
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:7, No:12, 2013

1723

Abstract—Coordinate Rotation Digital Computer (CORDIC) is a

unique digital computing unit intended for the computation of
mathematical operations and functions. This paper presents A multi
CORDIC processor that integrates different CORDIC architectures
on a single FPGA chip and allows the user to select the CORDIC
architecture to proceed with based on what he wants to calculate and
his needs. Synthesis show that radix 2 CORDIC has the lowest clock
delay, radix 8 CORDIC has the highest LUT usage and lowest
register usage while Hybrid Radix 4 CORDIC had the highest clock
delay.

Keywords—Multi, CORDIC, FPGA, Processor.

I. INTRODUCTION
OORDINATErotation digital computeris a unique digital
computing unit intended for the computation of

mathematical operations and functions. Initially, it was made
by Volder [1], [2] for trigonometric functions which were
defined in terms of main plane rotations

Walther [3], [4] has put forward an integrated procedure for
the CORDIC algorithm to compute functions in circular,
linear, and hyperbolic coordinate systems. From then on,
CORDIC has gained more interest due to its potential for
efficient and low cost implementation of a wide class of
applications and became the choice for scientific calculator
applications. Now, CORDIC is used in a wide variety of
applications such as digital signal processing, linear
transformations, digital filters, biomedical signal processing,
and neural networks.

The rest of the paper is organized as follows. In Section II,
brief background on unified CORDIC algorithm is presented.
Section III describes related works about CORDIC algorithms
and architectures. Section IV gives some investigation into the
Multi CORDIC Algorithm and methods that where applied.
Section V presents an implementation of a multi CORDIC
processor on FPGA. Section VI gives experimental results.
Section VII concludes this paper.

II. BACKGROUND
The generalized iteration equations of the CORDIC

algorithm are defined as [5]:

ቐ
 x୧ାଵ ൌ k୧ሺx୧ െ mσ୧y୧rିSሺ୫,୧ሻሻ

y୧ାଵ ൌ k୧ሺy୧ ൅ σ୧x୧rିSሺ୫,୧ሻሻ
z୧ାଵ ൌ z୧ െ σ୧α୫,୧

 (1)

where the coordinate parameter m defines the coordinate

A. Madian and M. Aljarhi are with the Electronics Department, German

University in Cairo (e-mail: Ahmed.madian@guc.edu.eg, Muaz.al.jarhi@
gmail.com).

system (circular for m = 1, linear for m = 0, and hyperbolic
coordinate for m = -1), r represents the radix of the number
system, ߪ௜is the rotation direction (clockwise or counter
clockwise), ߙ௠,௜ is the rotation angle, ܵ௠,௜ is the integer shift
sequence and ݇௜is the scaling factor.

TABLE I

OUTPUTS OF THE CORDIC ALGORITHM
Coordinate Rotation(ܼ௡ ՜ 0) Vectoring((௡ܻ ՜ 0)

Circular
(m = 1)

௡ݔ ൌ ଵ
௄೘

ሺ௫כୡ୭ୱ ௭ି௬כ௦௜௡ ௭ ሻ

௡ݕ ൌ ଵ
௄೘

ሺ௬כୡ୭ୱ ௭ା௫כ௦௜௡ ௭ ሻ
௡ݔ ൌ ଵ

௞೘
ሺݔଶ ൅ ଶሻଵݕ ଶ⁄

௡ݖ ൌ ݖ ൅ tanିଵሺݔ/ݕሻ
Linear
(m = 1)

௡ݔ ൌ ݔ
௡ݕ ൌ ݕ ൅ ݔ כ ݖ

௡ݔ ൌ ݔ
௡ݖ ൌ ݖ ൅ ݔ/ݕ

Circular
(m = 1)

௡ݔ ൌ ଵ
௄೘

ሺ௫כୡ୭ୱ୦ ௭ା௬כ௦௜௡௛ ௭ ሻ

௡ݕ ൌ ଵ
௄೘

ሺ௬כୡ୭ୱ୦ ௭ା௫כ௦௜௡௛ ௭ ሻ
௡ݔ ൌ ଵ

௞೘
ሺݔଶ െ ଶሻଵݕ ଶ⁄

௡ݖ ൌ ݖ ൅ tanhିଵሺݔ/ݕሻ

The Cordic algorithm can be implemented in two different

modes, the rotation mode and the vectoring mode. The
rotation mode is used to perform the rotation of a vector (x,y)
by a given angle θ. The vectoring mode computed the angle θ
of a vector and its magnitude by performing a finite number of
rotations. In rotation mode ߪ௜ = sign(ݖ௜) and ݖ௜ is driven
iteratively to 0 while in vectoring mode ߪ௜ = -sign(ݕ௜) and ݕ௜ is
driven iteratively to 0 [5].

The necessary rotations are not ideal and increase the
magnitude of the vector. In order to retain a constant vector
length, the obtained results have to be scaled by the scale
factor [5]:

K୫ ൌ ෑ k୧ ൌ
୧

ෑ ට1 ൅ mσ୧
ଶrିଶSሺ୫,୧ሻ

୧

The functions, directly computed by the CORDIC

algorithm, according to the selected value of the mode
parameter and coordinate parameter, are summarized in Table
I. With the appropriate initial values of x, y, and z, several
basic functions can be computed.

III. RELATED WORKS

A. Most Used CORDIC Algorithms
The most well known and used CORDIC algorithms are the

radix-2 and the radix-4 CORDIC algorithms. The main
disadvantages of using the radix-2 CORDIC algorithm are its
relatively high latency and its low throughput due to the
sequential nature of the iteration process which includes carry
propagation and variable shifting in every iteration. To
overcome these disadvantages, pipelined implementations
where proposed [6]. However, carry propagation still hinders
further throughput improvement. To increase the speed of
CORDIC implementation, two methods were proposed. One

Ahmed Madian, Muaz Aljarhi

A Multi Cordic Architecture on FPGA Platform

C

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:7, No:12, 2013

1724

involves reducing the delay of each iteration by using
redundant arithmetic [7], [8], [10], [11], [25], [27] to remove
carry propagation. The other method reduces the number of
iterations by using a higher radix in the CORDIC algorithm
implementation [5], [12]-[14], [19], [20], [32].

