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Abstract—The paper presents a multimodal approach for 

biometric authentication, based on multiple classifiers. The proposed 

solution uses a post-classification biometric fusion method in which 

the biometric data classifiers outputs are combined in order to 

improve the overall biometric system performance by decreasing the 

classification error rates. The paper shows also the biometric 

recognition task improvement by means of a carefully feature 

selection, as much as not all of the feature vectors components 

support the accuracy improvement.  
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I. INTRODUCTION 

HE multimodal biometric systems integrate more 

technologies to perform people recognition by exploiting  

their individual physiological and/or behavioral traits. The 

increasing focus on the multimodal modern approach is 

justified by the unimodal biometric recognition systems 

limitations. The following main issues were encountered in the 

actual practice of unimodal biometric methods: security 

issues, accuracy issues and non-universality issues.  

Most of the actual researches on multimodal biometrics 

focused on  similarity matching score-level fusion schemes, 

but without further considering the statistical classification 

approaches and the classifiers combinations.  The biometric 

fusion was only performed by combining the individual 

distance-based scores. 

A novel approach is to apply the multi-classifier approach 

for an individual biometric within a multimodal system, and 

then combining their outputs (i.e. by averaging), thereby 

providing an additional local optimization level. This could be 

done by performing classification on carefully selected subset 

of features, and combining the results. The purpose is to 

increase the biometric recognition accuracy. 

The main applications of the multimodal biometric 

authentication solutions are physical (i.e. border control) and 

logical (local and remote) access control (i.e. local or remote 

database access securing) [1]. 

The remainder of this paper is structured as follows. Section 

II presents the proposed multimodal biometric system 

architecture.  Section III specifies the classification models 

applied for each of the integrated biometrics . The biometric 

fusion method is presented in section IV. Section V presents 

 
Sorin Soviany is scientific researcher at National Communications 

Research Institute, Bucharest, Romania.(phone: +40-21-3000011; fax: 021-

318-9575; e-mail: sorin_soviany@co.cnscc.ro).  
Cristina Soviany is founder and Managing Director at IDES Technologies, 

Bruxelles, Belgium (e-mail: cristina.soviany@ides-technologies.com). 

Mariana Jurian is professor at Electronic and Computers Department, 
Pitesti University, Romania  (e-mail: m_jurian@yahoo.com). 

the achieved results (error rates) for the proposed multimodal 

biometric system (multi-classifier approach); these results are 

given on the ROC (Receiver Operating Characteristic) curves 

for each of the model component and for the overall 

multimodal system, respectively. Section VI concludes our 

research and also provides future research directions to be 

explored in order to improve the multimodal biometric 

recognition accuracy. 

II. THE MULTIMODAL BIOMETRIC SYSTEM ARCHITECTURE  

The multimodal biometric system is a biometric system 

which integrates more biometric technologies to perform the 

authentication process.  

The multimodal biometric authentication  is based on a 

typical pattern recognition application which is performed in 

the following stages [4][5]:  

 

• data acquisition: for each of the biometrics the 

measurements are performed providing the primary biometric 

data; 

• feature extraction: to find a given number of 

distinguishing features carrying information. The multimodal 

biometric system architecture includes a feature extraction 

function for each of the integrated biometrics; 

• feature selection: a further dimensionality reduction stage 

providing the most discriminatory information, out of all 

possible features, in order to find out a subset of features 

achieving the best generalization performance of the classifier 

when trained on this subset; 

• data classification: the essential step of the biometric 

recognition; its performance provides also the system security 

and accuracy[6]; 

• post-classification biometric fusion: within this step, 

biometric data pre-processed (i.e. by feature extraction and 

selection tasks) and/or processed (by classification and/or 

matching tasks)  are combined in a score-level approach; 

• final acceptance/rejection decision: the global score 

given as a result of post-classification biometric fusion (S) is 

compared to the system security threshold (θ).  

