios in the following sections. 

 
 

 

 

 

 

Here is how the rest of this paper is organized. In Section II, 

we discuss how the GB design for screening test will be 

changed when RTN becomes dominating over whole MV, 

followed by the impacts on the margin assist circuit designs to 

avoid the yield loss in Section III.  In Section VI, we propose 

three types of fitting Gaussian mixtures model (GMM) 

following the discussions of challenges facing the conventional 

modeling in Section IV and V. In Section VII, we show the 

evidence indicating if the proposed models can approximate 

well the heavy long-tailed distributions and can give a precise 

fail-bit count prediction. We rigorously prove that it is possible 

to approximate more complex long-tailed distributions by 

mixtures of Gaussian distributions in Section VIII.  Finally, we 

state our conclusion in Section IX. 

II. DISCUSSIONS ON ISSUES OF GUARD BAND DESIGNS 

The effects of long tail distributions on the shifted screening 

point (SP) are shown in Figs. 5-7. The different RTN 
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amplitudes of RTN(1), RTN(2), and RTN(3) are assumed, 

respectively.  

The tails of non-TD-MV distributions by RDF are truncated 

by the screening. Additional tails are added after the screening 

by RTN caused TD-MV effects, as shown in Figs. 5-7.  The 

convolution results of the two distributions of the truncated 

RDF and RTN show that there is the potential of the significant 

changes of the whole margin distributions in 10-years after the 

screening unless adequately treated with the MRASST designs. 

As can be seen in the Figs. 5-7, the shallower-angled slope of 

the RTN distribution makes the length of tail longer. A longer 

tail makes the screening point more shifted (∆x). As shown in 

Figs. 5-7, the ∆x for RTN(1), RTN(2), and RTN(3) are about 1, 

7, and 10, respectively. In these examples, the screening point 

are assumed as x=-6, where the Gaussian distributions of RDF 

are truncated. It is worth mentioning that the impacts of the 

truncated distributions on the convolution results depend on the 

RTN slope. If the slope of RTN is steeper than the Gaussian 

RDF (case of RTN(1)), the distribution of the convolution 

results has a folding point like Q shown in Fig. 5. In contrast, 

the convolution for RTN(2) and RTN(3) does look like no 

effects on any truncated points.  This is because the slope of 

RTN is shallower-angled than that of Gaussian. This indicates 

that any truncation of RDF can’t control the tails of the 

convolution results any more. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is also worth noting that reducing the error of 

approximations to the RTN long-tail distribution is crucial 

challenge in the GB design. This is because the tail of the 

convolution probability density function (pdf) is strongly 

impacted by the tail of the RTN distribution.  

 

 
 

 

 

 

The effects of the excessive chip-discarding yield-loss made 

by the error of the RTN approximation are shown in Fig. 8. 

More rarely event-analysis like its cdf <10
-12
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accuracy at a longer tail position (larger x) and its required error 

level depends on the interest cdf values. Thus, its errors in the 

three ranges of 10
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, 10
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-(8~6)

 are measured in this 

paper, as shown in Fig. 8.   
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It is worth mentioning that the accuracy of the RTN 

approximation by the statistical model will become more 

important as the process is scaled down.  It stems from the facts 

that the RTN tail distributions will be longer and heavier due to 

the device size LW scaling, as shown in Fig. 4.  As can be seen 

in Fig. 8, the errors affecting the discarding chip counts at 15nm 

can be over 6-orders of magnitude larger than that at 40nm in 

the cdf range of 10
-(12~10)

.  

As explained in this section, the accuracy of the 

approximation of the RTN distributions is unprecedentedly 

crucial challenge for the GB designs to avoid an excessive 

under-estimation/over- estimation of the yield. 

III. ASSISTED MARGIN SHIFTS 

There are two potential means to avoid any out of spec after 

the screening, as shown in Figs. 5-7: (1) pre-truncating the 

less-margin chips so that “out of spec” never happens with the 

RTN-caused margin shifts ,as shown in Fig. 9 (left) and (2) 

increasing the margin by using the margin assist circuits 

(MRASST) [1]-[3] so that the convolution results of RTN and 

RDF can be fit within the spec, as shown in Fig. 9 (right). 