Radix-4 CORDIC algorithm offers less iterations (n/2) than
the radix-2 CORDIC algorithm. Although the iterations are
halved, the Radix-4 z-path involves the computation of
estimated ݖ௜ and evaluation of selection function to determine
-௜ resulting in higher iteration delay compared to that of radixߪ
2 [5].

The scale factor compensation methodology involves
scaling of the final (ݔ௡,ݕ௡) coordinates with 1/K. The natural
way to do it is by using the CORDIC module in linear mode
but its computational effort is the same as the CORDIC
algorithm itself. Since 1/K is constant for radix 2, the
computational cost can be reduced by using a CSD constant
multiplier. Moreover, scaling can also be implemented using a
Wallace tree by fully parallelizing multiplication and is
preferred for applications aiming for low latency at the
expense of more silicon area [5].

The CORDIC algorithm involves the rotation of a vector to
reduce the z or y coordinates of the final vector as closely as
possible to zero for rotation or vectoring mode respectively.
The maximum value of the rotation angle by which the vector
can be rotated depends on the shift order. The supposed results
of the CORDIC algorithm can be achieved if the z or y
coordinate is driven sufficiently close to zero. This can be
guaranteed if the initial values of the input vector (x, y, z) lies
within acceptable ranges depending on the coordinate mode
m. These ranges define the domain of convergence of the
CORDIC algorithm [5].

The precision of the CORDIC algorithm is affected by two
kinds of computation errors explicitly, angle approximation
and rounding error. The error ranges for these two sources of
error are driven by performing detailed numerical analysis of
the CORDIC algorithm. For angle approximation, one bit of
precision is usually produced per iteration while for rounding;
a maximum oflogଶn error is produced as the result of
truncation of immediate results after each iteration. The
Angular error and the rounding error derived are combined to
yield an overall quantization error in the CORDIC
implementation. The overall error can be guaranteed to be
within range by considering an additional logଶn guard bits in
the implementation of the CORDIC algorithm [5].

B. CORDIC Architectures
There are two architectures for implementing CORDIC in

hardware, mainly the folded and unfolded architectures.
Folded architectures are acquired by reproducing each of the
different iterative equations of the CORDIC algorithm into
hardware and time multiplexing all the iterations into a single
functional unit as shown in Fig. 1. These can be further
categorized into bit-serial and word-serial architectures
depending on whether the functional unit implements the logic
for one bit or one word of each iteration of the CORDIC
algorithm. Unfolded architectures are acquired by unfolding

the iteration process so that each processing element always
perform at the same iteration as shown in Fig. 2 [5], [28]-[30].

Fig. 1 Folded Iterative CORDIC Architecture

Fig. 2 Unfolded Pipelined CORDIC Architecture

The CORDIC algorithm has been implemented

conventionally using bit serial architecture with all iterations
are executed in the same hardware. This slowed down the
computational device and therefore, is not suitable for high
speed implementation. The word serial architecture is an
iterative CORDIC architecture obtained by realizing the
iteration equations. In this architecture, the shifters are
modified in each iteration to cause the desired shift for the
iteration. The appropriate elementary anglesσ୧ are accessed
from a lookup table. The most hindering speed factors during
the iterations of word serial architecture are carry/borrow
propagate addition/subtraction and variable shifting
operations, rendering the conventional CORDIC
implementation slow for high speed applications. These
disadvantages were overcome by using unfolded architectures.
The main advantage of the unfolded pipelined architecture
compared to folded architecture is high throughput due to the
hardwired fixed position shifters rather than the time and area
consuming barrel shifters and the removal of ROM. Pipelined
architectures offer a throughput improvement by a factor of n
for n-bit precision at the expense of increasing the hardware
by a factor less than n [5].

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:7, No:12, 2013

1725

Several parallel CORDIC algorithms where stated in the
literature. These algorithms try to increase the speed of the
CORDIC by obtaining σ୧ values and/or x/y coordinatesin
parallel instead of sequentially. Examples include LowLatency
Radix-2 CORDIC [9], Hybrid CORDIC [15], [18], Flat
CORDIC [24], P-CORDIC [21], Para-CORDIC [22], Semi-
flat Cordic [23], [26], [31], [33]. The scaling factor for most of
these algorithms is constant as σ୧ is restricted totake values
form the set {-1, 1}. The main disadvantage of using some of
these algorithms is that they require additional complex
hardware and have poor scalability [5].

IV. MULTI CORDIC ALGORITHM
Similar to [15], [17], the multi CORDIC algorithm consists

of three stages: argument reduction, CORDIC calculation and
output normalization. The argument reduction stage
transforms the inputs from floating-point format into fixed-
point format and expands the convergence range of the
CORDIC algorithm. CORDIC calculation stage evaluates the
desired CORDIC function based on the selected CORDIC
architecture. Normalization stage transforms the outputs back
to floating-point format and standardizes them into IEEE STD
754-1985 format.