 

The proposed multimodal biometric system architecture is 

depicted in fig. 1[3]. 
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This structural-functional model integrates the following 

biometric methods: 

• fingerprint recognition; 

• iris recognition; 

• palmprint recognition 

 

It was used a database containing images of iris, fingerprint 

and palmprint of 20 persons. On these images it was designed 

for each component a set or relevant features and then we 

selected the optimal classification algorithms. This is the 

training dataset used to design the classifiers to be used for 

each of the multimodal biometric system  components. The 

applied classifiers were tested on a validation dataset. The 

training and validation datasets are independent. The 

validation dataset includes 10 biometric records, each of them 

belonging to one person. The biometric system is used for an 

identification purpose, therefore it deals with a multi-class 

problem in which every person’s biometric data are belonging 

to one class.  

III. CLASSIFICATION MODELS FOR BIOMETRIC DATA  

For the proposed combined system we developed 

classification models for each of its three components 

(fingerprint, iris and palmprint) separately. For each of these 

components it was designed a set of meaningful features that 

depicts the characteristics of the data. These features form the 

representation space for each component model.  Then a set of 

classification algorithms was applied  to classify the data in 

the given number of classes. For these systems the number of 

classes is equal to the number of people that needs to be 

classified or recognized. Moreover, after choosing the best 

classifier (or combination of classifiers) for each component, it 

was optimized the chosen representation space and 

classification algorithms using the ROC analysis by fixing the 

operating point in such a way to obtain the best accuracy 

tradeoff not only per component but also for the entire multi-

modal system as a whole.  

 

A. The classification model for fingerprint identification:      

Parzen classifier 

Let us consider the first system component, i.e. the 

fingerprint identification. For this subsystem, there were 

originally designed 25 fingerprint features and after careful 

analysis we finally selected 7 relevant features. Also it was 

considered minutiae-related features like  ridge ending, 

bifurcation and dots; also some of the features are given as 

distances between 5 relevant points on a central ridge, and also 

from the ending point. Basically, the considered features are 

the minutiae relative positions on a fingerprint (captured from 

the same source). 

The optimum classifier found for this set of 7 features was 

the Parzen classifier. 

Parzen classifier is based on a non-parametric estimate of 

the class-conditional probability density function (p.d.f.).   

The main components of any probabilistic classifier model  

(i.e. Naïve-Bayes classifier and also Parzen classifier) are the 

following[4][5]: 
 

• P(ωi) is the prior probability for class ωi, i 1, C=  

• ( )i
P x ω  is the class-conditional probability density 

function.  
 

The probabilistic model assumes that both P(ωi) and 

( )iP x ω  are known.  The posterior probability is computed 

based on Bayes theorem, according to (1): 
 

( ) ( ) ( )
( )

i i

i

P P x
P x

P x

ω ⋅ ω
ω =           (1) 

where P(x) is given by  
 

( ) ( ) ( )C

j j
j i

P x P P x
=

= ω ω∑            (2) 

Within this probabilistic framework, the optimal classifier is 

one that performs assignation of the feature vector x to the 

class with the highest posterior probability, i.e.: 
 

( )
k karg max P xωω = ω           (3) 

Parzen classifier uses this probabilistic model and a kernel 

function in order to get the class-conditional probability 

density estimate and finally to estimate the posterior 

probability for each class [5]. 

As for all biometric data classifiers considered for the 

proposed multimodal system, the training dataset is relying on 

biometric records from a number of persons N=20. The 

validation dataset includes 10 records, which should be 

independent from the training set. These datasets are denoted 

as it follows: 

 

Z1={z11,z12,..,z1N} the fingerprint classifier training dataset; 

 n1 is the selected features number (n1 = 7); 

 X1 denotes the validation dataset, with size(X1)=10 

Fig. 1 The multimodal biometric system architecture 
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The Parzen classifier model uses a kernel function (Parzen 

window function), denoted K(x1); for fingerprint identification 

subsystem,  x1 is the fingerprint feature vector resulted from 

the feature extraction and selection steps.  

K(x1) denotes a multi-dimensional function centered around 

the component Z1j of the training dataset, and it is usually 

given in the following form: 

 

j

n1

x1 z11
K

hh

− 
 
 

 

 

where h is the smoothing parameter for the Parzen window. 

According to the Parzen classifier model, the class-conditional 

probability density function is estimated based on the samples 

set Z1 (for fingerprint biometric data, in this case) by: 

( )
N

j

i n1
j 1i

x1 z11 1
P̂ x1 K

N hh=

− 
ω =  

 
∑          (4) 

jz1 Z1∈  

 

In equation (4), Ni is the number of training samples (from 

the dataset Z1) belonging to the class 
1ω .  

