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Abstract—Coordinate Rotation Digital Computer (CORDIC) is a 

unique digital computing unit intended for the computation of 
mathematical operations and functions. This paper presents A multi 
CORDIC processor that integrates different CORDIC architectures 
on a single FPGA chip and allows the user to select the CORDIC 
architecture to proceed with based on what he wants to calculate and 
his needs. Synthesis show that radix 2 CORDIC has the lowest clock 
delay, radix 8 CORDIC has the highest LUT usage and lowest 
register usage while Hybrid Radix 4 CORDIC had the highest clock 
delay. 

 
Keywords—Multi, CORDIC, FPGA, Processor. 

I. INTRODUCTION 
OORDINATErotation digital computeris a unique digital 
computing unit intended for the computation of 

mathematical operations and functions. Initially, it was made 
by Volder [1], [2] for trigonometric functions which were 
defined in terms of main plane rotations 

Walther [3], [4] has put forward an integrated procedure for 
the CORDIC algorithm to compute functions in circular, 
linear, and hyperbolic coordinate systems. From then on, 
CORDIC has gained more interest due to its potential for 
efficient and low cost implementation of a wide class of 
applications and became the choice for scientific calculator 
applications. Now, CORDIC is used in a wide variety of 
applications such as digital signal processing, linear 
transformations, digital filters, biomedical signal processing, 
and neural networks. 

The rest of the paper is organized as follows. In Section II, 
brief background on unified CORDIC algorithm is presented. 
Section III describes related works about CORDIC algorithms 
and architectures. Section IV gives some investigation into the 
Multi CORDIC Algorithm and methods that where applied. 
Section V presents an implementation of a multi CORDIC 
processor on FPGA. Section VI gives experimental results. 
Section VII concludes this paper. 

II. BACKGROUND 
The generalized iteration equations of the CORDIC 

algorithm are defined as [5]: 
 

ቐ
     x୧ାଵ ൌ  k୧ሺx୧ െ mσ୧y୧rିSሺ୫,୧ሻሻ

y୧ାଵ ൌ  k୧ሺy୧ ൅ σ୧x୧rିSሺ୫,୧ሻሻ
z୧ାଵ ൌ  z୧ െ σ୧α୫,୧

      (1) 

 
where the coordinate parameter m defines the coordinate 
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system (circular for m = 1, linear for m = 0, and hyperbolic 
coordinate for m = -1), r represents the radix of the number 
system, ߪ௜is the rotation direction (clockwise or counter 
clockwise), ߙ௠,௜ is the rotation angle, ܵ௠,௜ is the integer shift 
sequence and ݇௜is the scaling factor. 

 
TABLE I 

OUTPUTS OF THE CORDIC ALGORITHM 
Coordinate Rotation(ܼ௡ ՜ 0) Vectoring(( ௡ܻ ՜ 0) 

Circular 
(m = 1) 

௡ݔ ൌ ଵ
௄೘

ሺ௫כୡ୭ୱ ௭ି௬כ௦௜௡ ௭ ሻ 

௡ݕ ൌ ଵ
௄೘

ሺ௬כୡ୭ୱ ௭ା௫כ௦௜௡ ௭ ሻ 
௡ݔ ൌ ଵ

௞೘
ሺݔଶ ൅ ଶሻଵݕ ଶ⁄  

௡ݖ ൌ ݖ ൅ tanିଵሺݔ/ݕሻ 
Linear 
(m = 1) 

௡ݔ ൌ  ݔ
௡ݕ ൌ ݕ ൅ ݔ כ  ݖ

௡ݔ ൌ  ݔ
௡ݖ ൌ ݖ ൅ ݔ/ݕ

Circular 
(m = 1) 

௡ݔ ൌ ଵ
௄೘

ሺ௫כୡ୭ୱ୦ ௭ା௬כ௦௜௡௛ ௭ ሻ 

௡ݕ ൌ ଵ
௄೘

ሺ௬כୡ୭ୱ୦ ௭ା௫כ௦௜௡௛ ௭ ሻ 
௡ݔ ൌ ଵ

௞೘
ሺݔଶ െ ଶሻଵݕ ଶ⁄  

௡ݖ ൌ ݖ ൅ tanhିଵሺݔ/ݕሻ 

 
The Cordic algorithm can be implemented in two different 

modes, the rotation mode and the vectoring mode. The 
rotation mode is used to perform the rotation of a vector (x,y) 
by a given angle θ. The vectoring mode computed the angle θ 
of a vector and its magnitude by performing a finite number of 
rotations. In rotation mode ߪ௜ = sign(ݖ௜) and ݖ௜ is driven 
iteratively to 0 while in vectoring mode ߪ௜ = -sign(ݕ௜) and ݕ௜ is 
driven iteratively to 0 [5]. 

The necessary rotations are not ideal and increase the 
magnitude of the vector. In order to retain a constant vector 
length, the obtained results have to be scaled by the scale 
factor [5]: 

 

K୫ ൌ ෑ k୧ ൌ 
୧

ෑ ට1 ൅ mσ୧
ଶrିଶSሺ୫,୧ሻ

୧

 

 
The functions, directly computed by the CORDIC 

algorithm, according to the selected value of the mode 
parameter and coordinate parameter, are summarized in Table 
I. With the appropriate initial values of x, y, and z, several 
basic functions can be computed. 