 

 

 
 

 

 

 

 

 

As discussed in Figs. 5-7, the yield-loss will become 

prominent by the screening test unless adequately treated at the 

GB designs.  To address this challenge, we will need to design 

the margin assist circuits (MRASST) for the RTN-caused 

variations as shown in Fig. 9 (right), which are conventionally 

used for the non-TD GB designs for the RDF-caused variations 

[1]-[3].  However, the conventional statistical models based on 

the Gaussian distributions can’t be used for the MRASST 

designs any more to compensate the SRAM margin shifts by 

the TD-RTN caused variations. It stems from the changes of the 

statistical distribution of the whole MV from the simple 

Gaussian to complex Gamma mixtures distributions. In order to 

address the issues, the new models that provide large enough 

accuracy for the both distributions of Gaussians and 

non-Gaussian like Gamma mixtures are discussed in the 

following section. 

IV. CHALLENGE FOR MODELING OF RTN GAMMA MIXTURES 

DISTRIBUTIONS 

According to [4]-[6], the distribution of the RTN amplitude 

will have the complex bounded tails caused by “atomistic” 

variation-behaviors with the various variation factors of the 

gate line-edge roughness (GER), the fin-edge roughness (FER), 

and the metal gate granularity (MGG) [4]-[6], as shown in Fig. 

1. They are no longer obeyed to the single gamma distribution 

but to the mixtures of different sloped-gamma distribution 

depending on the tail positions of (O-P), (P-Q), and (Q-R), as 

shown in Fig. 10. 
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Fig. 11 illustrates the probability density functions (pdf) for 

the truncated RDF, 3-different complex distributions of the 

RTN amplitude, and its convolution results, respectively. 

Since the pdf of the rare event zone (pdf < 10
-12

) is almost 

governed by the RTN distribution, its approximation errors of 

the RTN distribution directly lead to an estimation error of the 

fail-bit counts (FBC). The conventional Gaussian model [6]-[8] 

characterizing for the whole-margin variation can’t be used any 

more for analyzing such complex mixture of the Gamma 

long-tail distributions of the RTN.   

However, the appropriate approximation method for meeting 

the requirements for this application have not been proposed 

yet. 

V.  ISSUES OF THE CONVENTIONAL MODELS  

 

 
 

 

 

 

 

 

The expectation-maximization (EM) algorithm [9], which is 

an iterative procedure that maximizes the likelihood of the 

Gaussian mixtures models (GMM), is well known as easy and 

convenient means to approximate the GMM to the non 

Gaussian distributions.  

However, all GMMs given by this fitting algorithm tend to 

concentrate in the non-tail region in which the sensitivity to 

increase the likelihood is much larger than that for the tail 

region, as shown in Fig. 12.  Since the interest region for 

analyzing the FBC of the rare-events is in the tail region (at 

probability of 10
-12

), the EM algorithm for this application leads 

to a significant FBC error of orders of 10
7
, as shown in Fig. 

12(b). Even if increasing the number of the GMM from 3 to 9 

and 24, the significant error of orders of 10
6
 and 10

1
, 

respectively, are still remained, as shown in Fig. 12(a).    In 

almost all FBC analyses, the distribution of interest only 

matters in the tail-region of the probability of orders of 10
-12
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[6]-[8]. Thus, this is a crucial challenge facing the rare-event 

SRAM yield predictions. We should solve this issue until the 

time comes. 

VI. PROPOSED STATISTICAL APPROXIMATION MODEL FOR 

RTN GAMMA MIXTURES DISTRIBUTION 

In order to solve the above issues, we propose, for the first 

time, the three kind of fitting methods to approximate any 

arbitrary long-tailed RTN distribution by an adaptive 

segmentation Gaussian mixtures model (GMM).  

These provide the following benefits: (1) applicable to the 

various convex and concave shapes of the bounded Gamma 

distribution even with the wide range of the shape-parameter 

β=0.05 to 0.95 while eliminating the need of EM iterations and 

(2) still using Gaussian distribution to simply utilize a normal 

cumulative density function for calculating the FBC.  

