
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:3, 2010

422

A Multi-Signature Scheme based on Coding Theory
Mohammed Meziani and Pierre-Louis Cayrel

CASED–Center for Advanced Security Research Darmstadt
Mornewegstrasse 32, 64293 Darmstadt, Germany

Email: {mohammed.meziani, pierre-louis.cayrel@cased.de}

Abstract—In this paper we propose two first non-generic con-
structions of multisignature scheme based on coding theory. The
first system make use of the CFS signature scheme and is secure
in random oracle while the second scheme is based on the KKS
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on a difficult problems in coding theory: The Syndrome Decoding
problem which has been proved NP-complete [4].
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I. INTRODUCTION

Digital signature schemes, similar to handwritten signatures,
are a fundamental cryptographic primitive used in practice
for authenticity and non-repudiation of messages. Several
signature schemes exist, but most of them are based on the
computational difficulty of solving number theoretic problems
such factoring problem, discrete logarithm problem in the
multiplicative group of a prime field or in the group of points
of an elliptic curve over a finite field. But, in the event
of quantum computers all these schemes could be broken
due to Shor’s algorithm [29] proposed in 1997. Indeed, the
Shor’s algorithm can solve both the factoring problem and the
discrete log problem in finite filelds and on elliptic curves in
polynomial time. Therefore, the cryptographic community has
to investigate other mathematical problems that are believed to
be hard to solve by quantum algorithms. Among these there
are problems in coding theory using error correcting codes.
The problem of decoding general codes is such a problem,
which has been proven to be NP-compelete by Berlekamp,
McEliece and Van Tilborg [4].

In 1978, McEliece [22] first proposed an asymmetric cryp-
tosystem which is based on the coding theory and derives
its security from the general decoding problem. No efficient
attack on this schemes has been found up to date, though nu-
merous computationally intensive attacks have been published
in the literature [5], [12]. The idea behind this scheme is to first
select a particular (linear) code for which an efficient decoding
algorithm is known, and then to use a trapdoor function to
disguise the code as a general linear code.

The encryption in the McEliece cryptosytem is not
invertible, and therefore it cannot be used for authentication
or signature schemes, this is indeed why very few signature
schemes based on coding theory have been proposed. This
problem was open until 2001 in when Courtois et.al [9]
showed how to achieve a code-based signature scheme
whose security is based on the syndrome decoding problem.
While this problem is NP-complete, their construction is

still inefficient for large numbers of errors. Recently, a few
code-based signature schemes with additional properties have
been published and most of them make use the construction
proposed in [9].

ID-based cryptography. The motivation behind the identity
based cryptography, proposed by Shamir in 1984 [28], was
to simplify the PKI requirements. Instead of using the public
key, a user can use his identity (e.g. e-mail address or
IP-address) while the associated secret key can be issued by
a trusted key generation center (KGC) thanks to a master
secret key that only the KGC knows. And thereby some of
the costs associated to PKI and certificates can be avoided.
Despite this, the identity-based cryptography suffers from a
major drawback since a complete trust must be placed on the
KGC. This problem is known as the key escrow problem.
To overcome this problem, a solution has been proposed in
[6] which consists in employing multiple KGCs to jointly
produce the master secret key.

Multisignature schemes. A multisignature scheme (MSS)
is a normal signature scheme that enables a group of users to
cooperatively sign the same document and can be verified by
any user. Multisignature schemes have many practical uses
such as signing legal electronic documents (e.g. contracts,
cheque, etc) by multiple managers in a company. Based on
the nature of the application scenarios, the multisignature
schemes are divided into categories depending on the signing
manner: serial and parallel signing. In the first case, the
resulting multisignature is equal to the signature generated
by the last signer. More precisely, a signer produces his own
signature on a document then broadcasts it to the next signer
which after verifying it signs the received components and
so on. Here the signing order property should be taken into
account. That is, the resulting multisignature depends on
the signing order. In the second case the multisignature is
produced by a designated signer, called a clerk, which has
to collect individual signatures generated by each signer and
then combine them into a single signature.