III. RELATED WORKS 

A. Most Used CORDIC Algorithms 
The most well known and used CORDIC algorithms are the 

radix-2 and the radix-4 CORDIC algorithms. The main 
disadvantages of using the radix-2 CORDIC algorithm are its 
relatively high latency and its low throughput due to the 
sequential nature of the iteration process which includes carry 
propagation and variable shifting in every iteration. To 
overcome these disadvantages, pipelined implementations 
where proposed [6]. However, carry propagation still hinders 
further throughput improvement. To increase the speed of 
CORDIC implementation, two methods were proposed. One 
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involves reducing the delay of each iteration by using 
redundant arithmetic [7], [8], [10], [11], [25], [27] to remove 
carry propagation. The other method reduces the number of 
iterations by using a higher radix in the CORDIC algorithm 
implementation [5], [12]-[14], [19], [20], [32]. 

Radix-4 CORDIC algorithm offers less iterations (n/2) than 
the radix-2 CORDIC algorithm. Although the iterations are 
halved, the Radix-4 z-path involves the computation of 
estimated ݖ௜ and evaluation of selection function to determine 
-௜ resulting in higher iteration delay compared to that of radixߪ
2 [5]. 

The scale factor compensation methodology involves 
scaling of the final (ݔ௡,ݕ௡) coordinates with 1/K. The natural 
way to do it is by using the CORDIC module in linear mode 
but its computational effort is the same as the CORDIC 
algorithm itself. Since 1/K is constant for radix 2, the 
computational cost can be reduced by using a CSD constant 
multiplier. Moreover, scaling can also be implemented using a 
Wallace tree by fully parallelizing multiplication and is 
preferred for applications aiming for low latency at the 
expense of more silicon area [5]. 

The CORDIC algorithm involves the rotation of a vector to 
reduce the z or y coordinates of the final vector as closely as 
possible to zero for rotation or vectoring mode respectively. 
The maximum value of the rotation angle by which the vector 
can be rotated depends on the shift order. The supposed results 
of the CORDIC algorithm can be achieved if the z or y 
coordinate is driven sufficiently close to zero. This can be 
guaranteed if the initial values of the input vector (x, y, z) lies 
within acceptable ranges depending on the coordinate mode 
m. These ranges define the domain of convergence of the 
CORDIC algorithm [5]. 

The precision of the CORDIC algorithm is affected by two 
kinds of computation errors explicitly, angle approximation 
and rounding error. The error ranges for these two sources of 
error are driven by performing detailed numerical analysis of 
the CORDIC algorithm. For angle approximation, one bit of 
precision is usually produced per iteration while for rounding; 
a maximum oflogଶn error is produced as the result of 
truncation of immediate results after each iteration. The 
Angular error and the rounding error derived are combined to 
yield an overall quantization error in the CORDIC 
implementation. The overall error can be guaranteed to be 
within range by considering an additional logଶn guard bits in 
the implementation of the CORDIC algorithm [5]. 

B. CORDIC Architectures 
There are two architectures for implementing CORDIC in 

hardware, mainly the folded and unfolded architectures. 
Folded architectures are acquired by reproducing each of the 
different iterative equations of the CORDIC algorithm into 
hardware and time multiplexing all the iterations into a single 
functional unit as shown in Fig. 1. These can be further 
categorized into bit-serial and word-serial architectures 
depending on whether the functional unit implements the logic 
for one bit or one word of each iteration of the CORDIC 
algorithm. Unfolded architectures are acquired by unfolding 

the iteration process so that each processing element always 
perform at the same iteration as shown in Fig. 2 [5], [28]-[30]. 

 

 
Fig. 1 Folded Iterative CORDIC Architecture 

 

 
Fig. 2 Unfolded Pipelined CORDIC Architecture 

 
The CORDIC algorithm has been implemented 

conventionally using bit serial architecture with all iterations 
are executed in the same hardware. This slowed down the 
computational device and therefore, is not suitable for high 
speed implementation. The word serial architecture is an 
iterative CORDIC architecture obtained by realizing the 
iteration equations. In this architecture, the shifters are 
modified in each iteration to cause the desired shift for the 
iteration. The appropriate elementary anglesσ୧ are accessed 
from a lookup table. The most hindering speed factors during 
the iterations of word serial architecture are carry/borrow 
propagate addition/subtraction and variable shifting 
operations, rendering the conventional CORDIC 
implementation slow for high speed applications. These 
disadvantages were overcome by using unfolded architectures. 
The main advantage of the unfolded pipelined architecture 
compared to folded architecture is high throughput due to the 
hardwired fixed position shifters rather than the time and area 
consuming barrel shifters and the removal of ROM. Pipelined 
architectures offer a throughput improvement by a factor of n 
for n-bit precision at the expense of increasing the hardware 
by a factor less than n [5]. 
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Several parallel CORDIC algorithms where stated in the 
literature. These algorithms try to increase the speed of the 
CORDIC by obtaining σ୧ values and/or x/y coordinatesin 
parallel instead of sequentially. Examples include LowLatency 
Radix-2 CORDIC [9], Hybrid CORDIC [15], [18], Flat 
CORDIC [24], P-CORDIC [21], Para-CORDIC [22], Semi-
flat Cordic [23], [26], [31], [33]. The scaling factor for most of 
these algorithms is constant as σ୧ is restricted totake values 
form the set {-1, 1}. The main disadvantage of using some of 
these algorithms is that they require additional complex 
hardware and have poor scalability [5]. 

