
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:2, 2013

235

Abstract—A generic and extendible Multi-Agent Data Mining

(MADM) framework, MADMF (the Multi-Agent Data Mining

Framework) is described. The central feature of the framework is that

it avoids the use of agreed meta-language formats by supporting a

framework of wrappers.

The advantage offered is that the framework is easily extendible,

so that further data agents and mining agents can simply be added to

the framework. A demonstration MADMF framework is currently

available. The paper includes details of the MADMF architecture and

the wrapper principle incorporated into it. A full description and

evaluation of the framework’s operation is provided by considering

two MADM scenarios.

Keywords—Multi-Agent Data Mining (MADM), Frequent

Itemsets, Meta ARM, Association Rule Mining, Classifier generator.

I. INTRODUCTION

ULTI-AGENT Data Mining (MADM) seeks to harness

the general advantages of Multi-Agent systems (MAS)

in the application domain of Data Mining (DM).

MAS technology has much to offer DM, particularly in the

context of various forms of distributed and cooperative DM.

The main issues with MADM are the disparate nature of DM

and the wide range of tasks encompassed. Any desired generic

MADM framework therefore requires a sophisticated

communication mechanism to support it. In the work

described here we address the communication requirements of

MADM by using a framework of mediators and wrappers

coupled with an Agent Communication Language (ACL) such

as FIPA ACL [8].

We believe this can more readily address the issues

concerned with the variety and range of contexts to which a

generic MADM can be applicable. The use of wrappers also

avoids the need for agreed meta-language formats.

To investigate and evaluate the expected advantages of

wrappers and mediators in the context of generic MADM, we

have developed and implemented (in JADE) a multi-agent

framework, MADMF (the Extendible Multi-Agent Data

Mining Framework). The primary goal of the MADMF

framework is extendibility; we wish to provide a means for

integrating new DM algorithms and data sources in our

framework. However, MADMF also seeks to address some of

the issues of DM that would benefit from the use of a generic

framework. MADMF provides:

K. A. Albashiri is with the Computer Science Department, Faculty of

Accounting, Al-Jabal Al-Gharbi University, Gharian, Libya (e-mail:
elbashiri0@yahoo.com).

K. A. Kadouh., is with the Computer Science Department, Faculty of

Science, Al-Jabal Al-Gharbi University, Gharian, Libya (e-mail:
kaledgadou@yahoo.com).

– Flexibility in assembling communities of autonomous

service providers, including the incorporation of existing

applications.

– Minimization of the effort required to create new agents,

and to wrap existing applications.

– Support for end users to express DM requests without

having detailed knowledge of the individual agents.

II. RELATED WORK

MAS have shown much promise for flexible, fault-tolerant,

distributed problem solving. Some MADM frameworks focus

on developing complex features for specific DM tasks,

without attempting to provide much support for usability or

extendibility [10]. The success of peer-to-peer systems and

negotiating agents has engendered a demand for more generic,

flexible, robust frameworks.

There have been only few such generic MADM

frameworks. An early example was IDM [6], a multi-agent

architecture for direct DM to help businesses gather

intelligence about their internal commerce agent heuristics and

architectures for KDD. In [3] a generic task framework was

introduced, but designed to work only with spatial data. The

most recent framework was introduced in [9] where the

authors proposed a multi-agent framework to provide a

general framework for distributed DM applications. In this

framework the effort to embed the logic of a specific domain

has been minimized and is limited to the customization of the

user. However, although its customizable feature is of a

considerable benefit, it still requires users to have very good

DM knowledge. The MADMF framework which we describe€

below aims to allow DM algorithms to be embedded in a

flexible framework with minimum effort by the user.

III. FRAMEWORK ARCHITECTURE

The MADMF framework has several different modes of

operation according to the nature of the participant. Each

mode of operation has a corresponding category of User

Agent. Broadly, the supported categories are:

 – Developers: Developers are participants, who have full

access and may contribute DM algorithms in the form of Data

Mining Agents (DM Agents).

A Multi-Agent Framework for Data Mining

M

Kamal Ali Albashiri and Khaled Ahmed Kadouh

The paper’s organization is as follows. A brief review of

some related work on MADM is presented in Section II. The
conceptual framework, together with an overview of the

wrapper principle, is presented in Section III and Section IV.
The framework’s operation is illustrated in Section V using
two DM scenarios, and finally some conclusions are

presented in Section VI.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:2, 2013

236

– Data Miners: These are participants, with restricted access

to the framework, who may pose DM requests through User

Agents and Task Agents (see below for further details).