Also the prior probability estimators are given by   

( ) i

i

N
P̂

N
ω =                  (5) 

 

Therefore the posterior probability estimate for the 

fingerprint feature vector x1 is given by Bayes theorem, (1), in 

which the prior probability estimates and the class-conditional 

p.d.f. estimates are given by (4) and (5): 
 

( )
( )

N
j

i n1
j 1

x1 z11 1
P̂ x1 K

Np x1 hh=

− 
ω =  

 
∑       (6) 

 

If using the following indicator function: 

 

( )
( )j i1,      if  z1 class

I i, j
0,      otherwise

∈ ω
= 


 

then the posterior probability for the fingerprint feature vector 

x1 is estimated by: 

 

( ) ( ) ( )
N

j

i 1

j 1

x1 z11
P̂ x1 C x1 I i, j K

N h=

− 
ω =  

 
∑     (7) 

The equation (7) includes a generic term ( )1C x1  which is 

dependent on the feature vector x1 and also on the samples 

number N of the dataset. 

The assumed kernel function (Parzen window) for the 

fingerprint classification model was the multi-variate Gaussian 

kernel function, as much as the data distribution follows the 

normal law as resulting from our experiments. The Gaussian 

kernel is expressed by  (8): 

 

 
( ) ( )

( ) ( )

j

Gn1 n1n1

1

T
1

j 1 j2

x1 z11 1
K

hh h 2 det S

1
           exp x1 z1 S x1 z1

2h

−

− 
= ⋅ 

  ⋅ π

 ⋅ − − − 
 

     (8) 

 

where S1 is the covariance matrix expressed by 

 

[ ]( ) [ ]( )T

1
S E x1 E x1 x1 E x1 = − −

 
      (9) 

 

Finally the posterior probability estimates for fingerprint 

feature vector x1 are given by the following equation in the 

Parzen classifier model with multidimensional Gaussian kernel: 

( ) ( ) ( )
N

j

i 2 G

j 1

x1 z11
P̂ x1 C x1 I i, j K ;    i=1,...,C

N h=

− 
ω =  

 
∑    (10) 

 

C2 is also a coefficient dependent on the feature vector x1. For 

the biometric identification, the overall classes number C is 

the number of the genuine users which were previously 

enrolled in the biometric system database.  

 

B. The classification model for iris identification: KNN 

classifier 

For the second component, i.e. the iris recognition subsystem 

there were generated 41 relevant features from which there 

were finally selected 13 features (i.e. the normalized distance 

between the inner and the outer boundary iris,  spatial 

location, orientation and frequency for typical iris patterns or 

texture details, spots, furrows, stripes and so on). The optimal 

found classifier was a KNN classifier with a kernel of 7. 

The KNN (K-Nearest Neighbor) algorithm is a discriminative 

classification rule as it directly models the decision function. 

Also it is a distance-based classifier, because it requires a 

distance function on data instances to be classified. Basically, 

the KNN classifier assigns an object described by a set of 

relevant features to the class with the highest occurrence 

frequency among k nearest neighbors in the classifier’s 

training dataset [4], [6]. 

Let us x2 is the iris feature vector obtained from this 

biometric. Also the training dataset for iris data KNN 

classifier is Z2={z21, z22,…,z2N}. Each component of the iris 

training dataset is a labeled data instance. 

For every instance X2i, i=1,2….,Nv in the validation dataset 

(where Nv is the validation dataset size) , the KNN algorithm 

performs essentially in the following steps: 

 

1. Locates the K nearest examples in the iris training dataset 

Z2: {Z21, Z22,…,Z2K}. These are the K closest training data 

instances to the instance x2 to be classified; 

2. Label x2 with the class label that occurs more frequently 

among the selected K training instances for the iris classifier. 

In order to compute the distance between a test instance x2 

(iris feature vectors) and its neighbors from the training 
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dataset, the Mahalanobis distance was applied, according to 

(11): 

 

( ) ( ) ( )1

MD x2,z2 x2 z2 S x2 z2
τ −= − ⋅ ⋅ −     (11) 

 

where S is the covariance matrix between the instances x2 and 

z2. This option is reasoned by the main properties of 

Mahalanobis distance i.e. scaling-invariance and exploiting 

correlation among the features.  