IV. MULTI CORDIC ALGORITHM 
Similar to [15], [17], the multi CORDIC algorithm consists 

of three stages: argument reduction, CORDIC calculation and 
output normalization. The argument reduction stage 
transforms the inputs from floating-point format into fixed-
point format and expands the convergence range of the 
CORDIC algorithm. CORDIC calculation stage evaluates the 
desired CORDIC function based on the selected CORDIC 
architecture. Normalization stage transforms the outputs back 
to floating-point format and standardizes them into IEEE STD 
754-1985 format. 

A. Argument Reduction Algorithm 
The argument reduction algorithm was done using in 

argument reduction phase which is based on [15] and [17]. 
IEEE double-precision Floating-Point was used as the format 
for both the input and output data. To clarify further suppose 
the following notations: 

(1) Floating-Point Format of the Input Data: 
X = Sxכ 2୉୶ כMx, Y = Syכ 2୉୷ כMy, Z = Szכ 2୉୸  = ,Mzכ

Szכ  Mzᇱᇱ, Sx, Sy, Sz߳{-1,1} 

(2) Given Eref=max (Ex, Ey), Mxᇱᇱ and Myᇱᇱ are fixed-point 
formats of X and Y expressed as: 

Mxᇱᇱ =Mx כ 2୉୶ି୉୰ୣ୤, Myᇱᇱ = My כ 2୉୷ି୉୰ୣ୤ 

1. m = 0 (Linear Coordinate): 
Floating-point multiplication and division operation are 

implemented in this coordinate, in which no real argument 
reduction is required. However, there are some adjustments 
necessary which are summarized in the following table: 

 
TABLE II 

SUMMARY OF OPERATIONS FOR M = 0 
 Rotation Vectoring 

Input ଴ܻ ൌ 0 ܼ଴ ൌ 0 
Step 1 ݂݁ݎܧ ൌ ݔܧ ൅ ݂݁ݎܧ ݖܧ ൌ ݕܧ െ  ݔܧ
Step 2 ݕܯ௡ ൌ ݔܯ כ ௡ݖܯ ݖܯ ൌ  ݔܯ/ݕܯ

Step 3 
௡ܻ

ൌ ݔܵ כ ݖܵ כ ௡ݕܯሺ݉ݎ݋ܰ
כ 2ா௥௘௙ሻ 

ܼ௡
ൌ ݔܵ כ ݕܵ כ ௡ݖܯሺ݉ݎ݋ܰ
כ 2ா௥௘௙ሻ 

2. m = 1 (Circular Coordinate): 

a) Rotation: 
The input angle Z is mapped into the domain of [0, π/2] 

using the property of periodicity: 

Z ൌ Mzᇱᇱ ൌ  ஠
ଶ

כ Q ൅ D ൌ ஠
ଶ

כ ሺQ ൅ Rሻ (Given) 
 

 Q ൅ R ൌ ଶ
஠

כ MzԢԢ          (2) 
 

 Mzᇱ ൌ D ൌ గ
ଶ

כ R          (3) 
 

where Q is an integer denoting the quadrant of angle Z, R is 
the fraction and D is the mapped angle in the domain of 
[0,π/2]. 

 
TABLE III 

QUADRANT MAPPING 
Domain Q[1:0] ݔܯᇱ ݕܯᇱ 
[0,π/2] 00 ݔܯᇱԢ ݕܯᇱԢ 
[π/2,π] 01 െݕܯᇱԢ ݔܯᇱԢ 

[π,3 π/2] 10 ݔܯᇱԢ െݕܯᇱԢ 
[3π/2,2π] 11 ݕܯᇱԢ െݔܯᇱԢ 

 
,’ݔܯ  are chosen from Table III depending on the two’ݕܯ

least significant bits of Q. Afterwards, ݔܯ’,  are ’ݖܯ ݀݊ܽ ’ݕܯ
taken as inputs to the CORDIC calculation phase and 
Mx୬, My୬ are results. Then cos(Z) = 2୉୰ୣ୤Mx୬ and sin(Z) = 
2୉୰ୣ୤My୬ holds. 

b) Vectoring: 
,ᇱᇱݔܯ  ᇱᇱ are directly regarded as the inputs ofݖܯ ᇱᇱܽ݊݀ݕܯ

the CORDIC calculation phase and ݔܯ௡,  .௡ are resultsݖܯ
Then √ܺଶ ൅ ܻଶ= 2ா௥௘௙ݔܯ௡ holds. For the calculation of 
arctangent (ି݊ܽݐଵሺܻ/ܺሻ) fix is still needed on the quadrant of 
 :௡ according to the sign of X and Y as followsݖܯ

