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Abstract—A generic and extendible Multi-Agent Data Mining 

(MADM) framework, MADMF (the Multi-Agent Data Mining 

Framework) is described. The central feature of the framework is that 

it avoids the use of agreed meta-language formats by supporting a 

framework of wrappers.  

The advantage offered is that the framework is easily extendible, 

so that further data agents and mining agents can simply be added to 

the framework. A demonstration MADMF framework is currently 

available. The paper includes details of the MADMF architecture and 

the wrapper principle incorporated into it. A full description and 

evaluation of the framework’s operation is provided by considering 

two MADM scenarios. 

 

Keywords—Multi-Agent Data Mining (MADM), Frequent 

Itemsets, Meta ARM, Association Rule Mining, Classifier generator. 

I. INTRODUCTION 

ULTI-AGENT Data Mining (MADM) seeks to harness 

the general advantages of Multi-Agent systems (MAS) 

in the application domain of Data Mining (DM). 

MAS technology has much to offer DM, particularly in the 

context of various forms of distributed and cooperative DM. 

The main issues with MADM are the disparate nature of DM 

and the wide range of tasks encompassed. Any desired generic 

MADM framework therefore requires a sophisticated 

communication mechanism to support it. In the work 

described here we address the communication requirements of 

MADM by using a framework of mediators and wrappers 

coupled with an Agent Communication Language (ACL) such 

as FIPA ACL [8]. 

We believe this can more readily address the issues 

concerned with the variety and range of contexts to which a 

generic MADM can be applicable. The use of wrappers also 

avoids the need for agreed meta-language formats. 

To investigate and evaluate the expected advantages of 

wrappers and mediators in the context of generic MADM, we 

have developed and implemented (in JADE) a multi-agent 

framework, MADMF (the Extendible Multi-Agent Data 

Mining Framework). The primary goal of the MADMF 

framework is extendibility; we wish to provide a means for 

integrating new DM algorithms and data sources in our 

framework. However, MADMF also seeks to address some of 

the issues of DM that would benefit from the use of a generic 

framework. MADMF provides: 
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– Flexibility in assembling communities of autonomous 

service providers, including the incorporation of existing 

applications. 

– Minimization of the effort required to create new agents, 

and to wrap existing applications. 

– Support for end users to express DM requests without 

having detailed knowledge of the individual agents. 

II.  RELATED WORK 

MAS have shown much promise for flexible, fault-tolerant, 

distributed problem solving. Some MADM frameworks focus 

on developing complex features for specific DM tasks, 

without attempting to provide much support for usability or 

extendibility [10]. The success of peer-to-peer systems and 

negotiating agents has engendered a demand for more generic, 

flexible, robust frameworks. 

There have been only few such generic MADM 

frameworks. An early example was IDM [6], a multi-agent 

architecture for direct DM to help businesses gather 

intelligence about their internal commerce agent heuristics and 

architectures for KDD. In [3] a generic task framework was 

introduced, but designed to work only with spatial data. The 

most recent framework was introduced in [9] where the 

authors proposed a multi-agent framework to provide a 

general framework for distributed DM applications. In this 

framework the effort to embed the logic of a specific domain 

has been minimized and is limited to the customization of the 

user. However, although its customizable feature is of a 

considerable benefit, it still requires users to have very good 

DM knowledge. The MADMF framework which we describe€

below aims to allow DM algorithms to be embedded in a 

flexible framework with minimum effort by the user. 

III. FRAMEWORK ARCHITECTURE 

The MADMF framework has several different modes of 

operation according to the nature of the participant. Each 

mode of operation has a corresponding category of User 

Agent. Broadly, the supported categories are: 

 – Developers: Developers are participants, who have full 

access and may contribute DM algorithms in the form of Data 

Mining Agents (DM Agents). 
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The paper’s organization is as follows. A brief review of 

some related work on MADM is presented in Section II. The
conceptual framework, together with an overview of the

wrapper principle, is  presented in Section III  and Section IV. 
The framework’s operation is illustrated in Section V using
two  DM  scenarios,  and  finally  some  conclusions  are 

presented in Section VI. 
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– Data Miners: These are participants, with restricted access 

to the framework, who may pose DM requests through User 

Agents and Task Agents (see below for further details). 

– Data Contributors: These are participants, again with 

restricted access, who are prepared to make data available, by 

launching Data Agents, to be used by DM agents. 