Multisignature schemes have been first introduced in [16].
However, these schemes have an efficiency issue because
the generation and the verification cost of the multisignature
increases linearly with the number of signers. Since then,
various multisignature schemes have been realized. For
example, multisignature schemes that are based on RSA
assumption [15], [14], [26], constructed form bilinear maps



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:3, 2010

423

[7], [30], based on DL assumption [13], [2] and derived from
identification schemes like the Fiat-Shamir [27].
With regard to security, the author of [23] provided the
first formal security model of multisignature schemes called
Accountable-subgroup multisignatures. In this model, a
provably secure multisignature scheme has to satisfy two
important properties: flexibility and accountability. The first
property guarantees that any subset of signers can jointly
produce a signature on a document and any verifier can decide
whether this subset was sufficient to accept the signature
while the second property ensures that the identity of any
signer can be revealed from the signed document without a
trusted third party. This property is very interesting in the
sense that if an incorrectly issued multisignature is detected,
then it is necessary to identify the corrupted signer. Moreover,
this model assumes that the set of signers is known a priori
and a signer is not allowed to generate own partial signature
before the previous one has been completed. Following
this model, [18] proposed multisignature schemes based
on the probabilistic signature scheme while [25] designed
multisignature schemes using the full domain hash. In these
constructions, the signing order is performed in a serial
manner and the length of signature as well as the signing
cost grows with the number of signers.

Recently, provably secure multisignature schemes using
trapdoor one-way permutations [20], [19] have been proposed.
These schemes make use of the probabilistic full domain
hash and the probabilistic signature scheme, respectively and
they are both tightly secure in the random oracle model.
Furthermore, the key length in these schemes is independent
from the signing order and the length of the signature
increases by 30 bits per a signer.

Our contribution:
In this paper, we propose two serial multisignature schemes
using error correcting codes. To the best of our knowledge
there is no existing multisignature schemes based on coding
theory. We use the modified version of CFS signature scheme
[9] and the KKS signature scheme [17] as the base of our
multisignature schemes. These schemes are secure against
existential forgery under adaptive chosen message attack in
the random oracle model assuming computational syndrome
decoding problem is hard. The first scheme achieves a
signature size of 377 + 18.47N bits for a security level of
281.5, where N is the number of signers. The second scheme
produces signatures whose length is independent of N . For
instance, 1873.8 bits for a security level of 280.22. However,
both systems require large public keys of size 0.7 MB and
0.13 MB, respectively.

Organisation:
After recalling some basic definitions and hard problems in
coding theory in Section II, we list two code-based signature
schemes that we need in our constructions in Section III.
In Section IV, we present our code-based multisignature
schemes, and we conclude in Section V.

II. CODING THEORY BACKGROUND

This section will first provide a brief introduction to coding
theory, then give the basic definitions and list some hard
problems we use throughout this paper.

A. Coding theory

The term coding theory refers to a broad branch of mathe-
matics concerned with transmitting data across noisy channels
and recovering the message. It provides secure transmission
of messages, in the sense that any errors which are introduced
during the transmission can be corrected.

B. Notations and Definitions

Let Fq to denote the finite field with q elements.
a) Codes: An (n, k)-code over Fq is a linear subspace C

of the linear space F
n
q . Elements of F

n
q are called words and

elements of C are codewords. We call n the length, and k the
dimension of the code. If q = 2, the code is called binary, and
is denoted by [n, k].

b) Hamming distance, Hamming weight: The Hamming
distance d(x, y) between two words x, y ∈ F

n
q counts the

number of positions in which x and y differ. More for-
mally, denote x = (x1, . . . , xn) and y = (y1, . . . , yn). Then
d(x, y) = |{i : xi �= yi}|. Here, we use |S| to denote the
number of elements, or cardinality, of a set S. The Hamming
weight (or just weight) of a word x ∈ F

n
q is denoted by wt(x)

and represents the number of non-zero entries of this word,
i.e., wt(x) = d(0, x) , where 0 is the vector containing n 0’s.

c) Minimum distance: The minimum distance d of an
(n, k)-code C is the minimum Hamming distance between two
codewords, i.e., d = minx,y∈C, x �=y d(x, y) .