 

௡ݖܯ ൌ  ൜
ݕܵ             כ ݔܵ           ௡ݖܯ ൌ 1 
ݕܵ      כ ሺߨ െ ݔܵ  ௡ሻݖܯ ൌ െ1     (4) 

3. m = -1 (Hyperbolic Coordinate) 

a) Rotation: 
 The input angle Z is mapped into the domain of [0, ln(2)] 

using the property of periodicity: 
 

Z ൌ Mzᇱᇱ ൌ  ln ሺ2ሻ כ Q ൅ D ൌ ln ሺ2ሻ כ ሺQ ൅ Rሻ (Given) 
 

Q ൅ R ൌ ଵ
୪୬ ሺଶሻ

כ MzԢԢ        (5) 
 

Mzᇱ ൌ D ൌ ln ሺ2ሻ כ R        (6) 
 

where Q is an integer denoting the quadrant of angle Z, R is 
the fraction and D is the mapped angle in the domain of [0, 
ln(2)]. Given: 
 

ቊ
Mxᇱ  ൌ  ሺMxᇱᇱ ൅  Myᇱᇱሻ ൅ 2ିଶQሺMxᇱᇱ െ MyԢᇱሻ
Myᇱ  ൌ  ሺMxᇱᇱ ൅  Myᇱᇱሻ െ 2ିଶQሺMxᇱᇱ െ MyԢᇱሻ

              (7) 

 
,’ݔܯ  are taken as inputs to the CORDIC ’ݖܯ ݀݊ܽ ’ݕܯ

calculation phase and Mx୬, My୬ are results. Then cosh(Z) = 
2୉୰ୣ୤ାQିଵMx୬ and sinh(Z) = 2୉୰ୣ୤ାQିଵMy୬ holds. 
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b) Vectoring: 
If ݔܯ’ᇱ ൒ ,ᇱ’ݔܯ ԢԢ thenݕܯ2  ᇱ are taken as’ݖܯ ᇱ and’ݕܯ

inputs tothe CORDIC calculation phase and ݔܯ௡,  ௡areݖܯ
results. Then √ܺଶ െ ܻଶ= 2ா௥௘௙ݔܯ௡ holds. For the calculation 
of hyperbolic arctangent (tanhିଵሺܻ/ܺሻ) the sign of Mz୬ needs 
to be properly assigned based to the sign of X and Y as 
follows: 

 
Mz୬ ൌ Sy כ Sx כ Mz୬ 

 
For ݔܯ’ᇱ ൏  ᇱᇱ, let γ represent the number of leadingݕܯ2

zeroes in ሺMxᇱᇱ െ MyԢᇱ). Given: 
 

Enew = ൜    1,            γ ൌ 1
    γ െ 1, γ ൐ 1         (8) 

 
Then 

ቊMxᇱ  ൌ  ሺMxᇱᇱ ൅ Myᇱᇱሻ ൅ 2ି୉୬ୣ୵ሺMxᇱᇱ െ MyԢᇱሻ
Myᇱ  ൌ  ሺMxᇱᇱ ൅ Myᇱᇱሻ െ 2ି୉୬ୣ୵ሺMxᇱᇱ െ MyԢᇱሻ

          (9) 

 
,’ݔܯ  are taken as inputs to the CORDIC ’ݖܯ ݀݊ܽ ’ݕܯ

calculation phase andMx୬, Mz୬ are results. Then 
 

tanିଵሺ Y/Xሻ ൌ Sy כ Sx כ ሺMz୬ ൅ 0.5 כ Enew כ ln ሺ2ሻሻ  
 
holds. 

For calculation of square-root ሺඥܺଶ െ ܻଶሻݔܯ௡ needs to be 
scaled based on Enew as follows: 

 

௡ = ቐݔܯ
௡ݔܯ     כ 2୉୰ୣ୤ିሺు౤౛౭శమ

మ ሻ,         Enew mode 2 ൌ 0

    ሺ ଵ
√ଶ

ሻݔܯ௡ כ 2୉୰ୣ୤ିሺు౤౛౭శభ
మ ሻ, Enew mode 2 ൌ 1

  (10) 

 
In addition, the following functions are derived from the 

previous functions [16]: 
 

ln(W) = 2 כ tanିଵሺ Y/Xሻ where X = W ൅ 1 and Y = W െ 1. 
 

√ܹ ൌ  √ܺଶ െ ܻଶ where X = W ൅ (1/4) and Y = W – (1/4). 

V. MULTI CORDIC PROCESSOR IMPLEMENTATION 

A pipelined 64-bit IEEE floating-point multi CORDIC 
processor was implemented on FPGA platform. The purpose 
was to implement different CORDIC architectures on the 
same FPGA chip were the user can choose which CORDIC 
architecture to use for the calculation according to a selection 
function. As each CORDIC architecture can only calculate 
specific functions, the choices will be limited by what the user 
wants to calculate. 