The main contribution of this paper is to point out that it is 

possible to approximate any shaped long tailed distributions by 

the proposed fitting mixtures of the convenient Gaussian 

probability distributions, so that available yield-prediction 

models can be effectively analyzed and so that the effect of the 

long tailed distributions upon the FBC accuracy can be 

analytically determined.  

This is because the convolution result of linear combinations 

of Gaussians becomes also Gaussians. These can be expressed 

by the analytical expressions, which allow using the normal 

(Gaussian) cumulative density function (normcdf) for 

estimating the error counts. This can give us the FBC by just 

summing up the values of the normcdf for each Gaussian of the 

whole GMM. The example of how to caluculate the the FBC of 

the segmentation of (xa-xb) is shown in Fig. 13. This makes it 

easier to predict the FBC before and after the screening at the 

stages of both circuit design and screening test. 

 

 
 

 

 

 

The centerpiece of these idea is: (a) adaptive partitioning of 

the long tailed distributions such that the log-likelihood of 

GMM is maximized in each segmentation, (b) copy and paste 

fashion with an adequate weight into each partition for 

constructing the whole long-tail distributions and (c) all the 

parameters required to regenerate the GMM in individual 

segmentation are given by the pre-defined LUT for eliminating 

the need of any EM iterations. The concepts of the three 

different proposed EM-based approximation means are shown 

in Figs. 14(a)-(b) and Fig. 15, respectively. 

   

 

 

A. Adaptive segmentation based fitting 

Algorithm of the adaptive segmentation is described below 

from the step-(1) to step-(3). 

(1) 1
st
-step is to do approximation by the 3-GMM between 

X0 and Xn. And find the point of X1, where the 

likelihood of 3-GMM is maximized. 
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Fig. 14  Concepts of the proposed approximation algorithm. (a) 
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Fig. 13  Error bit counts of the segmentation of (xa-xb) can be 

given by just summing up the normal (Gaussian) cumulative 

density function (normcdf) of three GMMs 
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(2) 2
nd

-step is to do the same thing as (1) between X1 and 

Xn. And find the point of X2, where the likelihood of 

the 3-GMM is maximized. 

(3) 3
rd

-step is to do the same thing as (2) between X2 and 

Xn. And find the point of X3, where the likelihood of 

the 3-GMM is maximized between X3 and Xn. 

This flow can be repeated until the likelihood of the whole 

GMM can be maximized as shown in Fig. 14(a). 

B. Copy and paste fashion based fitting 

Algorithm of the copy and paste fashion is described below 

from step-(1) to step-(3). 

(1) 1
st
-step is to do approximation by 3-GMM between X0 

and Xn. And find the point of X1, where the likelihood 

of the 3-GMM is maximized. ∆X is given by (X1-X0) 

and w0 is the weight of the 1
st
 3-GMM. 

(2) 2
nd

-step is to get the weight (w1) of the 2
nd

 3-GMM. And 

copy the 1
st
 3-GMM and paste it into the adjacent place 

(shifted by ∆X) by weighting of w1, which is given by 

the slope of Gamma distribution. 

Where  slope=(w0 - w1)/ ∆X 

(3) 3
rd

-step is to do the same thing as (2), as shown in Fig. 

14(b). This flow can be repeated until Xm>Xn. 

This algorithm can allow approximating any angled slope by 

the convenient short-tail Gaussian probability distributions. 

Even if the whole distributions are comprised of mixtures of 

various convex and concave curves as shown in Fig. 13(c), 

individual area of (O-P), (P-Q), (Q-R), (R-S), and (S-T) can be 

adaptively segmented based on its slope.  

It is a clear that the both proposed ideas can apply to this kind 

of distribution.    

C. Look up table (LUT) based fitting 

 
 

 

 

 

 

 

 

However, as the number of the folding points is increased, 

the number of EM operations required to get the GMM for the 

individual segmentation is also increased.   

Thus, this paper also proposes the LUT-based GMM 

generating means to make this idea really practical by 

eliminating the need of EM iterations.  

