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Abstract—For the electrical metrics that describe photovoltaic 

cell performance are inherently multivariate in nature, use of a 
univariate, or one variable, statistical process control chart can have 
important limitations. Development of a comprehensive process 
control strategy is known to be significantly beneficial to reducing 
process variability that ultimately drives up the manufacturing cost 
photovoltaic cells. The multivariate moving average or MMA chart, 
is applied to the electrical metrics of photovoltaic cells to illustrate 
the improved sensitivity on process variability this method of control 
charting offers. The result show the ability of the MMA chart to 
expand to as any variables as needed, suggests an application 
with multiple photovoltaic electrical metrics being used in 
concert to determine the processes state of control. 

 
Keywords—The multivariate moving average control chart, 

Photovoltaic processes control, Multivariate system. 

I. INTRODUCTION 
N photovoltaic processing sequences can be responsible for 
significant monetary losses in the form of increased scrap 

rates and decrease cell performance. The translation of this 
cell level variability into module level departures from the 
ideal represents a significant area for photovoltaic process and 
product improvement. 

One variables statistical process control methodology can 
be a useful approach to photovoltaic process control. The 
benefit of optimizing and controlling one part of the 
photovoltaic fabrication sequence via univariate SPC 
methodology has been demonstrated previously [1]. However, 
in the case of cell electrical metric, the multiple correlated 
performance variables each relay a portion of information 
about the process. Viewing each of them in isolation for 
process control purposes can result in an insensitive indicator 
of process variability.  

Multivariate methods, which consider the interrelationship 
between varables, have been fruitfully employed previously in 
semiconductor process related applications [4], [8]. The use of 
the MEWMA or multivariate exponentially weighted moving 
average control chart, within Process control schemes for 
chemical processes has also been [2], [9].  These applications 
suggest that the single crystal silicon, photovoltaic processing 
sequence, with its chemical and semiconductor characteristics, 
as well as multiple performance metrics, may be a nature area 
of application for multivariate methodology. This document 
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presents one alternative to univariate statistical process control 
for photovoltaic process control sequences. The MMV or 
multivariate moving average is shown to provide improved 
sensitivity to photovoltaic process shifts. 

II. A MULTIVARIATE SYSTEM  
For Fig. 1, consider the current voltage relationship, or IV 

curve, of an illuminated photovoltaic cell. The maximum 
power spot on the IV curve, Pmax, is indicated by the dot. By 
definition, Pmax is the product of Isc, Voc and FF. Isc, the 
short circuit current, and Voc, the open circuit. The voltage, 
are labeled on the current and voltage axes respectively. Fill 
Factor (FF) is defined as the area of the Pmax rectangle 
(ISC’voc). The Slope at Voc and the slop at Isc are also 
shown in figure one. The IV curve can be specified via many 
different parameterizations. Commonly the space is defined 
via the three parameters Isc, Voc, and FF. While the ultimate 
measure of solar cell performance is Pmax, the shape of the 
IV curve as described by the multiple cell electrical metrics, 
can provide useful information about design and processing 
proclivities of the solar cell when considered in concert. 

 

 
Fig. 1 IV curve of an illuminated solar cell. 

 
Each parameter is a random variable in a system of random 

variables. The nature of how the random variables vary 
together and how this covariance might change due to process 
events can be studied via multivariate analysis methods 
including multivariate SPC. A sample correlation matrix of 
five of the cell performance metrics is shown in Table I.  
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TABLE I 
ESTIMATED CORRELATION MATRIX 

 Isc Voc Rsh Rs 
Voc 0.165    
Rsh 0.017 -0.023   
Rs 0.066 -0.275 0.165  
FF -0.105 0.284 -0.241 -0.969 

 
Considering the correlation between the variables and the 

nature of the IV curve itself, suggests that univariate statistical 
process control methodology, which does not consider the 
interrelationship between variable, may have important 
limitations in photovoltaic applications. In short, a group of 
univariate charts may all individually tell a story that the 
process is in control but they do not answer the question as to 
whether the process is in control in a multivariate sense. 
Multivariate control charts take into account the correlation 
between the variables and can improve detection of events 
that affect multiple variables [6]. We now present the 
multivariate moving average or MMA, as an alternative to 
univariate control of photovoltaic cell electrical metrics.  

A. A Multivariate Moving Average (MMA) Control Chart  
In multivariate statistical, the data forms a matrix with a 

column for each variable and a row for each observation. 
Once control limits for a multivariate chart are established, a 
new row of data may be evaluated as to whether it is 
statistically consistent with the control limits. The new row, 
which is a vector of however many variables are being 
observed, must be combined to a single measurement of 
statistical consistency. For the multivariate moving average or 
MMA control chart, this is the T2 statistic. Step for the MMV 
statistic may be defined as follows: 

 
Step 1 To calculate 2

jT , the vector of the sample means by 

Moving Average is given by:  
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where ijM  represents the samples mean by Moving average 

of the ith characteristic for the jth sample and is found from 
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where ijkM  represents the value of the kth observation of the 
ith characteristic in the jth sample 
 
Mi is then defined as a matrix of weighted observations and 
M0=0 

Also:  ∑−′=
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sample Moving Average are given by 
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The covariance between characteristic i and characteristic h in 
the jth sample is calculated from  
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The vector M  of target means of each characteristic for m 

samples is estimated as  
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Step 3 The element of the variance-covariance matrix S in 
eq.(8) are estimated from the following averages for m 
samples: 
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where eq(6)  is the weighted covariance matrix and 2
iT  is the 

vector of actual values plotted on the control chart. One 
calculation of the upper control limit for the MMV is given by 
eq(9) 
Final Step The vector M  is estimated using the 
elements { }iM ,and the matrix S is estimated as follows (only 
the upper diagonal part is shows because the matrix is 
symmetric): 
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The use of eq. (3) requires inverting this matrix 