 

 

Fig. 1 MADMF Architecture as Implemented in Jade 

 

Conceptually the nature of the requests that may be posted 

Fig. 1 presents the MADMF architecture as implemented in 

JADE (The Java Agent Development Environment) [4].  It 

shows a sample collection of several application agents and 

housekeeping agents, organized as a community of peers by a 

common relationship to each other, that exist in a set of 

containers. In particular the main container holds the 

housekeeping agents (an Agent Management Framework 

(AMS) agent and a Directory Facilitator (DF) agent). These 

are specialized server agents responsible for facilitating agents 

to locate one another. 

A user agent runs on the user’s local host and is responsible 

for: (i) accepting user input (request), (ii) launching the 

appropriate Task Agent to process user requests, and (iii) 

displaying the results of the (distributed) computation. The 

user expresses a task to be executed using standard interface 

dialogue mechanisms by clicking on active areas in the 

interface and, in some cases, by entering threshold values. 

Note that the user does not need to specify which agent or 

agents should be employed to perform the desired task. For 

instance, if the question “What is the best classifier for my 

data?” is posed in the user interface, this request will trigger a 

Task Agent. The Task Agent requests the facilitator to match 

the action part of the request to capabilities published by other 

agents. 

The request is then routed by the Task Agent to the 

appropriate combination of agents to execute the request. On 

completion the results are sent back to the user agent for 

display. 

Cooperation among the various MADMF agents is achieved 

via messages expressed in FIPA ACL and is normally 

structured around a three-stage process: 

1. Service Registration where providers (agents who wish to 

provide services) register their capability specifications with a 

facilitator. 

2. Request Posting where User Agents (requesters of 

services) construct requests and relay them to a Task Agent. 

3. Processing where the Task Agent coordinates the efforts 

of the appropriate service providers (Data Agents and DM 

Agents) to satisfy the request. 

Note that Stage 1 (service registration) is not necessarily 

immediately followed by stage 2 and 3; it is possible that a 

services provider may never be used. 

Note also that the facilitator (the DF and AMS agents) 

maintains a knowledge base that records the capabilities of the 

various MADMF agents, and uses this knowledge to assist 

requesters and providers of services in making contact. 

IV. FRAMEWORK EXTENDIBILITY 

One of the principal objectives of MADMF is to provide an 

easily extendible MADM framework that can easily accept 

new data sources and new data mining techniques. The desired 

extendibility is achieved by a framework of wrappers.  

MADMF wrappers are used to “wrap” data mining artifacts 

so that they become MADMF agents and can communicate 

with other MADMF agents. As such MADMF wrappers can 

be viewed as agents in their own right that are subsumed once 

they have been integrated with data or tools to become data or 

data mining agents. The wrappers essentially provide an 

application interface to MADMF that has to be implemented 

by the end user; this has been designed to be a fairly trivial 

operation. 

MADMF provides the definition of an abstract parent agent 

class and every instance agent object (i.e., a program that 

implements a learning DM algorithm) is then defined as a 

subclass of this parent class. Through the variables and 

methods inherited by all agent subclasses, the parent agent 

class describes a simple and minimal interface that all 

subclasses have to comply to. As long as an agent conforms to 

this interface, it can be introduced and used immediately as 

part of the MADMF framework. Two broad categories of 

wrapper have been defined: (i) data wrappers and (ii) tool 

wrappers. 

A. Data Wrappers 

Data wrappers are used to “wrap” a data source and 

consequently create a data agent. A data wrapper holds the 

location (file path) of a data source, so that it can be accessed 

by other agents; and meta information about the data. To assist 

end users in the application of data wrappers a data wrapper 

GUI is available. 

Once created, the data agent announces itself to the DF 

agent as a consequence of which it becomes available to all 

MADMF users. 

 

by MADMF users is extensive. In the current demonstration 

implementation a number of generic requests are supported 

directed at classification and Association Rule Mining (ARM) 

scenarios. Two exemplar scenarios are used to illustrate this 

paper (Section V). 
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B.  Tool Wrappers 

Tool wrappers are used to “wrap” up data mining software 

frameworks and thus create a mining agent. Generally the 

framework components will be data mining tools of various 

kinds (classifiers, clusters, AR miners, etc.) although they 

could also be (say) data normalization or visualization tools. It 

is intended that MADMF will incorporate a substantial 

number of different tool wrappers each defined by the nature 

of the desired I/O which in turn will be informed by the nature 

of the generic data mining tasks that it is desirable for 

MADMF to be able to perform. 