A. Argument Reduction Algorithm
The argument reduction algorithm was done using in

argument reduction phase which is based on [15] and [17].
IEEE double-precision Floating-Point was used as the format
for both the input and output data. To clarify further suppose
the following notations:

(1) Floating-Point Format of the Input Data:
X = Sxכ 2୉୶ כMx, Y = Syכ 2୉୷ כMy, Z = Szכ 2୉୸ = ,Mzכ

Szכ Mzᇱᇱ, Sx, Sy, Sz߳{-1,1}

(2) Given Eref=max (Ex, Ey), Mxᇱᇱ and Myᇱᇱ are fixed-point
formats of X and Y expressed as:

Mxᇱᇱ =Mx כ 2୉୶ି୉୰ୣ୤, Myᇱᇱ = My כ 2୉୷ି୉୰ୣ୤

1. m = 0 (Linear Coordinate):
Floating-point multiplication and division operation are

implemented in this coordinate, in which no real argument
reduction is required. However, there are some adjustments
necessary which are summarized in the following table:

TABLE II

SUMMARY OF OPERATIONS FOR M = 0
 Rotation Vectoring

Input ଴ܻ ൌ 0 ܼ଴ ൌ 0
Step 1 ݂݁ݎܧ ൌ ݔܧ ൅ ݂݁ݎܧ ݖܧ ൌ ݕܧ െ ݔܧ
Step 2 ݕܯ௡ ൌ ݔܯ כ ௡ݖܯ ݖܯ ൌ ݔܯ/ݕܯ

Step 3
௡ܻ

ൌ ݔܵ כ ݖܵ כ ௡ݕܯሺ݉ݎ݋ܰ
כ 2ா௥௘௙ሻ

ܼ௡
ൌ ݔܵ כ ݕܵ כ ௡ݖܯሺ݉ݎ݋ܰ
כ 2ா௥௘௙ሻ

2. m = 1 (Circular Coordinate):

a) Rotation:
The input angle Z is mapped into the domain of [0, π/2]

using the property of periodicity:

Z ൌ Mzᇱᇱ ൌ ஠
ଶ

כ Q ൅ D ൌ ஠
ଶ

כ ሺQ ൅ Rሻ (Given)

 Q ൅ R ൌ ଶ
஠

כ MzԢԢ (2)

 Mzᇱ ൌ D ൌ గ
ଶ

כ R (3)

where Q is an integer denoting the quadrant of angle Z, R is
the fraction and D is the mapped angle in the domain of
[0,π/2].

TABLE III

QUADRANT MAPPING
Domain Q[1:0] ݔܯᇱ ݕܯᇱ
[0,π/2] 00 ݔܯᇱԢ ݕܯᇱԢ
[π/2,π] 01 െݕܯᇱԢ ݔܯᇱԢ

[π,3 π/2] 10 ݔܯᇱԢ െݕܯᇱԢ
[3π/2,2π] 11 ݕܯᇱԢ െݔܯᇱԢ

,’ݔܯ are chosen from Table III depending on the two’ݕܯ

least significant bits of Q. Afterwards, ݔܯ’, are ’ݖܯ ݀݊ܽ ’ݕܯ
taken as inputs to the CORDIC calculation phase and
Mx୬, My୬ are results. Then cos(Z) = 2୉୰ୣ୤Mx୬ and sin(Z) =
2୉୰ୣ୤My୬ holds.

b) Vectoring:
,ᇱᇱݔܯ ᇱᇱ are directly regarded as the inputs ofݖܯ ᇱᇱܽ݊݀ݕܯ

the CORDIC calculation phase and ݔܯ௡, .௡ are resultsݖܯ
Then √ܺଶ ൅ ܻଶ= 2ா௥௘௙ݔܯ௡ holds. For the calculation of
arctangent (ି݊ܽݐଵሺܻ/ܺሻ) fix is still needed on the quadrant of
 :௡ according to the sign of X and Y as followsݖܯ

௡ݖܯ ൌ ൜
ݕܵ כ ݔܵ ௡ݖܯ ൌ 1
ݕܵ כ ሺߨ െ ݔܵ ௡ሻݖܯ ൌ െ1 (4)

3. m = -1 (Hyperbolic Coordinate)

a) Rotation:
 The input angle Z is mapped into the domain of [0, ln(2)]

using the property of periodicity:

Z ൌ Mzᇱᇱ ൌ ln ሺ2ሻ כ Q ൅ D ൌ ln ሺ2ሻ כ ሺQ ൅ Rሻ (Given)

Q ൅ R ൌ ଵ
୪୬ ሺଶሻ

כ MzԢԢ (5)

Mzᇱ ൌ D ൌ ln ሺ2ሻ כ R (6)

where Q is an integer denoting the quadrant of angle Z, R is
the fraction and D is the mapped angle in the domain of [0,
ln(2)]. Given:

ቊ
Mxᇱ ൌ ሺMxᇱᇱ ൅ Myᇱᇱሻ ൅ 2ିଶQሺMxᇱᇱ െ MyԢᇱሻ
Myᇱ ൌ ሺMxᇱᇱ ൅ Myᇱᇱሻ െ 2ିଶQሺMxᇱᇱ െ MyԢᇱሻ

 (7)

,’ݔܯ are taken as inputs to the CORDIC ’ݖܯ ݀݊ܽ ’ݕܯ

calculation phase and Mx୬, My୬ are results. Then cosh(Z) =
2୉୰ୣ୤ାQିଵMx୬ and sinh(Z) = 2୉୰ୣ୤ାQିଵMy୬ holds.

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:7, No:12, 2013

1726

b) Vectoring:
If ݔܯ’ᇱ ൒ ,ᇱ’ݔܯ ԢԢ thenݕܯ2 ᇱ are taken as’ݖܯ ᇱ and’ݕܯ

inputs tothe CORDIC calculation phase and ݔܯ௡, ௡areݖܯ
results. Then √ܺଶ െ ܻଶ= 2ா௥௘௙ݔܯ௡ holds. For the calculation
of hyperbolic arctangent (tanhିଵሺܻ/ܺሻ) the sign of Mz୬ needs
to be properly assigned based to the sign of X and Y as
follows:

Mz୬ ൌ Sy כ Sx כ Mz୬

For ݔܯ’ᇱ ൏ ᇱᇱ, let γ represent the number of leadingݕܯ2

zeroes in ሺMxᇱᇱ െ MyԢᇱ). Given:

Enew = ൜ 1, γ ൌ 1
 γ െ 1, γ ൐ 1 (8)

Then

ቊMxᇱ ൌ ሺMxᇱᇱ ൅ Myᇱᇱሻ ൅ 2ି୉୬ୣ୵ሺMxᇱᇱ െ MyԢᇱሻ
Myᇱ ൌ ሺMxᇱᇱ ൅ Myᇱᇱሻ െ 2ି୉୬ୣ୵ሺMxᇱᇱ െ MyԢᇱሻ

 (9)

,’ݔܯ are taken as inputs to the CORDIC ’ݖܯ ݀݊ܽ ’ݕܯ

calculation phase andMx୬, Mz୬ are results. Then

tanିଵሺ Y/Xሻ ൌ Sy כ Sx כ ሺMz୬ ൅ 0.5 כ Enew כ ln ሺ2ሻሻ

holds.