The multi CORDIC architecture was implemented in 
Verilog, synthesized with Xilinx vertex 7 FPGA XC7VX980T 
to ensure enough area for mapping the architecture (Xilinx 
vertex 5 and 6 did not have enough area) and includes the 
following CORDIC architectures: radix-2 CORDIC, radix-2 
hybrid-mode CORDIC [15], radix-4 CORDIC [12], [14], [19], 
[20], radix-4 hybrid-mode CORDIC, Para-CORDIC [22] and 
radix-8 CORDIC. All can run in both rotation and vectoring 

modes except Para-CORDIC and radix-8 CORDIC which run 
in rotation mode only. Also radix-4 CORDIC, radix-4 hybrid-
mode CORDIC and radix-8 CORDIC currently cannot run in 
hyperbolic coordinate systems. 

The multi CORDIC architecture is implemented as follows: 
Similar to [15], the multi CORDIC architecture contains a pre-
process module and a post-process module in addition to the 
CORDIC modules (for each separate CORDIC architecture). 
The inputs to the multi CORDIC architecture include the x,y 
and z inputs, the x,y and z outputs, the coordinate selection 
mode m, the vectoring mode selection vm and the clock and 
rest signals in addition to the CORDIC selection function 
(which selects which CORDIC architecture to proceed with). 
Before the pre-process module, the input to the selected 
CORDIC architecture is set while reset is set to 1 for the other 
CORDIC architectures. This is done as the other CORDIC 
architectures have no use. The inputs to the post-process 
module are also directly set based on the selected CORDIC 
architecture after the CORDIC modules. More specifically the 
pipeline stages of the multi CORDIC architecture are as 
follows: 

S1: Setting the rst input of all CORDIC architectures 
The rst (rest) input of the selected CORDIC architecture is 

set to the rst input of the multi CORDIC architecture while all 
other CORDIC architectures have their rst input set to 1. 
x, y and z inputs propagated. 

S2: Converting the floating-point format of inputs into fixed 
point format. 

Mantissas: 1 is added to the left of the mantissas of X, Y 
and Z as it is excluded when mantissas are not equal to0. 
Otherwise if a mantissa = 0 no 1 is added to the left of it. Next, 
given Eref3 = max(Ex, Ey), (Ex − Eref3) bits right shift of the 
mantissa of X produces Mx” and (Ey − Eref3)bits right shift of 
the mantissa of Y produces My”. IfEz> 1023, (Ez − 1023) bits 
left shift of the mantissa Z produces Mz” or else (1023 − Ez) 
bits right shift of the mantissa Z produces Mz”. For the 
calculation of natural logarithm: Mx”= Mx” + (1 shifted left 
by (52 − Eref3 − 1023) bits) and My” = My” − (1 shifted left 
by (52 − Eref3 − 1023) bits). 
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TABLE IV 
COMPARISONS OF THE SYNTHESIS RESULTS OF THE DIFFERENT CORDIC ARCHITECTURES ON FPGA 

CORDIC Architecture Path Delay Number of Slice LUTs Number of Slice Registers Power 
Radix 2 CORDIC 8.398ns 24473 out of 612000 (3%) 11,819 out of 1224000 (1%) 0.331W 
Hybrid Radix 2 CORDIC 8.497ns 22758 out of 612000 (3%) 10981 out of 1224000 (1%) 0.331W 
Radix 4 CORDIC 13.977ns 21743 out of 612000 (3%) 7858 out of 1224000 (1%) 0.331W 
Hybrid Radix 4 Cordic 14.232ns 20717 out of 612000 (3%) 6952 out of 1224000 (1%) 0.331W 
Para-CORDIC 9.346ns 23353 out of 612000 (4%) 11020 out of 1224000 (1%) 0.331W 
Radix 8 CORDIC 12.477ns 37254 out of 612000 (6%) 6299 out of 1224000 (0.5%) 0.331W 
Multi CORDIC 19.544ns 100069 out of 612000 (16%) 36803 out of 1224000 (3%) 0.331W 

 
For the calculation of square root: 
 

Mx” = Mx” + (1 shifted left by (50 − Eref3 − 1023) and My” 
= My” − (1 shifted left by (50 − Eref3 − 1023). 

 
Exponents: For the calculation of multiplication, Eref1 = Ex 

+ Ez − 1023 and for the calculation of division, Eref2 = Ey − 
Ex +1023. Otherwise, Eref3 = max(Ex, Ey). 

S3 - S4: Scaling Factor Compensation and Angle mapping 
in argument reduction 

Mantissas: X and Y need to be scaled with the constant 
scaling factor Km depending on the CORDIC selection. 
Scaling factors are gotten in S2 while in S3, X and Y are 
compensated with the corresponding scaling factor depending 
on the CORDIC selection. For rotation mode, mapping the 
angle Z into the destined domain needs a fixed-point constant 
multiplication. For circular coordinate, a constant multiplier is 
required to execute (2). For hyperbolic coordinate, a constant 
multiplier is required to execute (5). 

In S2, the value of Mx” − is My” is gotten which is used in 
S3 to get the value of γ through the module of LeadZero. 
Then, the magnitude of Enew is gotten through (8). 
Exponents and signs Propagated. 