V.  FRAMEWORK DEMONSTRATION 

The operation of MADMF is described in the following two 

subsections by considering two demonstration applications 

(scenarios). 

A. Meta ARM (Association Rule Mining) Scenario  

Meta Mining is defined here as the process of combining 

individually obtained results of N applications of a DM 

activity. The motivation behind the scenario is that data 

relevant to a particular DM application may be owned and 

maintained by different, geographically dispersed, 

organizations. 

The meta ARM scenario comprises a set of N data agents, 

N ARM mining agents and a meta ARM agent. Note that each 

ARM mining agent could have a different ARM algorithm 

associated with it, although, it is assumed that a common data 

structure is used to facilitate data interchange. For the scenario 

described here a set enumeration tree structure called a T-tree 

[7] was used. 

Once generated the N local T-trees are passed to the Meta 

ARM agent which creates a global T-tree. During the global 

T-tree generation process the Meta ARM agent interacts with 

the various ARM agents. There are a number of strategies that 

can be adopted with respect to when in the process intra agent 

communication should be made. The authors identified five 

distinct strategies (Benchmark, Apriori, Brute Force, Hybrid 1 

and Hybrid 2). A full description of the algorithms can be 

found in [1]. 

1)�Experimentation and Analysis 

To evaluate the five Meta ARM algorithms, in the context 

of the MADMF vision, a number of experiments were 

conducted designed to analyze the effect of: (i) the number of 

data agents, (ii) the size of the data agents’ datasets in terms of 

number of records, and (iii) the size of the data agents’ 

datasets in terms of number of attributes. For each of the 

experiments we measured: (i) processing time, (ii) the overall 

size of the communications (Kbytes), and (iii) the number of 

individual communications. 

The results shown in Fig. 2 indicate, with respect to Meta 

ARM, that MADMF offers positive advantages in that all the 

Meta ARM algorithms were more computationally efficient 

than the bench mark algorithm (no intra agent cooperation). 

The results of the analysis also indicated that the Apriori Meta 

ARM approach coped best with a large number of data 

sources, while the Brute Force and Hybrid 1 approaches coped 

best with increased data sizes (in terms of column/rows). 

 

 

(a) Processing Time 

 

(b) Total size of RTD lists    (c) Number of RTD lists 

 

Fig. 2 Effect of number of data sources 

 

B. Classifier Generation Scenario 

The Classifier Generation scenario is that of an end user 

who wishes to obtain a “best” classifier founded on a given, 

pre-labeled, data set; which can then be applied to further 

unlabelled data. The assumption is that the given data set is 

binary valued and that the user requires a single-label, as 

opposed to a multi-labeled, classifier. The request is made 

using the individual’s user agent which in turn will spawn an 

appropriate task agent. For this scenario the task agent 

interacts with DM agents that hold single labeled classifier 

generators that take binary valued data as input. Each of these 

mining agents generate a classifier, together with an accuracy 

estimate. Once received the task agent selects the classifier 

with the best accuracy and returns this to the user agent. 

From the literature there are many reported techniques 

available for generating classifiers. For the scenario reported 

here the authors used implementations of eight different 

algorithms. These were placed within an appropriately defined 

tool wrapper to produce eight (single label binary data 

classifier generator) DM agents. This was found to be a trivial 

operation indicating the versatility of the wrapper concept. 

1)�Experimentation and Analysis 

 

To evaluate the classification scenario, a sequence of data 

sets taken from the UCI machine learning data repository [5] 

were used (pre-processed by data agents so that they were 

discretized/normalized into a binary valued format). The 

results are presented in Table I. Each row in the table 
represents a particular request and gives the name of the data 

set, the selected best algorithm as identified from the 

interaction between agents, the resulting best accuracy and the 

total MADMF execution time in seconds from creation of the 

initial task agent to the final “best” classifier being returned to 

the user. 
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TABLE I 

 CLASSIFICATION RESULTS 

Data 
set # 

Data Set 
Classifier 
Name Accuracy 

Gen. 
Time 

1 connect4.D129.N67557.C3 RDT 79.76 502 

2 adult.D97.N48842.C2 IGDT 86.05 86.1 

3 letRecog.D106.N20000.C26 RDT 91.79 31.5 

4 anneal.D73.N898.C6 FOIL 98.44  5.82 

 5 breast.D20.N699.C2 IGDT 93.98 1.28 

6 dematology.D49.N366.C6 RDT 96.17 11.2 

7 heart.D52.N303.C5 RDT 96.02 3.04 

8 auto.D137.N205.C7 IGDT 76.47 12.1 

9 penDigits.D89.N10992.C10 RDT 99.18 13.7 

10 sbeanLarge.D118.N683.C19 RDT 98.83 13.2 

     