For calculation of square-root ሺඥܺଶ െ ܻଶሻݔܯ௡ needs to be
scaled based on Enew as follows:

௡ = ቐݔܯ
௡ݔܯ כ 2୉୰ୣ୤ିሺు౤౛౭శమ

మ ሻ, Enew mode 2 ൌ 0

 ሺ ଵ
√ଶ

ሻݔܯ௡ כ 2୉୰ୣ୤ିሺు౤౛౭శభ
మ ሻ, Enew mode 2 ൌ 1

 (10)

In addition, the following functions are derived from the

previous functions [16]:

ln(W) = 2 כ tanିଵሺ Y/Xሻ where X = W ൅ 1 and Y = W െ 1.

√ܹ ൌ √ܺଶ െ ܻଶ where X = W ൅ (1/4) and Y = W – (1/4).

V. MULTI CORDIC PROCESSOR IMPLEMENTATION

A pipelined 64-bit IEEE floating-point multi CORDIC
processor was implemented on FPGA platform. The purpose
was to implement different CORDIC architectures on the
same FPGA chip were the user can choose which CORDIC
architecture to use for the calculation according to a selection
function. As each CORDIC architecture can only calculate
specific functions, the choices will be limited by what the user
wants to calculate.

The multi CORDIC architecture was implemented in
Verilog, synthesized with Xilinx vertex 7 FPGA XC7VX980T
to ensure enough area for mapping the architecture (Xilinx
vertex 5 and 6 did not have enough area) and includes the
following CORDIC architectures: radix-2 CORDIC, radix-2
hybrid-mode CORDIC [15], radix-4 CORDIC [12], [14], [19],
[20], radix-4 hybrid-mode CORDIC, Para-CORDIC [22] and
radix-8 CORDIC. All can run in both rotation and vectoring

modes except Para-CORDIC and radix-8 CORDIC which run
in rotation mode only. Also radix-4 CORDIC, radix-4 hybrid-
mode CORDIC and radix-8 CORDIC currently cannot run in
hyperbolic coordinate systems.

The multi CORDIC architecture is implemented as follows:
Similar to [15], the multi CORDIC architecture contains a pre-
process module and a post-process module in addition to the
CORDIC modules (for each separate CORDIC architecture).
The inputs to the multi CORDIC architecture include the x,y
and z inputs, the x,y and z outputs, the coordinate selection
mode m, the vectoring mode selection vm and the clock and
rest signals in addition to the CORDIC selection function
(which selects which CORDIC architecture to proceed with).
Before the pre-process module, the input to the selected
CORDIC architecture is set while reset is set to 1 for the other
CORDIC architectures. This is done as the other CORDIC
architectures have no use. The inputs to the post-process
module are also directly set based on the selected CORDIC
architecture after the CORDIC modules. More specifically the
pipeline stages of the multi CORDIC architecture are as
follows:

S1: Setting the rst input of all CORDIC architectures
The rst (rest) input of the selected CORDIC architecture is

set to the rst input of the multi CORDIC architecture while all
other CORDIC architectures have their rst input set to 1.
x, y and z inputs propagated.

S2: Converting the floating-point format of inputs into fixed
point format.

Mantissas: 1 is added to the left of the mantissas of X, Y
and Z as it is excluded when mantissas are not equal to0.
Otherwise if a mantissa = 0 no 1 is added to the left of it. Next,
given Eref3 = max(Ex, Ey), (Ex − Eref3) bits right shift of the
mantissa of X produces Mx” and (Ey − Eref3)bits right shift of
the mantissa of Y produces My”. IfEz> 1023, (Ez − 1023) bits
left shift of the mantissa Z produces Mz” or else (1023 − Ez)
bits right shift of the mantissa Z produces Mz”. For the
calculation of natural logarithm: Mx”= Mx” + (1 shifted left
by (52 − Eref3 − 1023) bits) and My” = My” − (1 shifted left
by (52 − Eref3 − 1023) bits).

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:7, No:12, 2013

1727

TABLE IV
COMPARISONS OF THE SYNTHESIS RESULTS OF THE DIFFERENT CORDIC ARCHITECTURES ON FPGA

CORDIC Architecture Path Delay Number of Slice LUTs Number of Slice Registers Power
Radix 2 CORDIC 8.398ns 24473 out of 612000 (3%) 11,819 out of 1224000 (1%) 0.331W
Hybrid Radix 2 CORDIC 8.497ns 22758 out of 612000 (3%) 10981 out of 1224000 (1%) 0.331W
Radix 4 CORDIC 13.977ns 21743 out of 612000 (3%) 7858 out of 1224000 (1%) 0.331W
Hybrid Radix 4 Cordic 14.232ns 20717 out of 612000 (3%) 6952 out of 1224000 (1%) 0.331W
Para-CORDIC 9.346ns 23353 out of 612000 (4%) 11020 out of 1224000 (1%) 0.331W
Radix 8 CORDIC 12.477ns 37254 out of 612000 (6%) 6299 out of 1224000 (0.5%) 0.331W
Multi CORDIC 19.544ns 100069 out of 612000 (16%) 36803 out of 1224000 (3%) 0.331W

For the calculation of square root:

Mx” = Mx” + (1 shifted left by (50 − Eref3 − 1023) and My”
= My” − (1 shifted left by (50 − Eref3 − 1023).

Exponents: For the calculation of multiplication, Eref1 = Ex

+ Ez − 1023 and for the calculation of division, Eref2 = Ey −
Ex +1023. Otherwise, Eref3 = max(Ex, Ey).