– Data Contributors: These are participants, again with

restricted access, who are prepared to make data available, by

launching Data Agents, to be used by DM agents.

Fig. 1 MADMF Architecture as Implemented in Jade

Conceptually the nature of the requests that may be posted

Fig. 1 presents the MADMF architecture as implemented in

JADE (The Java Agent Development Environment) [4]. It

shows a sample collection of several application agents and

housekeeping agents, organized as a community of peers by a

common relationship to each other, that exist in a set of

containers. In particular the main container holds the

housekeeping agents (an Agent Management Framework

(AMS) agent and a Directory Facilitator (DF) agent). These

are specialized server agents responsible for facilitating agents

to locate one another.

A user agent runs on the user’s local host and is responsible

for: (i) accepting user input (request), (ii) launching the

appropriate Task Agent to process user requests, and (iii)

displaying the results of the (distributed) computation. The

user expresses a task to be executed using standard interface

dialogue mechanisms by clicking on active areas in the

interface and, in some cases, by entering threshold values.

Note that the user does not need to specify which agent or

agents should be employed to perform the desired task. For

instance, if the question “What is the best classifier for my

data?” is posed in the user interface, this request will trigger a

Task Agent. The Task Agent requests the facilitator to match

the action part of the request to capabilities published by other

agents.

The request is then routed by the Task Agent to the

appropriate combination of agents to execute the request. On

completion the results are sent back to the user agent for

display.

Cooperation among the various MADMF agents is achieved

via messages expressed in FIPA ACL and is normally

structured around a three-stage process:

1. Service Registration where providers (agents who wish to

provide services) register their capability specifications with a

facilitator.

2. Request Posting where User Agents (requesters of

services) construct requests and relay them to a Task Agent.

3. Processing where the Task Agent coordinates the efforts

of the appropriate service providers (Data Agents and DM

Agents) to satisfy the request.

Note that Stage 1 (service registration) is not necessarily

immediately followed by stage 2 and 3; it is possible that a

services provider may never be used.

Note also that the facilitator (the DF and AMS agents)

maintains a knowledge base that records the capabilities of the

various MADMF agents, and uses this knowledge to assist

requesters and providers of services in making contact.

IV. FRAMEWORK EXTENDIBILITY

One of the principal objectives of MADMF is to provide an

easily extendible MADM framework that can easily accept

new data sources and new data mining techniques. The desired

extendibility is achieved by a framework of wrappers.

MADMF wrappers are used to “wrap” data mining artifacts

so that they become MADMF agents and can communicate

with other MADMF agents. As such MADMF wrappers can

be viewed as agents in their own right that are subsumed once

they have been integrated with data or tools to become data or

data mining agents. The wrappers essentially provide an

application interface to MADMF that has to be implemented

by the end user; this has been designed to be a fairly trivial

operation.

MADMF provides the definition of an abstract parent agent

class and every instance agent object (i.e., a program that

implements a learning DM algorithm) is then defined as a

subclass of this parent class. Through the variables and

methods inherited by all agent subclasses, the parent agent

class describes a simple and minimal interface that all

subclasses have to comply to. As long as an agent conforms to

this interface, it can be introduced and used immediately as

part of the MADMF framework. Two broad categories of

wrapper have been defined: (i) data wrappers and (ii) tool

wrappers.

A. Data Wrappers

Data wrappers are used to “wrap” a data source and

consequently create a data agent. A data wrapper holds the

location (file path) of a data source, so that it can be accessed

by other agents; and meta information about the data. To assist

end users in the application of data wrappers a data wrapper

GUI is available.

Once created, the data agent announces itself to the DF

agent as a consequence of which it becomes available to all

MADMF users.

by MADMF users is extensive. In the current demonstration

implementation a number of generic requests are supported

directed at classification and Association Rule Mining (ARM)

scenarios. Two exemplar scenarios are used to illustrate this

paper (Section V).