Because  
nw

t

wtt nw

t

wtt
ixV

w
tMV

2

1

2

2
1

1
)(2

1
)(

σσ
∑

+−=
==∑

+−=
=  

Then eq(7) will be change to  
 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

p

p

pp

p

nw
S

SS
nw
S

SSS
nw
S

S

2

22
2

2
2

11312
1

2
1

M

L

L

            (8) 



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:3, No:8, 2009

580

 

 

From )1(,,)
1

( +−−+−−
+−−

= pmmnpF
pmmn

pnpmpmnp
UCL α  will be 

change to )1(,,)
1

( +−−+−−
+−−

= pmmwpF
pmmw

pwpmpmwpUCL α       (9) 

where p equals the number of variables and the average in 
control run length. 

B. A Multivariate Moving Average Example 
Consider the following example using actual data (N=20). 

During the period in which the sampling was made, the 
process maintained a relatively stable pattern of variation, 
indicative of normal production. Calibration of the cell 
electrical measurement device is accomplished via a reference 
cell once per shift of production. In the interest of brevity, the 
example presented only contains the electrical metrics Isc and 
FF. However, the multivariate techniques applied could be 
extended to as many variables as needed, provided a 
multivariate relationship exists between the variables. 

A dataset collected on the same production day was used to 
estimate the means, variances and covariance used in all 
control limit initial calculations, a necessary step in proper 
control charting application. Based on these data the estimated 
population means for Isc and Fill Factor were 82.32 and 20.19 
respectively. Table II presents the estimated covariance matrix 
used in the control chart construction to follow. 

 
TABLE II 

ESTIMATED COVARIANCE MATRIX VALUES 
 Isc FF 
Isc 0.00024 -0.0080 
FF -0.0080 2.7540 

III. NUMERICAL 
All control chart limits for both univariate and multivariate 

charts were estimated using this same data set to provide a 
consistent basis for comparison. The actual sample of 
observations plotted (N=20) had means standard deviations of 
82.32(0.97) and 20.19(.47) for Isc and FF respectively. The 
sample bivaraite correlation coefficient between the variable 
was 0.374, indicating these variables are good candidates for a 
multivariate control scheme. 

The intent of this contrivance was to incorporate a clear 
process shift to illustrate the benefit of the multivariate 
approach to photovoltaic process control. While normal 
production data offered numerous examples of the benefit of 
the MMA over univariate charts, examining the response of 
the chart to known effects within this controlled scenario has 
benefits from a tutorial perspective. The illustration proceeds 
with an examination of the univariate control chart 
effectiveness in detection of the one sigma shift. Fig. 2 
displays the Isc data on an individuals chart with two sigma 
warning limits, use data from Table III and three sigma 
control limits shown on the right side axis. 

 
 
 
 

 

TABLE III 
DATA OF ISC AND FF 

NUMBER ISC-MV FF-MV NUMBER ISC-MV FF-MV 
1 81.25 20.25 11 83.00 19.38 
2 80.37 20.63 12 83.34 20.06 
3 81.92 20.92 13 82.38 20.25 
4 81.81 20.13 14 81.94 21.06 
5 81.94 20.31 15 80.88 20.50 
6 83.43 20.38 16 81.44 20.19 
7 83.37 20.19 17 81.31 20.38 
8 83.00 20.5 18 82.25 20.06 
9 84.12 19.63 19 82.94 20.19 
10 82.88 19.00 20 82.63 20.00 
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Fig. 2 Moving average control chart for Isc. 
 

A similar situation exists with the moving average for Fill 
Factor or MA control chart of FF shown in Fig. 3. 
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Fig. 3 Moving average control chart for Fill Factor 

 
The univariate EWMA chart was chosen for the FF metric 

because of its robustness to non-normality [6]. Fill Factor data 
are significantly skewed and an individuals chart of the king 
used for Isc would be highly sensitive to this departure. As 
with the Isc chart, control limit values appear on the right side 
axis.  

The MA chart shows Fig. 2 and Fig. 3. The MMA control 
chart show in Fig. 4 utilizes the totality of variation in both 
metrics o offer a more sensitive representation of the 
processes state of control. 
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Fig. 4 Multivariate moving average control chart for Chart of Isc, Fill 

Factor 
 
In this case, the upper control limit, or UCL, of 5.89 shown 

on the right side axis, does not have a direct interpretation 
relative to Isc of FF units. T2 values are plotted on the MMA 
and compared to the UCL. In this example, the MEWMA 
chart detects the one sigma univariate shift in the Isc and FF 
metrics CONCLUSION. 

Utilization of the MMA control chart considers the 
multivariate relationship of the photovoltaic cell electrical 
metrics. Further, the MMA incorporate the information in the 
current data point as well as previous ones, a design that 
provides improved sensitivity to small process shifts [6]. In its 
totality, the use of the MEWMA control chart may offer a 
more sensitive approach to process control situations 
commonly encountered in photovoltaic processing. 

Additionally, the ability of the MMA chart to expand to as 
any variables as needed, suggests an application with multiple 
photovoltaic electrical metrics being used in concert to 
determine the processes state of control. Improved insight into 
the causes of process events is possible with a multivariate 
perspective because the overall nature of the correlation 
structure of the photovoltaic variables is considered. 

In closing, the use of multivariate methodology for analysis 
of photovoltaic process data may offer a more appropriate 
alternative than one-variable at a time approaches. Continuing 
applied research will seek to further investigate the potential 
usage of multivariate methodology in photovoltaic settings. 
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