S3 - S4: Scaling Factor Compensation and Angle mapping
in argument reduction

Mantissas: X and Y need to be scaled with the constant
scaling factor Km depending on the CORDIC selection.
Scaling factors are gotten in S2 while in S3, X and Y are
compensated with the corresponding scaling factor depending
on the CORDIC selection. For rotation mode, mapping the
angle Z into the destined domain needs a fixed-point constant
multiplication. For circular coordinate, a constant multiplier is
required to execute (2). For hyperbolic coordinate, a constant
multiplier is required to execute (5).

In S2, the value of Mx” − is My” is gotten which is used in
S3 to get the value of γ through the module of LeadZero.
Then, the magnitude of Enew is gotten through (8).
Exponents and signs Propagated.

S5: Calculation mapped angle value in argument reduction.
Mantissas: selecting MxԢ and MyԢ according to Table III

and the magnitude of Q. Accomplishing the computation of
(7) and (9) by two adders, one subtractor and two shifters.
Two constant multipliers are employed to execute the
computation of (3) and (6) respectively.
Exponents and signs Propagated

S6: Selecting the inputs of the CORDIC calculation module
according to the coordinate mode m, the operation mode vm
and the corresponding function (to be evaluated) fn.

S7-SN: CORDIC calculation phase.
Each CORDIC architecture is allowed to run on its own.

Each stage accomplishes one or more iterations of the
CORDIC depending the CORDIC architecture selected. N is
used here to indicate that the number of stages is variable
depending on the selected CORDIC architecture.

SN+1: Setting the inputs of the PostProcess module.
Mantissas: For natural exponential ex, if Sz equals 0 then X

and Y, are added to product the final value of ex else ex = X -
Y. For natural logarithm ln(x) or hyperbolic arctangent
arctanh(x), Z and Exln2, which are the output of CORDIC
process module and Mult ln2 module respectively, are added
to product the final value of ln(x) or arctanh(x). For arctangent
arctan(x), accomplishing (4) products the final value of

arctan(x). If X55 < 0 then the final value X = -X. If Y <0 then
the final value Y = -Y.

Signs: For final value of X, Sx = Sign(X). For final value of
Y, Sy = xor(Sx,Sz) if(mode m = 0) else Sy = xor(Sign(Y),Sz).
For Final value of Z, Sz = Syif(mode m = 1) elseSz =
xor(Sx,Sy).
Exponents propagated.

SN+3: Counting leading zeros
Mantissas: Counting leading zeros in the final values of X,

Y, Z and ex.
Exponents propagated.

SN+4: Normalization of output.
X, Y, Z, and ex (not including the sign bit) are shifted to the

left according to the number of the leading zeroes and are then
truncated to form the mantissas of the outputs respectively.
The first 1 bit (not including the sign bit) is not included as in
the IEEE 754 floating-point format.

For X, Y and ex, the exponent of the output is calculated by
subtracting the number of the leading zeroes of X, Y and ex
from Eref respectively. If the length of X, Y or ex (after
shifting and not including the first 1 bit) is greater than 52bits
(before truncation) then the length (of X or Y or Z) – 52must
be added to each exponent output. The exponent of Z is
computed by subtracting the number of the leading zeros ofZ
from Eref if(mode m = 0 and operation mode vm = 1) or from
1023 otherwise. As with other exponents, the length ofZ - 52
must be added to the exponent of Z if length of Z is> 52. +1 is
added to the Z exponent for the calculation of the natural
logarithm. Comparison of the synthesis results of the multi-
CORDIC architecture with respect to the other CORDIC
architecture simplemented on FPGA (Xilinx vertex 7 FPGA
XC7VX980T) are summarized in Table IV.

VI. EXPERIMENTS
Experiments were conducted in order to observe the

accuracy and precision of functions computed by the different
CORDIC architectures. The results are compared with results
produced by a Pentium processor and are shown on Table V
where the relative error is shown on the right most column of
each sub-table. The value shown in the relative error column is
a value i such that 2ି௜≥ relative error >2ି௜ାଵ. Many ofthe
results show that the designs were correct. Relative
errorgenerally reaches a maximum error of 2ିଶ଻ for small data
anda maximum error of 2ିଷଽ large data.

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:7, No:12, 2013

1728

VII. CONCLUSION
This paper presented a multi CORDIC architecture which

was implemented on FPGA and it included different CORDIC
architectures combined where the user can select the cordic
architecture that suits his needs. It was organized into three
phases, Argument reduction, CORDIC calculations and output
normalization. Synthesis show that radix 2 CORDIC has clock
delay, radix 8 CORDIC has the highest LUT usage and lowest
register usage while Hybrid Radix 4CORDIC had the highest
clock delay. Error results show that normally a maximum
error of 2ିଶ଻is reached for small data and a maximum error of
2ିଷଽ is reached for large data.Generally, there is no clear
winner for which architectureachieves the better precision but
there are special cases whereone or more architectures
dominate. For example, Radix 4 CORDIC and Hybrid Radix 4

CORDIC achieve the best precision for the calculation of
Arctan while Para CORDIC achieves the best precision for the
calculations of sinh, cosh and exp. So, the multi CORDIC
processor can be used as a component in scientific
computations.