d) Generator matrix, systematic codes: A generator
matrix of an (n, k)-linear code C is a k × n matrix G
whose rows form a basis for the vector subspace C, i.e.,
C = {xG : x ∈ F

k
q} . Notice that C is not unique for a

code C. We call a code systematic if it can be characterized
by a generator matrix C of the form G = (Ik×k|Ak×(n−k)),
where Ik×k is the k× k identity matrix and A an k× (n− k)
matrix.

e) Parity-check matrix, dual code: A parity-check matrix
of an (n, k)-linear code C is an (n− k)× n matrix H whose
rows form a basis of the orthogonal complement of the vector
subspace C, i.e. it holds that, C = {c ∈ F

n
q : HcT = 0} .

Note that H can be viewed as the generator matrix of an
(n, n − k) linear code C⊥ containing codewords c̃ such that
for all codewords c ∈ C, it holds that c̃T .c = 0. The C⊥ is
generally referred to as the dual code of C.

f) Syndrome: Let H be a parity check matrix of the code
C. The syndrome of a word x ∈ F

n
q is a vector s ∈ F

n−k
q

defined by s = HxT .

C. Hard problems

In what follows, we recall some hard problems. The security
of most code-based cryptosystems is related to hardness of
solving these problems.
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1) Syndrome Decoding problem (SD):
• Input: An r×n matrix H over Fq, a target vector s ∈ F

r
q

and an integer t > 0.
• Question: Is there a vector x ∈ F

n
q of weight ≤ t, such

that s = HxT ?.
This problem has been proved to be NP-complete by

Berlekamp, McEliece, and van Tilborg [4] in 1978 for the
general class of binary linear codes. In 1994, Barg [1] extended
this result over linear codes defined over Fq. NP-completeness
ensures that this problem can not be solved in polynomial time
in the worse case, meaning that there are some hard instances,
not that every instance is hard.

To end this section, we state another hard problem, Goppa
Parametrized Bounded Decoding problem (GPBD), which is
a variation of SD problem and have been proved to be NP-
complete by Finiasz [11] in 2004.

2) Goppa Parametrized Bounded Decoding (GPBD):
• Input: An (n−k)×n matrix H over F2 and a syndrome

s ∈ F
n−k
2

• Question: A word x ∈ F
n
2 of weight ≤ n−k

log2(n) , such that
HxT = s ?.

III. THE UNDERLYING CODE-BASED SIGNATURE SCHEMES

Our constructions are based on two code-based signature
schemes that are the Courtois et al.’s signature (CFS) [9] and
the Kabatianskii et al.’s signature scheme (KKS) [17]. Here is
the description of two schemes.

A. CFS Signature Scheme

1) Description: For a long time no code-based signature
scheme was known, until the first (unbroken) was proposed by
Courtois, Finiasz and Sendrier [9] (CFS) in 2001. The basic
idea of the CFS signature scheme is to choose parameters such
that an inversion for the Niederreiter scheme is practically
possible. This is done at the cost of rather large parameters
(except for the length of the signature) when comparing to
other signature schemes, but at least it does exist !. Before
describing the CFS scheme we first recall the Niederreiter
public key cryptosystem in Algorithm 1.

Algorithm 1 The Niederreiter PKC
Key Generation:
- Consider an (n, k)-code Cover Fq having a decoding

algorithm γ.
- Construct an (n− k)× n parity check matrix H of C.
- Choose randomly an (n− k)× (n− k) invertible matrix

Q over Fq.
- Choose randomly an n×n permutation matrix P over Fq.
- Set H̃ = PHQ as public, and (P,H, Q, γ) as secret.
Encryption: To encrypt a message x ∈ F

n
q of weight t

- Compute y = H̃xT .
Decryption: To decrypt a cipher y ∈ F

n−k
q s.t. y = H̃xT

- Compute Q−1y (= HPxT )
- Find PxT from Q−1y by applying γ
- Find x by applying P−1 to PxT .