S5: Calculation mapped angle value in argument reduction. 
Mantissas: selecting MxԢ and MyԢ according to Table III 

and the magnitude of Q. Accomplishing the computation of 
(7) and (9) by two adders, one subtractor and two shifters. 
Two constant multipliers are employed to execute the 
computation of (3) and (6) respectively. 
Exponents and signs Propagated 

S6: Selecting the inputs of the CORDIC calculation module 
according to the coordinate mode m, the operation mode vm 
and the corresponding function (to be evaluated) fn. 

S7-SN: CORDIC calculation phase. 
Each CORDIC architecture is allowed to run on its own. 

Each stage accomplishes one or more iterations of the 
CORDIC depending the CORDIC architecture selected. N is 
used here to indicate that the number of stages is variable 
depending on the selected CORDIC architecture. 

SN+1: Setting the inputs of the PostProcess module. 
Mantissas: For natural exponential ex, if Sz equals 0 then X 

and Y, are added to product the final value of ex else ex = X - 
Y. For natural logarithm ln(x) or hyperbolic arctangent 
arctanh(x), Z and Exln2, which are the output of CORDIC 
process module and Mult ln2 module respectively, are added 
to product the final value of ln(x) or arctanh(x). For arctangent 
arctan(x), accomplishing (4) products the final value of 

arctan(x). If X55 < 0 then the final value X = -X. If Y <0 then 
the final value Y = -Y. 

Signs: For final value of X, Sx = Sign(X). For final value of 
Y, Sy = xor(Sx,Sz) if(mode m = 0) else Sy = xor(Sign(Y),Sz). 
For Final value of Z, Sz = Syif(mode m = 1) elseSz = 
xor(Sx,Sy). 
Exponents propagated. 

SN+3: Counting leading zeros 
Mantissas: Counting leading zeros in the final values of X, 

Y, Z and ex. 
Exponents propagated. 

SN+4: Normalization of output. 
X, Y, Z, and ex (not including the sign bit) are shifted to the 

left according to the number of the leading zeroes and are then 
truncated to form the mantissas of the outputs respectively. 
The first 1 bit (not including the sign bit) is not included as in 
the IEEE 754 floating-point format. 

For X, Y and ex, the exponent of the output is calculated by 
subtracting the number of the leading zeroes of X, Y and ex 
from Eref respectively. If the length of X, Y or ex (after 
shifting and not including the first 1 bit) is greater than 52bits 
(before truncation) then the length (of X or Y or Z) – 52must 
be added to each exponent output. The exponent of Z is 
computed by subtracting the number of the leading zeros ofZ 
from Eref if(mode m = 0 and operation mode vm = 1) or from 
1023 otherwise. As with other exponents, the length ofZ - 52 
must be added to the exponent of Z if length of Z is> 52. +1 is 
added to the Z exponent for the calculation of the natural 
logarithm. Comparison of the synthesis results of the multi-
CORDIC architecture with respect to the other CORDIC 
architecture simplemented on FPGA (Xilinx vertex 7 FPGA 
XC7VX980T) are summarized in Table IV. 

VI. EXPERIMENTS 
Experiments were conducted in order to observe the 

accuracy and precision of functions computed by the different 
CORDIC architectures. The results are compared with results 
produced by a Pentium processor and are shown on Table V 
where the relative error is shown on the right most column of 
each sub-table. The value shown in the relative error column is 
a value i such that 2ି௜≥ relative error >2ି௜ାଵ. Many ofthe 
results show that the designs were correct. Relative 
errorgenerally reaches a maximum error of 2ିଶ଻ for small data 
anda maximum error of 2ିଷଽ large data. 
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VII. CONCLUSION 
This paper presented a multi CORDIC architecture which 

was implemented on FPGA and it included different CORDIC 
architectures combined where the user can select the cordic 
architecture that suits his needs. It was organized into three 
phases, Argument reduction, CORDIC calculations and output 
normalization. Synthesis show that radix 2 CORDIC has clock 
delay, radix 8 CORDIC has the highest LUT usage and lowest 
register usage while Hybrid Radix 4CORDIC had the highest 
clock delay. Error results show that normally a maximum 
error of 2ିଶ଻is reached for small data and a maximum error of 
2ିଷଽ is reached for large data.Generally, there is no clear 
winner for which architectureachieves the better precision but 
there are special cases whereone or more architectures 
dominate. For example, Radix 4 CORDIC and Hybrid Radix 4 

CORDIC achieve the best precision for the calculation of 
Arctan while Para CORDIC achieves the best precision for the 
calculations of sinh, cosh and exp. So, the multi CORDIC 
processor can be used as a component in scientific 
computations. 
 