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:2, 2013

237

B. Tool Wrappers

Tool wrappers are used to “wrap” up data mining software

frameworks and thus create a mining agent. Generally the

framework components will be data mining tools of various

kinds (classifiers, clusters, AR miners, etc.) although they

could also be (say) data normalization or visualization tools. It

is intended that MADMF will incorporate a substantial

number of different tool wrappers each defined by the nature

of the desired I/O which in turn will be informed by the nature

of the generic data mining tasks that it is desirable for

MADMF to be able to perform.

V. FRAMEWORK DEMONSTRATION

The operation of MADMF is described in the following two

subsections by considering two demonstration applications

(scenarios).

A. Meta ARM (Association Rule Mining) Scenario

Meta Mining is defined here as the process of combining

individually obtained results of N applications of a DM

activity. The motivation behind the scenario is that data

relevant to a particular DM application may be owned and

maintained by different, geographically dispersed,

organizations.

The meta ARM scenario comprises a set of N data agents,

N ARM mining agents and a meta ARM agent. Note that each

ARM mining agent could have a different ARM algorithm

associated with it, although, it is assumed that a common data

structure is used to facilitate data interchange. For the scenario

described here a set enumeration tree structure called a T-tree

[7] was used.

Once generated the N local T-trees are passed to the Meta

ARM agent which creates a global T-tree. During the global

T-tree generation process the Meta ARM agent interacts with

the various ARM agents. There are a number of strategies that

can be adopted with respect to when in the process intra agent

communication should be made. The authors identified five

distinct strategies (Benchmark, Apriori, Brute Force, Hybrid 1

and Hybrid 2). A full description of the algorithms can be

found in [1].

1)�Experimentation and Analysis

To evaluate the five Meta ARM algorithms, in the context

of the MADMF vision, a number of experiments were

conducted designed to analyze the effect of: (i) the number of

data agents, (ii) the size of the data agents’ datasets in terms of

number of records, and (iii) the size of the data agents’

datasets in terms of number of attributes. For each of the

experiments we measured: (i) processing time, (ii) the overall

size of the communications (Kbytes), and (iii) the number of

individual communications.

The results shown in Fig. 2 indicate, with respect to Meta

ARM, that MADMF offers positive advantages in that all the

Meta ARM algorithms were more computationally efficient

than the bench mark algorithm (no intra agent cooperation).

The results of the analysis also indicated that the Apriori Meta

ARM approach coped best with a large number of data

sources, while the Brute Force and Hybrid 1 approaches coped

best with increased data sizes (in terms of column/rows).

(a) Processing Time

(b) Total size of RTD lists (c) Number of RTD lists

Fig. 2 Effect of number of data sources

B. Classifier Generation Scenario

The Classifier Generation scenario is that of an end user

who wishes to obtain a “best” classifier founded on a given,

pre-labeled, data set; which can then be applied to further

unlabelled data. The assumption is that the given data set is

binary valued and that the user requires a single-label, as

opposed to a multi-labeled, classifier. The request is made

using the individual’s user agent which in turn will spawn an

appropriate task agent. For this scenario the task agent

interacts with DM agents that hold single labeled classifier

generators that take binary valued data as input. Each of these

mining agents generate a classifier, together with an accuracy

estimate. Once received the task agent selects the classifier

with the best accuracy and returns this to the user agent.

From the literature there are many reported techniques

available for generating classifiers. For the scenario reported

here the authors used implementations of eight different

algorithms. These were placed within an appropriately defined

tool wrapper to produce eight (single label binary data

classifier generator) DM agents. This was found to be a trivial

operation indicating the versatility of the wrapper concept.

1)�Experimentation and Analysis

To evaluate the classification scenario, a sequence of data

sets taken from the UCI machine learning data repository [5]

were used (pre-processed by data agents so that they were

discretized/normalized into a binary valued format). The

results are presented in Table I. Each row in the table
represents a particular request and gives the name of the data