 

The results demonstrate firstly that MADMF can usefully 

be adopted to produce a best classifier from a selection of 

classifiers. Secondly that the operation of MADMF is not 

significantly hindered by agent communication overheads, 

although this has some effect. Generation time, in most cases 

does not seem to be an issue, so further classifier generator 

mining agents could easily be added. The results also reinforce 

the often observed phenomenon that there is no single best 

classifier generator suited to all kinds of data set. Further 

details of this process can be also found in Albashiri et al. [2].  

VI. CONCLUSION 

This paper described MADMF, a generic multi-agent 

framework for DM. The principal advantages offered by the 

framework are that of experience and resource sharing, 

flexibility and extendibility, protection of privacy and 

intellectual property rights and information hiding. The 

framework’s operation was illustrated using meta ARM and 

classification scenarios. Extendibility is demonstrated by 

showing how wrappers are used to incorporate existing 

software into MADMF. 

Experience to date indicates that, given an appropriate 

wrapper, existing DM software can very easily be packaged to 

become a DM agent. Flexibility is illustrated using the 

classification scenario. Information hiding is demonstrated in 

that users need have no knowledge of how any particular piece 

of DM software works or the location of the data used. 

A good foundation has been established for both DM 

research and genuine application based DM. The research 

team is at present working towards increasing the diversity of 

mining tasks that can be addressed. There are many directions 

in which the work can (and is being) taken forward. One 

interesting direction is to build on the wealth of distributed 

DM research that is currently available and progress this in a 

MAS context. The research team is also enhancing the 

framework’s robustness so as to make it publicly available. It 

is hoped that once the framework is live other interested DM 

practitioners will be prepared to contribute algorithms and 

data. 

 

 

 

REFERENCES   

[1] Albashiri, K., Coenen, F., Sanderson, R. and Leng. P., “Frequent Set 

Meta Mining: Towards Multi-Agent Data Mining”. In Bramer, M., 
Coenen, F.P. and Petridis, M. (Eds.), Springer, London, pp139-151, 

(2007). 

[2] Albashiri, K., Coenen, F., and Leng. P., “EMADS: An Extendible Multi-
Agent Data Miner”. In Bramer, M., Coenen, F.P. and Petridis, M. (Eds.), 

Springer, London, pp263-276, (2008). 

[3] Baazaoui H., Faiz S., Hamed R., and Ghezala H., “A Framework for 
data mining based multi-agent: an application to spatial data”. 3rd World 

Enformatika Conference, Istanbul, (2005). 

[4] Bellifemine, F. Poggi, A. and Rimassi, G., “JADE: A FIPA-Compliant 
agent framework”. Proceedings Practical Applications of Intelligent 

Agents and Multi-Agents, pg 97-108, (1999).  (See 

http://sharon.cselt.it/projects/jade for latest information). 
[5] Blake, C. and Merz, C. , “UCI Repository of machine learning 

databases”. Irvine, CA: University of California, Department of 

Information and Computer Science. 
http://www.ics.uci.edu/mlearn/MLRepository.html, (1998). 

[6] Bose, R. and Sugumaran, V., “IDM: An Intelligent Software Agent 

Based Data Mining Environment”. In Proceedings of IEEE Press, San 
Diego, CA, (1998). 

[7] Coenen, F., Leng, P., and Goulbourne, G., “Tree Structures for Mining 

Association Rules”. Journal of DM and Knowledge Discovery, Vol 8, 
No 1, pp25-51, (2004). 

[8] Foundation for Intelligent Physical Agents, FIPA 2002 Specification. 

Geneva, Switzerland. (See 
http://www.fipa.org/specifications/index.html), (2002). 

[9] Giuseppe, D., Giancarlo, F., “A customizable multi-agent framework for 

distributed data mining”. Proceedings ACM symposium on applied 
computing, (2007). 

[10] Klusch, M., Lodi, G., ”Agent-based Distributed Data Mining: The 

KDEC Scheme. Intelligent Information Agents” The AgentLink 
Perspective. Lecture Notes in Computer Science 2586, Springer, (2003). 

 

 

  

 