The McEliece or the Niederreiter schemes are not naturally
invertible, i.e. if one starts from a random element y of F

n
2 and

a code C[n, k, d] capable of correcting d−1
2 errors, it is almost

sure that we won’t be able to decode y into a codeword of C.
This comes from the fact that the density of decodable words
is very small.

Courtois, Finiasz and Sendrier proposed in [9] the first
practical signature scheme based on coding theory. The Full
Domain Hash (FDH) approach assumes that all the hash values
can be inverted by decryption.

The CFS signature scheme is based on the Niederreiter
cryptosystem: signing a document requires to hash it into a
syndrome and then to try to decode this syndrome. However,
for a t-error correcting Goppa code of length n = 2m, only a
fraction of approximately 1/t! of the syndromes are decodable.
Thus, a counter is appended to the message and the signer tries
successive counter values until the hash value is decodable.
The signature consists of both the error pattern of weight t
corresponding to the syndrome, and the value of the counter
giving this syndrome.

Algorithm 2 The CFS signature
Key Generation:
- Pick a random parity check matrix H of a (n, k)-binary

Goppe code correcting up to t errors and having a
decoding algorithm γ.

- Construct the matrices Q, H̃ and P as in Algorithm 1.
Signature: To sign a message m
(1) i← i + 1
(2) x′ = γ

(
Q−1h(m‖i))

(3) if no x′ was found go to 1
- Output (i, x′P )
Verification:
- Compute s′ = Hx′T and s = h(m‖i).
- The signature is valid if s and s′ are equals.

2) Security: In [12], the authors present an attack against
the CFS scheme due to Daniel Bleichenbacher. Due to this
attack, the values of m and t used in the CFS scheme have to
change. The authors of [12] propose m = 21 and t = 10, or
m = 19 and t = 11, or m = 15 and t = 12, as new parameters
for a security of more than 280 binary operations. Due to this
attack, the values of m and t used in the CFS scheme have
to change. The authors of [12] propose m = 21 and t = 10,
or m = 19 and t = 11, or m = 15 and t = 12, as new
parameters for a security of more than 280 binary operations.

3) Security proof in the random oracle model: In [10],
the author proposes to choose this counter randomly in
{1, . . . , 2n−k}, and then obtain a proof of security in the
random oracle model.

B. KKS signature scheme

Kabatianskii et al. [17] proposed a signature scheme based
on arbitrary linear error-correcting codes. Actually, they pro-
posed to use a linear application f . Three versions are given
which are presented in the sequel but all have one point in
common: for any m ∈ F

k
q , the signature f(m) is a codeword
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of a linear code U . Each version of KKS proposes different
linear codes in order to improve the scheme. We now give a
full description of their scheme.

1) Description: Firstly, we suppose that C is defined by
a random parity check matrix H . We also assume that we
have a very good estimate d of its minimum distance.Next,
we consider a linear code U of length n′ ≤ n and dimension
k defined by a generator matrix G = [gi,j ]. We suppose that
there exist two integers t1 and t2 such that t1 ≤ w(u) ≤ t2
for any non-zero codeword u ∈ U .

Let J be a subset of {1, . . . , n} of cardinality n′, H(J) be
the sub matrix of H consisting of the columns hi where i ∈ J

and define an r × n′ matrix F
def= H(J)GT . The application

f : F
k
q → Mn,t is then defined by f(m) = mG∗ for any

m ∈ F
k
q where G∗ = [g∗i,j ] is the k×n matrix with g∗i,j = gi,j

if j ∈ J and g∗i,j = 0 otherwise. The public application
χ is then χ(m) = FmT because HG∗T = H(J)GT . The
main difference with Niederreiter signatures resides in the
verification step where the receiver checks that:

t1 ≤ w(z) ≤ t2 and F ·mT = H · zT .

Algorithm 3 The KKS signature
Key Generation:
- Select two positive integers t1 and t2 s.t. t1 ≤ t2.
- Pick a random parity check matrix H = [Ir|D] of an
(n, n− r)-code.
- Construct the matrices Q, H̃ and P as in Algorithm 1.
Signature: To sign a message m
(1) i← i + 1
(2) x′ = γ

(
Q−1h(m‖i))

(3) if no x′ was found go to 1
- Output (i, x′P )
Verification:
- Compute s′ = Hx′T and s = h(m‖i).
- The signature is valid if s and s′ are equals.