 
 
 
 
 
 
 
 
 
 

 
TABLE V 

EXPERIMENTAL RESULTS (A) ACCURACY AND PRECISION TEST OF SIN 

Operand CORDIC Architecture Pentium Result CORDIC Result E(2−i) 
0.000001 CORDIC Radix-2 9.999999999998333E-7 9.999999941445736E-7 27 
0.000001 CORDIC Radix-2 Hybrid-mode 9.999999999998333E-7 9.999999941445736E-7 27 
0.000001 CORDIC Radix-4 9.999999999998333E-7 9.999999994736442E-7 50 
0.000001 CORDIC Radix-4 Hybrid-mode 9.999999999998333E-7 9.999999992515995E-7 31 
0.000001 Para CORDIC 9.999999999998333E-7 9.999999997858177E-7 32 
0.000001 CORDIC Radix-8 9.999999999998333E-7 9.999999992515995E-7 30 
π / 6 CORDIC Radix-2 0.49999999999999994 0.49999999999999334 46 
π / 6 CORDIC Radix-2 Hybrid-mode 0.49999999999999994 0.49999999999999334 46 
π / 6 CORDIC Radix-4 0.49999999999999994 0.5000000000002425 41 
π / 6 CORDIC Radix-4 Hybrid-mode 0.49999999999999994 0.5000000000002425 41 
π / 6 Para CORDIC 0.49999999999999994 0.49999999999999983 52 
π / 6 CORDIC Radix-8 0.49999999999999994 0.5000000000002294 41 

1024.0 CORDIC Radix-2 -0.15853338004399595 -0.15853338004393946 41 
1024.0 CORDIC Radix-2 Hybrid-mode -0.15853338004399595 -0.15853338004393946 41 
1024.0 CORDIC Radix-4 -0.15853338004399595 -0.15853338004424167 39 
1024.0 CORDIC Radix-4 Hybrid-mode -0.15853338004399595 -0.15853338004424167 39 
1024.0 Para CORDIC -0.15853338004399595 -0.15853338004393386 41 
1024.0 CORDIC Radix-8 -0.15853338004399595 -0.15853338004409712 41 

 
(B) ACCURACY AND PRECISION TEST OF COS 

Operand CORDIC Architecture Pentium Result CORDIC Result E(2−i) 
0.000001 CORDIC Radix-2 0.9999999999995 0.9999999999995064 47 
0.000001 CORDIC Radix-2 Hybrid-mode 0.9999999999995 0.9999999999995064 47 
0.000001 CORDIC Radix-4 0.9999999999995 0.9999999999999578 41 
0.000001 CORDIC Radix-4 Hybrid-mode 0.9999999999995 0.999999999999958 41 
0.000001 Para CORDIC 0.9999999999995 1.0000000000067764 37 
0.000001 CORDIC Radix-8 0.9999999999995 0.999999999999958 41 
π / 6 CORDIC Radix-2 0.8660254037844387 0.8660254037844466 46 
π / 6 CORDIC Radix-2 Hybrid-mode 0.8660254037844387 0.8660254037844466 46 
π / 6 CORDIC Radix-4 0.8660254037844387 0.8660254037848636 41 
π / 6 CORDIC Radix-4 Hybrid-mode 0.8660254037844387 0.8660254037848636 41 
π / 6 Para CORDIC 0.8660254037844387 0.8660254037844386 53 
π / 6 CORDIC Radix-8 0.8660254037844387 0.8660254037848392 41 

1024.0 CORDIC Radix-2 0.9873536182198484 0.9873536182198626 46 
1024.0 CORDIC Radix-2 Hybrid-mode 0.9873536182198484 0.9873536182198626 46 
1024.0 CORDIC Radix-4 0.9873536182198484 0.9873536182217675 39 
1024.0 CORDIC Radix-4 Hybrid-mode 0.9873536182198484 0.9873536182217675 39 
1024.0 Para CORDIC 0.9873536182198484 0.9873536182270427 37 
1024.0 CORDIC Radix-8 0.9873536182198484 0.9873536182208698 40 
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(C) ACCURACY AND PRECISION TEST OF ARCTAN 

Operand CORDIC Architecture Pentium Result CORDIC Result E(2−i) 
tan(0.0001) CORDIC Radix-2 0.0001 9.999999999375352E-5 34 
tan(0.0001) CORDIC Radix-2 Hybrid-mode 0.0001 9.999999999375135E-5 34 
tan(0.0001) CORDIC Radix-4 0.0001 9.999999999873131E-5 36 
tan(0.0001) CORDIC Radix-4 Hybrid-mode 0.0001 9.999999999873175E-5 36 

2.0 CORDIC Radix-2 1.1071487177940904 1.1071487177940855 48 
2.0 CORDIC Radix-2 Hybrid-mode 1.1071487177940904 1.1071487177940855 48 
2.0 CORDIC Radix-4 1.1071487177940904 1.1071487177940902 52 
2.0 CORDIC Radix-4 Hybrid-mode 1.1071487177940904 1.1071487177940902 52 

7968578.0 Cordic Radix-2 1.5707962013019918 1.570796201301989 49 
7968578.0 CORDIC Radix-2 Hybrid-mode 1.5707962013019918 1.570796201301989 49 
7968578.0 CORDIC Radix-4 1.5707962013019907 1.570796201301989 49 
7968578.0 CORDIC Radix-4 Hybrid-mode 1.5707962013019907 1.570796201301989 49 

 
(D) ACCURACY AND PRECISION TEST OF SINH 

Operand CORDIC Architecture Pentium Result CORDIC Result E(2−i) 
0.000001 CORDIC Radix-2 1.0000000000001666E-6 9.999999974752427E-7 29 
0.000001 CORDIC Radix-2 Hybrid-mode 1.0000000000001666E-6 9.99999997586265E-7 29 
0.000001 Para CORDIC 1.0000000000001666E-6 1.0000000001717992E-6 32 

