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Abstract—This paper presents a modified version of the 

maximum urgency first scheduling algorithm. The maximum 
urgency algorithm combines the advantages of fixed and dynamic 
scheduling to provide the dynamically changing systems with 
flexible scheduling. This algorithm, however, has a major 
shortcoming due to its scheduling mechanism which may cause a 
critical task to fail. The modified maximum urgency first scheduling 
algorithm resolves the mentioned problem. In this paper, we propose 
two possible implementations for this algorithm by using either 
earliest deadline first or modified least laxity first algorithms for 
calculating the dynamic priorities. These two approaches are 
compared together by simulating the two algorithms. The earliest 
deadline first algorithm as the preferred implementation is then 
recommended. Afterwards, we make a comparison between our 
proposed algorithm and maximum urgency first algorithm using 
simulation and results are presented. It is shown that modified 
maximum urgency first is superior to maximum urgency first, since it 
usually has less task preemption and hence, less related overhead. It 
also leads to less failed non-critical tasks in overloaded situations. 
 

Keywords—Modified maximum urgency first, maximum 
urgency first, real-time systems, scheduling. 

I. INTRODUCTION 
N real-time systems, every real-time task has a deadline 
before or at which it must be completed. Due to the 

criticality of the tasks, the scheduling algorithms of these 
systems must be timely and predictable. Tasks could either be 
periodic or aperiodic. In this paper, we will only consider 
periodic tasks. Real-time scheduling algorithms may assign 
priorities statically, dynamically, or in a hybrid manner, which 
are called fixed, dynamic and mixed scheduling algorithms, 
respectively. These algorithms may allow preemptions to 
occur or may impose a non-preemptive method.  

A dynamically reconfigurable system can change in time 
without the need to halt the system and hence needs a dynamic 
scheduler. The Earliest Deadline First (EDF) algorithm 
proposed by Liu and Layland is an optimal dynamic 
scheduling algorithm [1]. This algorithm, however, is not 
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predictable in a transient overloaded situation in the sense that 
it does not guarantee to execute the set of higher priority tasks 
before their deadlines.  

This paper proposes a Modified Maximum Urgency First 
(MMUF) scheduling algorithm as an optimization of 
Maximum Urgency First algorithm (MUF) [2] which is used 
to predictably schedule dynamically changing systems. The 
MMUF is a preemptive mixed priority algorithm for 
predictable scheduling of periodic real-time tasks. 

The rest of this paper is organized as follows. Section 2 
briefly describes dynamic priority scheduling algorithms 
including EDF, Least Laxity First (LLF), Modified Least 
Laxity First (MLLF) and MUF. In section 3 we propose our 
MMUF scheduling algorithm. Section 4 describes our 
simulation experiments and results. Finally, Section 5 is a 
short conclusion.  

II. RELATED WORKS 
The earliest deadline first [1] and least laxity first [3] 

algorithms are presented as optimal dynamic priority 
scheduling algorithms. However, the later is impractical to 
implement because laxity ties result in poor system 
performance due to the frequent context switches among the 
tasks. The modified least laxity first algorithm proposed by Oh 
and Yang solves the problem of the LLF algorithm by 
reducing the number of context switches [4]. With all these 
algorithms a transient overload in the system may cause a 
critical task to fail, which is certainly undesirable. Stewart and 
Khosla have presented a mixed priority algorithm called 
Maximum Urgency First which defines a critical set of tasks 
that is guaranteed to meet all its deadlines during a transient 
overload [2]. 

A. Earliest Deadline First Algorithm 
The earliest deadline first (also known as nearest deadline 

first) is a dynamic priority algorithm which uses the deadline 
of a task as its priority. The task with the earliest deadline has 
the highest priority, while the lowest priority belongs to the 
task with the latest deadline. Since priorities are dynamic, the 
periods of tasks can change at anytime. In addition, this 
algorithm has the schedulability bound of 100% for all task 
sets. 

The CPU utilization of task Ti is computed as the ratio of its 
worst-case execution time Ei to its request period Pi. The total 
utilization Un for n periodic tasks is calculated as follows [1]: 
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A significant disadvantage of this algorithm is that there is 
no way to guarantee which tasks will fail in a transient 
overloaded situation. A transient overload occurs when the 
worst case utilization is above 100%, in which case it is 
possible that a critical task may fail at the expense of a lesser 
important task. This may happen because there is no control 
of which task fails and the deadline is the only scheduling 
parameter. However, in a transient overloaded situation we 
may want to consider task’s criticalness as the second 
parameter. 

The EDF algorithm was decided to be considered as a basis 
for the MMUF algorithm which is proposed in this paper. 

B. Least Laxity First Algorithm 
The least laxity first (also known as minimum laxity first) 

assigns higher priority to a task with the least laxity. The 
laxity of a real-time task Ti at time t, Li(t), is defined as 
follows: 

( ) ( ) ( )i i iL t D t E t= −   (2) 
where Di(t) is the deadline by which the task must be 
completed and Ei(t) is the amount of computation remaining to 
be performed. In other words, laxity is a measure of the 
flexibility available for scheduling a task. A laxity of Li(t) 
means that if the task Ti is delayed at the most by Li(t) time 
units, it will still meet its deadline. 

A task with zero laxity must be scheduled right away and 
executed without preemption or it will fail to meet its 
deadline. The negative laxity indicates that the task will miss 
the deadline, no matter when it is picked up for execution. 