The choice of the K value is critical for this classifier 

results. A higher value of the selected neighbors number in 

KNN classification model provides a smoother, less locally 

sensitive decision function. On the other hand, the drawback 

of increasing value of K is that as K becomes closer to the 

training dataset size N, the classifier performance will 

approach that of the most statistical classifiers, because the 

classifier will assign the actual data instance to the most 

frequent class in the training dataset. 

The problem of the distant instances influence is avoided, in 

our model, by assigning a weight to each neighbor vote. This 

weight is defined as a function of the distance between the 

unknown instance (to be classified) and its neighbor in the 

training dataset. The weight is given as an inversed squared 

distance between the two instances: 

 

( )
( )2

i

1
w i

d z2 , x2
=               (12) 

where: 

w(i) is the weight for the neighbor instance z2i; 

x2 is the unknown instance to be classified. 

Also the distance between the training data instance and the 

testing instance, d(z2i, x2), is computed using Mahalanobis 

distance, given by (11). 

  

C. The classification model for palmprint identification: 

combined classifier (Fisher and KNN) 

For the third component, i.e. the palmprint recognition 

subsystem 34 features were designed from which there were  

selected 19 features (such as distances between the main lines, 

number of singular points, also fingerprint-like minutiae 

extracted from the ridges within selected region of  interest in 

the palm)  as representation space for this data. As a final 

classifier for this subsystem, a combined classifier was 

applied, consisting on a Fisher (on a subset of 9 from the 

selected 19 features) and a KNN with a kernel of 5 (on a 

subset of 10 from the 19 selected features). 

Actually a multi-class extension of the Fisher linear 

discriminant analysis (LDA) was applied to classify the first 

subset of the palmprint features.  

This linear discriminant gives a separation by finding out of 

a linear transformation w in the F-dimensional representation 

space in order to maximize the ratio between the inter-class 

scatter matrix determinant and the intra-class scatter matrix 

determinant, actually the following function [4]: 

 

( ) Inter class variance
J w

Intra class variance

−
=

−
          (13) 

 

For a training dataset consisting in N F-dimensional labeled 

samples z1,z2,…,zN, belonging to N classes (as much as the 

biometric application has to perform persons identification), 

the intra-class scatter matrix is given by 

 

( )( )( )i

TN

within i 1 z class
S z z1 z z1

= ∈ ω
= − −∑ ∑       (14) 

where  

( )iz class

1
z1 z

Ni ∈ ω

= ∑                 (15) 

and Ni is the number of training samples belonging to class i. 

Also the inter-class scatter matrix is given by (16): 

( )( )
N T

between

i 1

S Ni z1 z z1 z
=

= − −∑          (16) 

 

where z1  is the mean for each class, computed with (15), and 

z  is the total mean vector given by 
N

i 1

1
z Niz1

N =

= ∑                 (17) 

The total number of classes is assumed to be the same as the 

total number of the training dataset records. This assumption is 

valid for a biometric identification process, in which each 

person’s biometric data are belonging to a separate class. 

After obtaining the intra- and inter-class scatter matrix, the 

Fisher criterion states that the desired linear transformation w 

should maximize the following ratio: 

 

( )
T

between

T

within

w S w
J w

w S w
=              (18) 

 

This linear transformation could result from the generalized 

eigenvalues equation:  

between withinS w S w= λ              (19) 

where λ is the eigenvalue for the matrix  
1

within between
S S−

 

Finally, once having the linear transformation w, the 

classification is performed in the transformed palmprint features 

representation space based on a distance metric. Again, the 

Mahalanobis distance between the samples was used, for the 

same reasons as for the iris data classifier. 

The second feature subset of the palmprint biometric is 

classified using the KNN classifier (k=5), with the same 

distance metric as for KNN-based iris classifier 

(Mahalanobis).  

Finally the two classifiers output were average to obtain the 

decision function value for the palmprint biometric. 

IV. THE BIOMETRIC FUSION METHOD  

The fusion method consists on a unique combination of 

fingerprint identification, iris recognition an hand recognition, 
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each subsystem being designed and optimized separately and 

also entirely, at a global level [2][7][8]. 