set, the selected best algorithm as identified from the

interaction between agents, the resulting best accuracy and the

total MADMF execution time in seconds from creation of the

initial task agent to the final “best” classifier being returned to

the user.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:2, 2013

238

TABLE I

 CLASSIFICATION RESULTS

Data
set #

Data Set
Classifier
Name Accuracy

Gen.
Time

1 connect4.D129.N67557.C3 RDT 79.76 502

2 adult.D97.N48842.C2 IGDT 86.05 86.1

3 letRecog.D106.N20000.C26 RDT 91.79 31.5

4 anneal.D73.N898.C6 FOIL 98.44 5.82

 5 breast.D20.N699.C2 IGDT 93.98 1.28

6 dematology.D49.N366.C6 RDT 96.17 11.2

7 heart.D52.N303.C5 RDT 96.02 3.04

8 auto.D137.N205.C7 IGDT 76.47 12.1

9 penDigits.D89.N10992.C10 RDT 99.18 13.7

10 sbeanLarge.D118.N683.C19 RDT 98.83 13.2

The results demonstrate firstly that MADMF can usefully

be adopted to produce a best classifier from a selection of

classifiers. Secondly that the operation of MADMF is not

significantly hindered by agent communication overheads,

although this has some effect. Generation time, in most cases

does not seem to be an issue, so further classifier generator

mining agents could easily be added. The results also reinforce

the often observed phenomenon that there is no single best

classifier generator suited to all kinds of data set. Further

details of this process can be also found in Albashiri et al. [2].

VI. CONCLUSION

This paper described MADMF, a generic multi-agent

framework for DM. The principal advantages offered by the

framework are that of experience and resource sharing,

flexibility and extendibility, protection of privacy and

intellectual property rights and information hiding. The

framework’s operation was illustrated using meta ARM and

classification scenarios. Extendibility is demonstrated by

showing how wrappers are used to incorporate existing

software into MADMF.

Experience to date indicates that, given an appropriate

wrapper, existing DM software can very easily be packaged to

become a DM agent. Flexibility is illustrated using the

classification scenario. Information hiding is demonstrated in

that users need have no knowledge of how any particular piece

of DM software works or the location of the data used.

A good foundation has been established for both DM

research and genuine application based DM. The research

team is at present working towards increasing the diversity of

mining tasks that can be addressed. There are many directions

in which the work can (and is being) taken forward. One

interesting direction is to build on the wealth of distributed

DM research that is currently available and progress this in a

MAS context. The research team is also enhancing the

framework’s robustness so as to make it publicly available. It

is hoped that once the framework is live other interested DM

practitioners will be prepared to contribute algorithms and

data.

REFERENCES

[1] Albashiri, K., Coenen, F., Sanderson, R. and Leng. P., “Frequent Set

Meta Mining: Towards Multi-Agent Data Mining”. In Bramer, M.,
Coenen, F.P. and Petridis, M. (Eds.), Springer, London, pp139-151,

(2007).

[2] Albashiri, K., Coenen, F., and Leng. P., “EMADS: An Extendible Multi-
Agent Data Miner”. In Bramer, M., Coenen, F.P. and Petridis, M. (Eds.),

Springer, London, pp263-276, (2008).

[3] Baazaoui H., Faiz S., Hamed R., and Ghezala H., “A Framework for
data mining based multi-agent: an application to spatial data”. 3rd World

Enformatika Conference, Istanbul, (2005).

[4] Bellifemine, F. Poggi, A. and Rimassi, G., “JADE: A FIPA-Compliant
agent framework”. Proceedings Practical Applications of Intelligent

Agents and Multi-Agents, pg 97-108, (1999). (See

http://sharon.cselt.it/projects/jade for latest information).
[5] Blake, C. and Merz, C. , “UCI Repository of machine learning

databases”. Irvine, CA: University of California, Department of

Information and Computer Science.
http://www.ics.uci.edu/mlearn/MLRepository.html, (1998).

[6] Bose, R. and Sugumaran, V., “IDM: An Intelligent Software Agent

Based Data Mining Environment”. In Proceedings of IEEE Press, San
Diego, CA, (1998).

[7] Coenen, F., Leng, P., and Goulbourne, G., “Tree Structures for Mining

Association Rules”. Journal of DM and Knowledge Discovery, Vol 8,
No 1, pp25-51, (2004).

[8] Foundation for Intelligent Physical Agents, FIPA 2002 Specification.

Geneva, Switzerland. (See
http://www.fipa.org/specifications/index.html), (2002).

[9] Giuseppe, D., Giancarlo, F., “A customizable multi-agent framework for

distributed data mining”. Proceedings ACM symposium on applied
computing, (2007).

[10] Klusch, M., Lodi, G., ”Agent-based Distributed Data Mining: The

KDEC Scheme. Intelligent Information Agents” The AgentLink
Perspective. Lecture Notes in Computer Science 2586, Springer, (2003).