TABLE V

EXPERIMENTAL RESULTS (A) ACCURACY AND PRECISION TEST OF SIN

Operand CORDIC Architecture Pentium Result CORDIC Result E(2−i)
0.000001 CORDIC Radix-2 9.999999999998333E-7 9.999999941445736E-7 27
0.000001 CORDIC Radix-2 Hybrid-mode 9.999999999998333E-7 9.999999941445736E-7 27
0.000001 CORDIC Radix-4 9.999999999998333E-7 9.999999994736442E-7 50
0.000001 CORDIC Radix-4 Hybrid-mode 9.999999999998333E-7 9.999999992515995E-7 31
0.000001 Para CORDIC 9.999999999998333E-7 9.999999997858177E-7 32
0.000001 CORDIC Radix-8 9.999999999998333E-7 9.999999992515995E-7 30
π / 6 CORDIC Radix-2 0.49999999999999994 0.49999999999999334 46
π / 6 CORDIC Radix-2 Hybrid-mode 0.49999999999999994 0.49999999999999334 46
π / 6 CORDIC Radix-4 0.49999999999999994 0.5000000000002425 41
π / 6 CORDIC Radix-4 Hybrid-mode 0.49999999999999994 0.5000000000002425 41
π / 6 Para CORDIC 0.49999999999999994 0.49999999999999983 52
π / 6 CORDIC Radix-8 0.49999999999999994 0.5000000000002294 41

1024.0 CORDIC Radix-2 -0.15853338004399595 -0.15853338004393946 41
1024.0 CORDIC Radix-2 Hybrid-mode -0.15853338004399595 -0.15853338004393946 41
1024.0 CORDIC Radix-4 -0.15853338004399595 -0.15853338004424167 39
1024.0 CORDIC Radix-4 Hybrid-mode -0.15853338004399595 -0.15853338004424167 39
1024.0 Para CORDIC -0.15853338004399595 -0.15853338004393386 41
1024.0 CORDIC Radix-8 -0.15853338004399595 -0.15853338004409712 41

(B) ACCURACY AND PRECISION TEST OF COS

Operand CORDIC Architecture Pentium Result CORDIC Result E(2−i)
0.000001 CORDIC Radix-2 0.9999999999995 0.9999999999995064 47
0.000001 CORDIC Radix-2 Hybrid-mode 0.9999999999995 0.9999999999995064 47
0.000001 CORDIC Radix-4 0.9999999999995 0.9999999999999578 41
0.000001 CORDIC Radix-4 Hybrid-mode 0.9999999999995 0.999999999999958 41
0.000001 Para CORDIC 0.9999999999995 1.0000000000067764 37
0.000001 CORDIC Radix-8 0.9999999999995 0.999999999999958 41
π / 6 CORDIC Radix-2 0.8660254037844387 0.8660254037844466 46
π / 6 CORDIC Radix-2 Hybrid-mode 0.8660254037844387 0.8660254037844466 46
π / 6 CORDIC Radix-4 0.8660254037844387 0.8660254037848636 41
π / 6 CORDIC Radix-4 Hybrid-mode 0.8660254037844387 0.8660254037848636 41
π / 6 Para CORDIC 0.8660254037844387 0.8660254037844386 53
π / 6 CORDIC Radix-8 0.8660254037844387 0.8660254037848392 41

1024.0 CORDIC Radix-2 0.9873536182198484 0.9873536182198626 46
1024.0 CORDIC Radix-2 Hybrid-mode 0.9873536182198484 0.9873536182198626 46
1024.0 CORDIC Radix-4 0.9873536182198484 0.9873536182217675 39
1024.0 CORDIC Radix-4 Hybrid-mode 0.9873536182198484 0.9873536182217675 39
1024.0 Para CORDIC 0.9873536182198484 0.9873536182270427 37
1024.0 CORDIC Radix-8 0.9873536182198484 0.9873536182208698 40

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:7, No:12, 2013

1729

(C) ACCURACY AND PRECISION TEST OF ARCTAN

Operand CORDIC Architecture Pentium Result CORDIC Result E(2−i)
tan(0.0001) CORDIC Radix-2 0.0001 9.999999999375352E-5 34
tan(0.0001) CORDIC Radix-2 Hybrid-mode 0.0001 9.999999999375135E-5 34
tan(0.0001) CORDIC Radix-4 0.0001 9.999999999873131E-5 36
tan(0.0001) CORDIC Radix-4 Hybrid-mode 0.0001 9.999999999873175E-5 36

2.0 CORDIC Radix-2 1.1071487177940904 1.1071487177940855 48
2.0 CORDIC Radix-2 Hybrid-mode 1.1071487177940904 1.1071487177940855 48
2.0 CORDIC Radix-4 1.1071487177940904 1.1071487177940902 52
2.0 CORDIC Radix-4 Hybrid-mode 1.1071487177940904 1.1071487177940902 52

7968578.0 Cordic Radix-2 1.5707962013019918 1.570796201301989 49
7968578.0 CORDIC Radix-2 Hybrid-mode 1.5707962013019918 1.570796201301989 49
7968578.0 CORDIC Radix-4 1.5707962013019907 1.570796201301989 49
7968578.0 CORDIC Radix-4 Hybrid-mode 1.5707962013019907 1.570796201301989 49

(D) ACCURACY AND PRECISION TEST OF SINH

Operand CORDIC Architecture Pentium Result CORDIC Result E(2−i)
0.000001 CORDIC Radix-2 1.0000000000001666E-6 9.999999974752427E-7 29
0.000001 CORDIC Radix-2 Hybrid-mode 1.0000000000001666E-6 9.99999997586265E-7 29
0.000001 Para CORDIC 1.0000000000001666E-6 1.0000000001717992E-6 32

5.65 CORDIC Radix-2 142.143974153573 142.1439741535723 48
5.65 CORDIC Radix-2 Hybrid-mode 142.143974153573 142.14397415357234 48
5.65 Para CORDIC 142.143974153573 142.14397415357288 50
100 CORDIC Radix-2 1.3440585709080678E43 1.344058570908060E43 47
100 CORDIC Radix-2 Hybrid-mode 1.3440585709080678E43 1.344058570908060E43 47
100 Para CORDIC 1.3440585709080678E43 1.3440585709080802E43 47

(E) ACCURACY AND PRECISION TEST OF COSH

Operand CORDIC Architecture Pentium Result CORDIC Result E(2−i)
0.000001 CORDIC Radix-2 1.0000000000005 1.0000000000004976 49
0.000001 CORDIC Radix-2 Hybrid-mode 1.0000000000005 1.0000000000004976 49
0.000001 Para CORDIC 1.0000000000005 1.000000000000499 50