It has been proved in [8], that this scheme is few times.

IV. OUR PROPOSED SERIAL MULTISIGNATURE SCHEMES

Before presenting our constructions, we give first the
formal definition of a multisignature scheme. We denote by
S = {S1, . . . , SN} the set of N signers intended to sign the
message M .

A. Definition

A multisignature scheme MS consists of three algorithms:
the key generation MK, the mutisignature generation MS
and the multisignature verification MV) that are defined as
follows:

• MK takes a security parameter and returns a pub-
lic/secret key pair (pki, ski) for a signer Si.

• MS takes the set of secert keys (ski) and a message M
and outputs a common a multisignature σ.

• MV takes the set of public keys (pki) (or only one public
key), a multisignature σ and the message M and outputs
1 (acceptes) or 0 (rejectes).

The proposed serial multisignature schemes here follow the
model of [23] which requires a priori knowledge of an ordered
signers set {S1, . . . SN}. The basic idea of our multisignature
schemes is that a signer Si first generates a signature σi on
a message M and broadcasts it to the next signer Si+1 for
further processing. After verifying σi, Si+1 produces a valid
signature on the received components. The generation of the
multisignature will be complete when the last signer SN signs
the message.

B. CFS-based serial multisignature

1) Description: Our scheme can be regarded as the ex-
tended version of the modified CFS algorithm [10]. In this
scheme a signer Si makes use of the CFS signature decoding
algorithm to generate its signature based on the previous
signature produced by the signer Si−1. Before the signing
step, all signers first collaborate to produce a public random
vector r in a serial manner which will be signed together
with the message M . In order to check the validity of the
resulting multisignature, only the public key of the last signer
in the queue will be needed. The CFS multisignature scheme
is illustrated in Algorithm 4.

2) Performance Analysis: Using an (2m, 2m −mt) Goppa
code, each public key Hi is a binary matrix of size mt× 2m

bits which takes about 99 Mbytes for t = 9 and m = 22,
the multisignature generation consists in producing of N
successive CFS signatures of each signer, each of them re-
quires t2m3t! binary operations, where N is the number of
signers. Verification requires one matrix-vector multiplication
and N hash computing. A matrix-vector multiplication can be
performed in approximately t2m binary operations using the
mailman algorithm [21]. The CFS-multisignature is composed
of a vector of F

2m

2 of weight less than t, N indexes from
{1, . . . , 2tm} and a vector of F

tm
2 . Thus the size of CFS-

multisignature is bounded by �log2

(
2m

t

)	+ N log2 (t!) + tm.
We can easily see that the performance evaluation of the

proposed multisignature scheme depends mainly on the choice
of parameters m and t. If we want to get a reasonable signature
cost, we will need a t not greater than 10, for example (m, t) =
(22, 9) that give a security level of 281.7 according [12]. But
if we want to minimize the public key size as well as the
signature length, we take (m, t) = (15, 12) for a security level
of 281.5 [12]. In this case, the signature length amounts to
377 + 18.47N bits.

3) Security Analysis: Since the modified version of CFS
signature scheme is secure in the random oracle model [10],
We can prove the security of our scheme. The details of
our analysis will appear in a full version of the this paper,
but we can give some arguments about the security of our
scheme. Our scheme satisfies the non-repudiation and the
non-forgeability. Indeed, when N = 1, our signature scheme
degenerates into mCFS signature scheme which satisfies these
two properties. If N > 1, an attacker who does not belong
to the signer set, can not forge the multisignature because
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Algorithm 4 CFS-based multisignature
Key Generation: Each signer Si has to:
- generate his public/private key as in the CFS algorithm,i.e,

Hi = QiH̃iPi (Qi, H̃i, Pi, γi)
Signature:

1- Generation of a random vector r ∈ F
n−k
q

* S1 selects randomly k1 ∈ F
n
q of weight up to t and

computes r1 = H1 · kT
1 .