This can eliminate any steps of the EM operations. If the 

information of the slope of the individual segmentation, e.g., β 

of shaped parameter of the gamma distribution is just input, the 

LUT outputs the all parameters required to regenerate the 

GMM comprising the 3-Gaussians, as shown in Fig. 15.    

This also outputs the best width of individual segmentation 

∆X(seg) that the likelihood can be made maximized.   

As a result, overall approximations with the optimized 

segmentation width can be easily done without any 

time-consuming EM steps.   

In this paper, we assumed the range of the slope is β=0.05～

0.95, which corresponds to the variations of the slope of the 

log-scaled gamma distributions, as shown in Fig. 16. 
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Fig. 15 Concept of the look up table (LUT) for the different 

sloped-gamma distributions of the shape parameter β. This LUT 

provides the parameter set of 3-GMMs (α,β,w) and width of 

segmentation which maximizes its likelihood in the 

segmentation 

Fig. 16 Various sloped-gamma RTN distributions compared 

with the Gaussian distribution (σ=1) of RDF 

Fig. 17 Slope dependency (β of gamma) of the parameters 

being used in LUT for the three Gaussian mixture model 

(3-GMM) 
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Since the slope β dependencies of all the parameters of 

GMM and the best width of individual segmentation ∆X(seg) 

have a simple and continuous relationship, as shown in Figs. 17 

and 18, the error caused by interpolation of LUT can be 

minimized. 

Fig. 19 shows the positions of the maximum likelihood and 

the minimum of the approximation error in the individual 

segmentation. The point of the best segmentation width ∆X 

depends on the slope β and corresponding to the point of the 

maximum likelihood, as shown in Fig. 19. Thus, if the slope 

β is input to the LUT, the ∆X is also given besides the 

parameter set for 3-GMMs (shown in Fig. 17). 

 
 

 

VII. DISCUSSION ON ACCURACY OF STATISTICAL 

APPROXIMATION MODEL FOR RTN DISTRIBUTION 

To illustrate the effects of the proposed LUT based scheme 

on the approximation-error in the interest region, the following 

3-examples of the different sloped gamma distribution are 

assumed: (α=1, β=0.14), (α=1, β=0.37), and (α=1, β=0.58), 

respectively. The relationships between the three different 

sloped-gamma and Gauss distributions are shown in Fig. 20. 

 

 
 

 

 

 
 

 

 

 

Fig. 21 shows the 3-GMMs in the different segmentations of 

∆X for the 3-different sloped tails of (a) ∆X=0.3, β=0.58, 

(b) ∆X=0.35, β=0.37, (c) ∆X=0.27, β=0.14, respectively.  The 

LUT provides this kind of parameter set for regenerating 

3-GMM and the best segmentation width ∆X. 

Fig. 22 shows that LUT-based fitting curves for the 

3-different sloped gamma distributions of β=0.14, 0.37, and 

0.58, respectively. The weight of the individual segmentation at 

each X-point is also given by the LUT. 

   To illustrate the effects of the proposed LUT based scheme 

on the approximation-error in the interest region, the errors of 

the cumulative density function (cdf) of the convolution results 

are compared between the proposed 3-schemes and the 

conventional one without any segmentation manners. Here, the 

convolutions are done between the 3-different sloped gamma 

distributions and Gauss distribution (σ=1), which are assumed 

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Slope (β)

b
e

st
 s

e
gm

e
n

ta
ti

o
n

 w
id

th
 ∆

X β dependency of best ∆X

β=0.14

β=0.37

β=0.58

L
o

g
 (

E
rr

o
r)

L
o

g
 (

li
k
e

li
h

o
o

d
)

max of likelihood best width of
segmentation 

min

max

0 -2 -4 -6 -8 -10 -12 -14 -16

-12

-10

-8

-6

-4

-2

0

Margin scale x

L
o
g

(P
ro

b
a

b
ili

ty
)

Gamma (α=1, β=0.05~0.95)