5.65 CORDIC Radix-2 142.14749167034793 142.14749167034716 47
5.65 CORDIC Radix-2 Hybrid-mode 142.14749167034793 142.14749167034716 47
5.65 Para CORDIC 142.14749167034793 142.1474916703479 53
100 CORDIC Radix-2 1.3440585709080678E43 1.344058570908060E43 47
100 CORDIC Radix-2 Hybrid-mode 1.3440585709080678E43 1.344058570908060E43 47
100 Para CORDIC 1.3440585709080678E43 1.3440585709080802E43 47

(F) ACCURACY AND PRECISION TEST OF EXP

Operand CORDIC Architecture Pentium Result CORDIC Result E(2−i)
0.000001 CORDIC Radix-2 1.0000010000005 1.000001000000495 48
0.000001 CORDIC Radix-2 Hybrid-mode 1.0000010000005 1.0000010000004953 48
0.000001 Para CORDIC 1.0000010000005 1.000001000000499 50

5.65 CORDIC Radix-2 284.29146582392093 284.29146582391945 47
5.65 CORDIC Radix-2 Hybrid-mode 284.29146582392093 284.29146582391957 48
5.65 Para CORDIC 284.29146582392093 284.2914658239208 51
100 CORDIC Radix-2 2.6881171418161356E43 2.688117141816121E43 47
100 CORDIC Radix-2 Hybrid-mode 2.6881171418161356E43 2.688117141816121E43 47
100 Para CORDIC 2.6881171418161356E43 2.6881171418161604E43 47

(G) ACCURACY AND PRECISION TEST OF ARCTANH

Operand CORDIC Architecture Pentium Result CORDIC Result E(2−i)
 0.0001 CORDIC Radix-2 1.0000000033336145E-4 1.0000000032587154E-4 34
 0.0001 CORDIC Radix-2 Hybrid-mode 1.0000000032942121E-4 1.0000000032587154E-4 35

 0.5 CORDIC Radix-2 0.5493061443340549 0.5493061443340521 47
 0.5 CORDIC Radix-2 Hybrid-mode 0.5493061443340549 0.5493061443340522 48

 0.99975 CORDIC Radix-2 4.493535906424466 4.493535906424107 44
 0.99975 CORDIC Radix-2 Hybrid-mode 4.493535906424466 4.493535906424107 44

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:7, No:12, 2013

1730

(H) ACCURACY AND PRECISION TEST OF LN

Operand CORDIC Architecture Pentium Result CORDIC Result E(2−i)
 0.001 CORDIC Radix-2 -6.907755278982137 -6.907755278982137 ∞
 0.001 CORDIC Radix-2 Hybrid-mode -6.907755278982137 -6.907755278982136 53
 4.0 CORDIC Radix-2 1.3862943611198906 1.3862943611198868 48
 4.0 CORDIC Radix-2 Hybrid-mode 1.3862943611198906 1.3862943611198866 48

 1.0E13 CORDIC Radix-2 29.933606208922594 29.933606208922594 ∞
 1.0E13 CORDIC Radix-2 Hybrid-mode 29.933606208922594 29.933606208922594 53

(I) ACCURACY AND PRECISION TEST OF SQRT

Operand CORDIC Architecture Pentium Result CORDIC Result E(2−i)
0.001 CORDIC Radix-2 0.03162277660168379 0.0316227766016838 52
0.001 CORDIC Radix-2 Hybrid-mode 0.03162277660168379 0.0316227766016838 52

4.0 CORDIC Radix-2 2.0 1.999999999999992 48
4.0 CORDIC Radix-2 Hybrid-mode 2.0 1.9999999999999922 48

1.0E9 CORDIC Radix-2 31622.776601683795 31622.7766016838 52
1.0E9 CORDIC Radix-2 Hybrid-mode 31622.776601683795 31622.7766016838 52

REFERENCES

[1] J. E. Volder, “The cordic trigonometric computing technique,”
Electronic Computers, IRE Transactions on, vol. EC-8, no. 3, pp. 330–
334, 1959.

[2] J. E. Volder, “The birth of cordic,” J. VLSI Signal Process. Syst., vol.
25, no. 2, pp. 101–105, Jun. 2000. [Online]. Available:
http://dx.doi.org/10.1023/A:1008110704586

[3] J. S. Walther, “A unified algorithm for elementary functions,” in
Proceedings of the May 18-20, 1971, spring joint computer conference,
ser. AFIPS ’71 (Spring). New York, NY, USA: ACM, 1971, pp. 379 –
385.

[4] J. S. Walther, “The story of unified cordic,” J. VLSI Signal Process.
Syst., vol. 25, no. 2, pp. 107–112, Jun. 2000. [Online]. Available:
http://dx.doi.org/10.1023/A:1008162721424

[5] B. Lakshmi and A. S. Dhar, “Cordic architectures: a survey,” VLSI
Des., vol. 2010, pp. 2:1–2:7, Jan. 2010.

[6] E. Antelo, J. Villalba, and E. L. Zapata, “A low-latency pipelined 2d and
3d cordic processors,” Computers, IEEE Transactions on, vol. 57, no. 3,
pp. 404–417, 2008.

[7] M. Ercegovac and T. Lang, “Fast cosine/sine implementation using on-
line coric,” in Proceedings of the 21st Asilomar Conference on Signals,
Systems, and Computers, 1987.

[8] N. Takagi, T. Asada, and S. Yajima, “Redundant cordic methods with a
constant scale factor for sine and cosine computation,” IEEE Trans.
Comput., vol. 40, no. 9, pp. 989–995, Sep. 1991.

[9] D. Timmermann, H. Hahn, and B. J. Hosticka, “Low latency time cordic
algorithms,” IEEE Trans. Comput., vol. 41, no. 8, pp. 1010–1015, Aug.
1992.

[10] J. Duprat and J. M. Muller, “The cordic algorithm: New results for fast
vlsi implementation,” IEEE Trans. Comput., vol. 42, no. 2, pp. 168–178,
Feb. 1993.