* From i = 2 to N do
Si−1 broadcasts ri−1 to Si.
Si selects randomly ki ∈ F

n
q of weight up to t and

computes ri = ri−1 + Hi · kT
i .

* Set r = rN .
2- Multisignature Generation

* S1 computes a n-bit vector s1 of weight up to t
and an index i1 s.t. H1 · sT

1 = h((M + r)|i1)
* For i := 2 to N do

- Sj−1 sends (sj−1, ij−1) to Sj .
- Sj checks the validity of sj−1 by

Hj−1 · sT
j−1 = h((M + r)|ij−1) and w(sj−1) ≤ t

- Sj computes a n-bit vector sj of weight up to t
and an index ij s.t.
Hj · sT

j = h((Hj−1 · sT
j−1 + h(M + r))|ij)

* Set s = sN .
* σcfs = (s, i1, . . . , iN , r) is the multisignature.

Verification: Given a tuple σ = (s, i1, . . . , iN , r)
* Check that w(s) ≤ t
* Compute x = HN · sT .
* Compute iteratively the sequence (zi)i=1,...,N

defined by:
- z1 = h((M + r)|i1)
- For j := 2 to N : zj = h((zj−1+h(M +r))|ij).

* The multisignature σ is valid if x and zN are equals.

the signer set has been already known in advance and if he
generates a couple (sA, iA) as own signature, this signature
will be invalid after checking it by the next signer.

C. KKS-based serial multisignature scheme

1) Description: Our scheme extends the regular KKS-
signature into a multi-signer one. In this scheme each signer
applies the KKS-signature algorithm to produce his own
signature on received components before he forwards it to
the next signer for consecutive handling. Before the beginning
of signing process, all signers first collaborate to create a
public a vector r of {0, 1}n−k in a serial way which will be
concatenated with the original message M . During the signing
step, a signer Si has first to verify the previous signature σi−1

generated by previous signer and then to produce his own
signature σi as follows: The signer hashes the bitwise addition
of M linked with r and the preceding KKS-signature σi−1

generated by Si−1 and then he applies the KKS-algorithm on
the result. After that, he replaces the resulting signature by
substraying the quantity (σi−1 ·Gi) from it. The last operation
is designed in order that the new signature can be verified
by the succeeding signer in the same manner as the standard

KKS-signature. The KKS-multisignature σkks consists finally
of the KKS-signature produced by the last signer in the queue
(say sN ) and the vector r constructed before. To test whether
this multisignature is valid, the verifier has to apply the KKS-
verification algorithm. The Algorithm 5 explains in more detail
our scheme.

Algorithm 5 KKS-based multisignature
Key Generation: Given a hash-function of range {0, 1}n−k,

each signer Si has to:
- select n, k, t1 and t2 as security parameter.
- select a random matrix Hi as a parity check matrix of

a random (n, k) code Ci.
- Choose secretly and randomly:

* a generator matrix Gi of a linear code Ui of length
n′ ≤ n and dimension k s.t. t1 ≤ w(u) ≤ t2
for all u ∈ Ui.

* a subset Ji of {1, . . . , n} of cardinality n′.
- Build the sub matrix Hi(Ji) of Hi consisting of the

columns hj where j ∈ Ji.
- Define the matrix Fi = Hi(Ji)GT

i

- The public key: (Fi, Hi, t1, t2)
- The private key : (Ji, Gi).

Signature:
1- Generation of a random vector r ∈ F

n−k
q

* S1 selects a random vector r1 ∈ F
n−k
q .

* For i := 2 to N do
- Si−1 broadcasts ri−1 to Si.
- Si selects a random vector ri ∈ F

n−k
q

and assigns (ri−1+ri) to ri, i.e. ri ←− (ri−1+ri).
* Set r = rN .

2- Multisignature Generation
* S1 calculates σ∗

1 = h(M |r) ·G1 and produces σ1 s.t.

σ1,j =

{
σ∗

1,j if j ∈ J1,
0 if j /∈ J1.