(c) (c) (c) (c) β=0.14β=0.14β=0.14β=0.14

(a) (a) (a) (a) β=0.58β=0.58β=0.58β=0.58
(b) (b) (b) (b) β=0.37β=0.37β=0.37β=0.37

Gauss(σ=1)

Sampled

(c)(c)(c)(c) (b)(b)(b)(b) (a)(a)(a)(a)

0 0.05 0.1 0.15 0.2 0.25
Margin scale x

GMM2

L
o

g
(P

ro
b

a
b

ili
ty

)

0.3 0.35

0.1

1.0

10
β=0.37

GMM3

0.1

1.0

10
β=0.58 ∆X=0.30

(a)

(b)

∆X=0.35

GMM1

0.1

1.0

10
β=0.14

(c)

∆X=0.27

∆X
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Fig. 20 Comparisons of the slopes of the tails between the Gauss 

for RDF and 3-sampling points of slope β=0.14, 0.37, and 0.58 for 
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Fig. 21  3-GMMs in the different best ∆X-segmentation for 

different sloped tails of (a)∆X=0.3,β=0.58, (b) ∆X=0.35, 

β=0.37, (c) ∆X=0.27,β=0.14 
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the amplitude ratio relationship between the RTN and RDF 

variations [1]-[2]. 

 
 

Fig. 23 shows the cdf-error comparison results between the 

proposed 3-schemes and the conventional one without any 

segmentation manners. To make clear the effects of the 

proposed LUT based scheme on the approximation-error in the 

interest region compare with the other two proposed schemes, 

the orders of error are compared in the interest region (cdf  of 

10
-12

 ), as shown in Fig. 23. It can be seen that the LUT can 

reduce the errors by the two orders of magnitude compared 

with the conventional schemes as well as the other two 

proposed schemes. 

 

 
 

 

 

VIII. APPLICATION TO MORE COMPLEX DISTRIBUTIONS 

According to [3]-[8], the distributions of RTN amplitude are 

no longer obeyed to a single gamma distribution but to the 

multiple gamma distribution depending on the tail positions of 

(O-P), (P-Q), and (Q-R), as shown in Fig. 24. As its examples, 

the three types of distributions whose have a different slopes 

and folding points are assumed as Combo1, Combo2 and 

Combo3, as shown in Fig. 24.  

The approximation-errors for fitting to Combo1, Combo2, 

and Combo3 are compared between the cases of using (a) the 

convnetional 3-GMM model and (b) the proposed 

segmentation models. As can be seen in the Fig. 24(a), the 

conventional 3-GMM models without using segmentation 

manner can’t fit the tails of Combo1-3 at all. The errors of 4,6, 

and 7 orders of maginitude have to be expected at the rare 

probability of 10
-12

.  Contrary, the fitting errors can be 

drastically reduced by using the proposed ideas, as shown in 

Fig. 24(b). Unlike the case of Fig. 24(a), it can be seen that the 

fitting curves and its target lines in Fig. 24(b) are perfectly 

overlapped.  Thanks to the segmentation manner, the same 

concepts can be adaptively applied to the different sloped-tail 

distributions.  This indicates that this ideas can be applied to the 

various sloped-distributions even if they are combined like the 

given examples in Fig. 10. 
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Fig. 23 Cdf error of the convolution results between Gauss 

(σ=1) and 3-different Gammas of (a) β=0.14, (b) β=0.37, and 

(c) β=0.58, respectively 

Fig. 24 Comparisons of approximation-errors for fitting to 

Combo1, Combo2, and Combo3 between the cases of (a) with 

the convnetional 3-GMM model and (b) with the proposed 

segmentation models 

Fig. 22  LUT based fitting of the different sloped tails of 

(a)∆X=0.3,β=0.58, (b) ∆X=0.35, β=0.37, (c) ∆X=0.27,β=0.14 
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Since the both ideas of “adaptive segmentation” and “copy 

and paste” fashion can apply to this kind of complex non-linear 

distribution, the errors of cumulative density function (cdf) of 

the convolution results for Combo1, Combo2, and Combo3 are 

compared between the two, as shown in Fig. 25. 

It is found that the trend of cdf errors depending on the 

margin scale of x position is similar between the different 

distributions of Combo1-3, as can be seen in Fig. 25. 