[11] H. Dawid and H. Meyr, “The differential cordic algorithm: Constant
scale factor redundant implementation without correcting iterations,”
IEEE Trans. Comput., vol. 45, no. 3, pp. 307–318, Mar. 1996. [Online],
Available: http://dx.doi.org/10.1109/12.485569

[12] J. D. Bruguera, E. Antelo, and E. L. Zapata, “Design of a pipelined radix
4 cordic processor,” Parallel computing, vol. 19, no. 7, pp. 729–
744,1993.

[13] E. Antelo, J. D. Bruguera, and E. L. Zapata, “Unified mixed radix 2-4
redundant cordic processor,” Computers, IEEE Transactions on, vol. 45,
no. 9, pp. 1068–1073, 1996.

[14] E. Antelo, J. Villalba, J. D. Bruguera, and E. L. Zapata, “High
performance rotation architectures based on the radix-4 cordic
algorithm,” Computers, IEEE Transactions on, vol. 46, no. 8, pp. 855–
870, 1997.

[15] L. Y. X. J. . D. Y. ”Zhou J., Dou Y., “double precision hybrid-mode
floating-point fpga cordic co-processor,” in ”2008 10th IEEE
International Conference on High Performance Computing and
Communications”, pp. 182 – 198.

[16] R. Andraka, “A survey of cordic algorithms for fpga based computers,”
in Proceedings of the 1998 ACM/SIGDA sixth international symposium

on Field programmable gate arrays, ser. FPGA ’98. New York, NY,
USA: ACM, 1998, pp. 191–200.

[17] Hahn, D. Timmermann, B. J. Hosticka, and B. Rix, “A unified and
division-free cordic argument reduction method with unlimited
convergence domain including inverse hyperbolic functions,” IEEE
Trans. Comput., vol. 43, no. 11, pp. 1339–1344, Nov. 1994.

[18] P. S. Wang and E. W. Jr., “Hybrid cordic algorithms,” IEEE
Transactions on Computers, vol. 46, no. 11, pp. 1202–1207, 1997.

[19] K. Bhattacharyya, R. Biswas, A. S. Dhar, and S. Banerjee,
“Architectural design and fpga implementation of radix-4 cordic
processor,” Microprocess. Microsyst., vol. 34, no. 2-4, pp. 96–101, Mar.
2010.

[20] J. Villalba, E. L. Zapata, E. Antelo, and J. D. Bruguera, “Radix-4
vectoring cordic algorithm and architectures,” J. VLSI Signal Process.
Syst., vol. 19, no. 2, pp. 127–147, Jul. 1998.

[21] M. Kuhlmann and K. K. Parhi, “P-cordic: a precomputation based
rotation cordic algorithm,” EURASIP J. Appl. Signal Process., vol.
2002, no. 1, pp. 936–943, Jan. 2002.

[22] T.-B. Juang, S.-F. Hsiao, and M.-Y. Tsai, “Para-cordic: parallel cordic
rotation algorithm,” Circuits and Systems I: Regular Papers, IEEE
Transactions on, vol. 51, no. 8, pp. 1515 – 1524, aug. 2004.

[23] H. Kebbati, J. Blonde, and F. Braun, “A new semi-flat architecture for
high speed and reduced area cordic chip,” Microelectronics Journal, vol.
37, no. 2, pp. 181 – 187, 2006.

[24] B. Gisuthan and T. Srikanthan, “Pipelining flat cordic based
trigonometric function generators,” Microelectronics Journal, vol. 33,
pp. 77 – 89, 2002.

[25] H. N.-u.-d. BurhanKhurshid, 2Gulam Mohd Rather, “Performance
comparison of non-redundant and redundant fpga based unfolded cordic
architectures,” IJECT, vol. 3, no. 1, pp. 85–89, Jan. 2012.

[26] D.-M. Ross, S. Miller, M. Sima, and M. McGuire, “Exploration of sign
precomputation-based cordic in reconfigurable systems,” in Signals,
Systems and Computers (ASILOMAR), 2011 Conference Record of the
Forty Fifth Asilomar Conference on. IEEE, 2011, pp. 2186–2191.

[27] J. Valls, M. Kuhlmann, and K. K. Parhi, “Evaluation of cordic
algorithms for fpga design,” Journal of VLSI signal processing systems
for signal, image and video technology, vol. 32, no. 3, pp. 207–222,
2002.

[28] S. Vadlamani and W. Mahmoud, “Comparison of cordic algorithm
implementations on fpga families,” in System Theory, 2002.
Proceedings of the Thirty-Fourth Southeastern Symposium on. IEEE,
2002, pp. 192–196.

[29] D. Yi, “Cordic algorithm based on fpga,” J Shanghai Univ (Engl Ed),
vol. 15, no. 4, pp. 304–309, 2011.

[30] R. Bhakthavatchalu, M. Sinith, P. Nair, and K. Jismi, “A comparison of
pipelined parallel and iterative cordic design on fpga,” in Industrial and
Information Systems (ICIIS), 2010 International Conference on. IEEE,
2010, pp. 239–243.

[31] Y. Chandrakanth and M. Kumar, “Low latency &high precision cordic
architecture using improved parallel angle recoding,” in Signal
Processing, Communication, Computing and Networking Technologies
(ICSCCN), 2011 International Conference on. 498–501.

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:7, No:12, 2013

1731

[32] J. Rudagi, B. B. Srikant, and S. Subbaraman, “Performance analysisof
radix 4 cordic processor in rotation mode with parallel scalefactor
computation,” International Journal of Emerging Technology and
Advanced Engineering, vol. 2, no. 7, pp. 507–510, 2012.

[33] D. Timmermann and I. Sundsbo, “Area and latency efficient cordic
architectures,” in Circuits and Systems, 1992. ISCAS ’92. Proceedings,
1992 IEEE International Symposium on, vol. 3, 1992, pp. 1093–1096.