Taking the output for each identification subsystem, i.e. y1 

for fingerprint component, y2 for iris component and y3 for 

palmprint component, the whole multimodal system output Y 

is given by the following rule: 
n

i i

i 1

Y w y
=

= ⋅∑                  (20) 

where: 

n is the identification components number. Here n = 3; 

wi is the weight which we assigned to the component i.  

yi is the classifier i output. 

Basically the weights are taken depending on each 

identification component performance, so that the more accurate 

identification subsystem  should have the highest contribution 

on the overall system output. Also the assigned weights have 

to meet the following normalization condition: 
n

i

i 1

w 1
=

=∑                   (21) 

 

Given the training dataset size influence over the classifier 

performance, a dynamic approach for updating these weights 

was applied : 

• weights initialization 

i i,0

1
w w ,      i=1, n

n
← =             (22) 

• weights updating 

i i i iw w K ,      i=1, n,      K 0← ⋅ >            (23) 

 

i

i ii

i i i i i

1
,      ,      i=1,n

max minK

max min ,      ,      i=1,n

 ε < ε ε − ε= 
 ε − ε ε > ε

 

 

where εi is the error rate for classifier i, and ε is the overall 

system average error rate. 

This dynamic strategy allows for further accuracy 

improvement for our multimodal biometric system, even by 

additional biometric fusions such as feature-level fusion or by 

rejection option for low-quality biometric data. 

V. RESULTS AND DISCUSSION  

This optimization method is focused first locally, at the 

component level and finally global, at the system level. All 

optimizations were done using a thorough fully analysis of the 

ROC curves on error per component and then global. 

Fig. 2 presents the ROC curve with error rates on 2 data 

samples from our database:  A (which stands for person A) 

and B (which stands for person B) for the fingerprint 

identification component. The optimal selected model for this 

fingerprint identification component had an average error of 

0.14. This is a tradeoff for the fingerprint identification 

subsystem.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Similarly, fig. 3 depicts the ROC curve for the iris 

identification subsystem. The best performance obtained for 

this component corresponds to an average error of 0,15, again 

as a tradeoff for the 2 classes (persons) A and B. This value is 

close to the average error rate obtained for fingerprint 

identification. Like for the previous identification subsystem, 

the global error rate for all classes could be evaluated by 

averaging on each persons pairs. Also these tradeoffs were 

obtained for certain security thresholds fixed for the 

identification process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 shows that for palmprint identification subsystem, the 

operation point (defined by the tradeoff for the average rate) 

provides an average error rate of 0,17. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 The ROC curve with error rates  for fingerprint 

identification subsystem 
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Fig. 3 The ROC curve with error rates  for iris 

identification subsystem 
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Fig. 4 The ROC curve with error rates  for 

palmprint identification subsystem  
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The final solution was achieved by combining the separate 

3 models and, in fig. 5 below, we give again the ROC on error 

rates for the same 2 data samples A and B. For the same 

threshold as for each identification subsystem, the achieved 

average error rate of 0,07 is less than the average error per 

person for each of the system components (fingerprint, iris and 

palmprint recognition subsystems, respectively). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VI. CONCLUSIONS  

In this paper it was introduced a new vision for of a highly 

accurate biometric system which combines fingerprint 

identification, iris identification and palmprint identification 

systems in order to optimize the accuracy and performance. 

This approach optimized the performance of each component 

independently and then as a combination of the whole system. 

As it was presented, using this combined approach it is 

possible to obtain a very accurate biometric identification with 

global errors on each class (person to be identifies) less than 

0,08. This global error rate was obtained for a fixed security 

threshold of the biometric system.  

However, there are still opportunities for further 

improvement  as much as it is still possible to decrease the 

classification error rate by increasing the training dataset size  

for each biometric classifier. Another improvement possibility 

is to make a more efficient feature selection and to include an 

additional biometric fusion (i.e. feature-level fusion). 

Therefore, a multimodal biometric system with multi-level 

fusion schemes is an option to be further researched.  

Finally, the multi-classifier approach applied for 

multimodal biometric systems allows to perform not only 

global optimization but either local optimization, in order to 

improve the biometric recognition accuracy. This approach 

also supports designing the multimodal system with multi-

level biometric fusion, as previously mentioned.   
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