The cdf errors for the “copy and paste” are smaller than that 

for the “adaptive segmentation” in the smaller x-position. 

Contrary, its relationship is inverted.  Since the region of a 

larger x and a smaller probability like 10
-12

 is more interest area 

for the rare event fail-bit count analyses, it can be said that the 

proposed idea of “adaptive segmentation” provides the better 

fitting model to predict the yield-loss after shipped to the 

market due to the time-dependent RTN-caused failures. 

As the examples to illustrate the effectiveness of the 

proposed fitting models, the two types of distributions whose 

have a different folding points are given as Combo1 and 

Combo3, as shown in Fig. 26(a).  In addition, the more complex 

distribution, whose peak position is shifted and tail distribution 

is deviated from the simple exponential functions, is also tried 

because [3]-[5] uses such kind of shapes as an example of the 

potential future RTN distribution, as shown in Fig. 26(b). 

 
 

 

 

 

 

It is verified that the proposed LUT based fitting can apply to 

any arbitrary sloped distributions even it has a complex and non 

linear distribution as Figs. 26(a) and (b) shows, while reducing 

the error of cdf to less than 1%, as shown in Fig. 26(c).  As can 

be seen in Fig. 26, the cdf-errors for the different three complex 

distributions are smaller than 10
-12

 at the point where pdf of the 

convolution results is 10
-10

. It means that the error of the fail-bit 

count (FBC) is smaller than 1% at this kind of rare-event level. 

Since the region of a larger x and a smaller probability like 10
-12

 

is more interest area for the rare event fail-bit count analyses, it 

can be said that the proposed LUT-based fitting scheme 

provides the practical fitting model to predict the yield-loss 

after shipped to the market due to the time-dependent 

RTN-caused failures. This can adapt any arbitrary sloped 

distributions without any need of computing power for the EM 

convergence unlike the two other proposed schemes. 

IX. CONCLUSION 

This paper proposes, for the first time, how the challenges 

facing the GB designs including the MRASST schemes for the 

screening-test in the coming process generations should be 

addressed.  It has been shown that yield-loss (chip-discarding) 

by screening test may become crucial issues if RTN could not 

be reduced or eliminated.  It has been pointed out that 

intolerable yield-loss by wrong GB design can be increased by 

6-orders of magnitude. The required accuracy of statistical 

model for approximating the tails of RTN distributions will 
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Fig. 26 Convolutions of (a) 3-different sloped combined gamma 

distributions and the truncated Gauss distribution and (b) 

peak-shifted gamma. (c) Cdf-error comparisons between the 

three different distributions of (a) and (b) 

Fig. 25  Comparisons of the errors of cumulative density 

function (cdf) of the convolution results for Combo1, 

Combo2, and Combo3 between the case of using the “adaptive 

segmentation” and “copy and paste” fashion 
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become unprecedentedly crucial as the process is approaching 

to a 15nm and beyond.      

In this paper, we have proposed, for the first time, the three 

types of GMM fitting schemes for approximating the complex 

gamma mixtures which are combination of the various-sloped 

distributions with multiple convex and concave folding points. 

We show that how much its approximation-error can affect on 

the accuracy of the statistical predictions of the FBC, which is 

required to avoid the out of spec after shipped to the market. It 

has been pointed out that proposed fitting methods can provide 

the practical fitting models to predict the failure probability 

during the life-time due to the time-dependent RTN-caused 

failures. This can adapt any arbitrary sloped mixtures 

distributions without any need of computing power for the EM 

convergence.  

It has been verified that the proposed three types of methods 

can reduce the error of the FBC predictions by about 4-orders of 

magnitude at the interest point of the fail probability of 10
-12

 as 

well as the other two proposed schemes. The LUT based 

schemes can eliminate the need of any computing power for the 

EM iterations. This is the advantage over the two other 

proposed schemes. 

We have pointed out that the proposed methods are one of 

candidate fitting algorithms, which will be crucial not only for 

the SRAM GB design but also the MRASST design in the 

coming process generations. 
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