5.65 CORDIC Radix-2 142.143974153573 142.1439741535723 48 
5.65 CORDIC Radix-2 Hybrid-mode 142.143974153573 142.14397415357234 48 
5.65 Para CORDIC 142.143974153573 142.14397415357288 50 
100 CORDIC Radix-2 1.3440585709080678E43 1.344058570908060E43 47 
100 CORDIC Radix-2 Hybrid-mode 1.3440585709080678E43 1.344058570908060E43 47 
100 Para CORDIC 1.3440585709080678E43 1.3440585709080802E43 47 

 
(E) ACCURACY AND PRECISION TEST OF COSH 

Operand CORDIC Architecture Pentium Result CORDIC Result E(2−i)
0.000001 CORDIC Radix-2 1.0000000000005 1.0000000000004976 49 
0.000001 CORDIC Radix-2 Hybrid-mode 1.0000000000005 1.0000000000004976 49 
0.000001 Para CORDIC 1.0000000000005 1.000000000000499 50 

5.65 CORDIC Radix-2 142.14749167034793 142.14749167034716 47 
5.65 CORDIC Radix-2 Hybrid-mode 142.14749167034793 142.14749167034716 47 
5.65 Para CORDIC 142.14749167034793 142.1474916703479 53 
100 CORDIC Radix-2 1.3440585709080678E43 1.344058570908060E43 47 
100 CORDIC Radix-2 Hybrid-mode 1.3440585709080678E43 1.344058570908060E43 47 
100 Para CORDIC 1.3440585709080678E43 1.3440585709080802E43 47 

 
(F) ACCURACY AND PRECISION TEST OF EXP 

Operand CORDIC Architecture Pentium Result CORDIC Result E(2−i) 
0.000001 CORDIC Radix-2 1.0000010000005 1.000001000000495 48 
0.000001 CORDIC Radix-2 Hybrid-mode 1.0000010000005 1.0000010000004953 48 
0.000001 Para CORDIC 1.0000010000005 1.000001000000499 50 

5.65 CORDIC Radix-2 284.29146582392093 284.29146582391945 47 
5.65 CORDIC Radix-2 Hybrid-mode 284.29146582392093 284.29146582391957 48 
5.65 Para CORDIC 284.29146582392093 284.2914658239208 51 
100 CORDIC Radix-2 2.6881171418161356E43 2.688117141816121E43 47 
100 CORDIC Radix-2 Hybrid-mode 2.6881171418161356E43 2.688117141816121E43 47 
100 Para CORDIC 2.6881171418161356E43 2.6881171418161604E43 47 

 
(G) ACCURACY AND PRECISION TEST OF ARCTANH 

Operand CORDIC Architecture Pentium Result CORDIC Result E(2−i) 
 0.0001 CORDIC Radix-2 1.0000000033336145E-4 1.0000000032587154E-4 34 
 0.0001 CORDIC Radix-2 Hybrid-mode 1.0000000032942121E-4 1.0000000032587154E-4 35 

 0.5 CORDIC Radix-2 0.5493061443340549 0.5493061443340521 47 
 0.5 CORDIC Radix-2 Hybrid-mode 0.5493061443340549 0.5493061443340522 48 

 0.99975 CORDIC Radix-2 4.493535906424466 4.493535906424107 44 
 0.99975 CORDIC Radix-2 Hybrid-mode 4.493535906424466 4.493535906424107 44 
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(H) ACCURACY AND PRECISION TEST OF LN 

Operand CORDIC Architecture Pentium Result CORDIC Result E(2−i)
 0.001 CORDIC Radix-2 -6.907755278982137 -6.907755278982137 ∞ 
 0.001 CORDIC Radix-2 Hybrid-mode -6.907755278982137 -6.907755278982136 53 
 4.0 CORDIC Radix-2 1.3862943611198906 1.3862943611198868 48 
 4.0 CORDIC Radix-2 Hybrid-mode 1.3862943611198906 1.3862943611198866 48 

 1.0E13 CORDIC Radix-2 29.933606208922594 29.933606208922594 ∞ 
 1.0E13 CORDIC Radix-2 Hybrid-mode 29.933606208922594 29.933606208922594 53 

 
(I) ACCURACY AND PRECISION TEST OF SQRT 

Operand CORDIC Architecture Pentium Result CORDIC Result E(2−i)
0.001 CORDIC Radix-2 0.03162277660168379 0.0316227766016838 52 
0.001 CORDIC Radix-2 Hybrid-mode 0.03162277660168379 0.0316227766016838 52 

4.0 CORDIC Radix-2 2.0 1.999999999999992 48 
4.0 CORDIC Radix-2 Hybrid-mode 2.0 1.9999999999999922 48 

1.0E9 CORDIC Radix-2 31622.776601683795 31622.7766016838 52 
1.0E9 CORDIC Radix-2 Hybrid-mode 31622.776601683795 31622.7766016838 52 
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