* For i := 2 to N do
- Si−1 sends σi−1 to Si.
- Si checks the validity of σi−1 by

t1 ≤ w(σi−1) ≤ t2
and Fi−1 · (h(M |r))T = Hi−1 · σT

i−1.
- Si calculates σ∗

i = (h(M |r) + σi−1) ·Gi

and produces σi s.t.

σi,j =

{
σ∗

i,j if j ∈ Ji,
0 if j /∈ Ji.

- Si replaces σ∗
j by the quantity (σ∗

i − σi−1 ·Gi)
* The multisignature is σkks = (σN , r).

Verification: Given a tuple (z, r), the multisignature is
valid if:

* t1 ≤ w(z) ≤ t2
* FN · (h(M |r))T = HN · zT .

2) Performance Analysis: In [17], three KKS-signature
schemes were proposed, named KKS-1, KKS-2 and KKS-3 in
[8] respectively. The KKS-1 version introduced an equidistant
code (t = t1 = t2) of length n′ = 2k − 1 correcting t = 2k

errors, where k is its dimension. However, since the length
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of this code is huge for any practical applications, the KKS-1
is still impracticable. Therefore, [17] replaced the equidistant
code by another code whose non-zero codewords have a
weight between two different values t1 and t2 and proposed
two improvements of KKS-1, KKS-2 and KKS-3.
The KKS-2 is based on the dual of a BCH code while the
KKS-3 is fully random construction and uses a random linear
code. In this section we restrict our analysis to the KKS-3
signature scheme.

In KKS-3, each signer choose a random k × n′ generator
matrix Gi given in the systematic form [Ik|Bi]. The public
key is composed of Fi and Hi = [Ir|Di] where Di is a
random r × (n − k) binary matrix. The secret key consists
of the set Ji and the matrix Bi. Thus, to store each public
key, we need in total r(n − r + k) bits. For each secret
key, we have to store nh2(n′

n ) + k(n′ − k) bits1, where
h2(x) = −x log2(x)− (1−x) log2(1−x). The multisignature
consists of a vector of length n and a weight up to t2
and a random vector of {0, 1}n−k. Thus, the total length of
our multisignature is about 
t2h2( t2

n )� + (n − k) bits which
not depends on the number of signers. The essential part in
generating the multisignature is the second step in which each
user has to produce his own KKS-like signature while the
first phase for producing a common random vector can be
performed off-line. Thus, to generate a multisignature, each
signer first have to verify the preceding signature and then to
produce his KKS-signature. Therefore, the overall cost of our
multisignature is approximate to Nn′k + (N − 1)r(n + k)
binary operations. After receiving a multisignature, any user
can check its validity by comparing the results of two vector-
matrix multiplications that require about r(n + k) binary
operations.

3) Security Analysis: In [17] the authors claimed that their
constructions are secure as Niederreiter scheme if the public
parameters do not provide any information. Unfortunately [8]
showed that a generated KKS-signature discloses a lot of
information about the secret set J leading to find the secret
matrix G with high probability. Furthermore, [8] proved that
just a few intercepted signatures damages the KKS-system.
For instance, an attacker needs at most 20 signatures to break
the original KKS-3 scheme with an approximate amount of
277 binary operations. Regarding the security of our multisig-
nature, since our construction is based on the KKS-signature,
we can assume that our scheme is a few times. Following [8],
we propose the same parameters for our multisignature scheme
to achieve a security level more than 280. These parameters
are as follows: n = 2000, k = 160, n′ = 1000, r = 1100,
t1 = 90 and t2 = 110.

V. CONCLUSION

We have proposed two multisignature schemes using error
correcting codes that are the first non-generic constructions in
post-quantum cryptography. Our schemes make use of the CFS
signature KKS-signature scheme and achieve signatures of size
377 + 18.47N bits and 1873.8 bits, respectively, both for a

1We use the approximation
(a

b

) ≈ 2ah2( b
a

)

security of more than 280 binary operations. However, the first
system suffers from slow signature cost and large key sizes
while the second scheme is only few times and very fast but
also requires big key sizes. Recently, two works are published
for reducing the key sizes (see [3], [24]) and further progress
on this topic should increase significantly the performance of
our schemes.
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