A major problem with LLF algorithm is that it is 
impractical to implement because laxity ties result in the 
frequent context switches among the corresponding tasks. 
This will cause the system performance to remarkably 
degrade. A laxity tie occurs when two or more tasks have the 
same laxities. 

Similar to EDF, LLF has a 100% schedulability bound. 
Nevertheless, there is no way to control which tasks are 
guaranteed to execute during a transient overload. 

C.  Modified Least Laxity First Algorithm 
Our purpose in describing the modified least laxity first 

algorithm in this section is to introduce it as an alternative to 
the EDF in order to be used as a basis for the MMUF 
algorithm which is proposed in this paper. 

As it is mentioned earlier, the MLLF scheduling algorithm 
solves the problem of LLF algorithm by significantly reducing 
the number of context switches. By decreasing the system 
overhead due to unnecessary context switches, MLLF 
algorithm avoids the degradation of system performance and 
conserves more system resources for unanticipated aperiodic 
tasks. 

As long as there is no laxity tie, MLLF schedules the task 
sets the same as LLF algorithm. If the laxity tie occurs, the 

running task continues to run with no preemption as far as the 
deadlines of other tasks are not missed. 

The MLLF algorithm defers the context switching until 
necessary and it is safe even if the laxity tie occurs. That is, it 
allows the laxity inversion where a task with the least laxity 
may not be scheduled immediately. Laxity inversion applies to 
the duration that the currently running task can continue 
running with no loss in schedulability, even if there exist a 
task (or tasks) whose laxity is smaller than the current running 
task [4]. 

D. Maximum Urgency First Algorithm 
The maximum urgency first algorithm solves the problem 

of unpredictability during a transient overload for EDF, LLF 
and MLLF algorithms. This algorithm is a combination of 
fixed and dynamic priority scheduling, also called mixed 
priority scheduling. With this algorithm, each task is given an 
urgency which is defined as a combination of two fixed 
priorities (criticality and user priority) and a dynamic priority 
that is inversely proportional to the laxity. The criticality has 
higher precedence over the dynamic priority while user 
priority has lower precedence than the dynamic priority. 

The MUF algorithm assigns priorities in two phases. Phase 
One concerns the assignment of static priorities to tasks. Static 
priorities are assigned once and do not change after the system 
starts. Phase Two deals with the run-time behavior of the 
MUF scheduler as it is clarified later. 

The first phase consists of these steps [2]:  
1) It sorts the tasks from the shortest period to the longest 
period. Then it defines the critical set as the first N tasks such 
that the total CPU load factor does not exceed 100%. These 
tasks are guaranteed not to fail even during a transient 
overload. 
2) All tasks in the critical set are assigned high criticality. 
The remaining tasks are considered to have low criticality. 
3) Every task in the system is assigned an optional unique 
user priority. 

In the second phase, the MUF scheduler follows an 
algorithm to select a task for execution. This algorithm is 
executed whenever a new task is arrived to the ready queue. 
The algorithm is as follows: 
1) If there is only one highly critical task, pick it up and 
execute it. 
2) If there are more than one highly critical task, select the 
one with the highest dynamic priority. Here, the task with the 
least laxity is considered to be the one with the highest 
priority. 
3) If there is more than one task with the same laxity, select 
the one with the highest user priority. 

The MUF scheduler has been implemented as the default 
scheduler of CHIMERA II, a real-time operating system being 
used to control sensor-based control systems [5]. 

III. MODIFIED MAXIMUM URGENCY FIRST ALGORITHM 
Although MUF is an efficient algorithm, it has a major 

disadvantage. Since the rescheduling operation is performed 
whenever a task is arrived to the ready queue [2], [6], there is 
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the possibility of failing a critical task in certain situations. In 
these situations, a task with minimum laxity may be selected 
whose remaining execution time is greater than remaining 
time to another task’s laxity. This problem is due to 
performing the rescheduling operation whenever a new task is 
added to the ready queue. According to [7], the scheduling 
should be performed at any given instant and the scheduler 
will choose the highest priority task to run among all available 
tasks. Therefore, the schedule should be produced in such a 
way that the task having the highest priority always be 
running. 

Consider two tasks, T1 and T2, shown in Table I. Fig. 1 
shows the schedule which is produced by the MUF algorithm 
for the task set in Table I. 

 
TABLE I 

AN EXAMPLE OF TASK SET 

 Remaining 
Execution Time Deadline Remaining Time 

to Laxity 

T1 4 6 2 

T2 1 4 3 
 
As it is shown in Fig. 1 the MUF will select the task with 

minimum laxity (T1) at time zero. The remaining execution 
time of task T1 is greater than remaining time to T2’s laxity. 
This selection will cause task T2 to miss its deadline. 

 

 
Fig. 1 Schedule generated by the MUF scheduling algorithm 

 
The modified maximum urgency first algorithm we propose 

in this paper is a modified version of MUF algorithm which 
resolves the mentioned MUF algorithm’s deficiency. In 
addition it has some extra advantages which will be explained 
later. 

The modifications are as follows: With this algorithm, we 
use a unique importance parameter, instead of using tasks’ 
request intervals, to create the critical set. The importance 
parameter is a fixed priority which can be defined as user 
priority or any other optional parameter which expresses the 
degree of the task’s criticalness. It is trivial that the task with 
the shortest request period is not necessarily the most 
important one. Furthermore, using the importance parameter, 
it is not needed to use period transformation [8] as it is done 
in MUF algorithm [2]. With the MMUF algorithm, either EDF 
or MLLF can be used to define the dynamic priority. Another 

optimization made in this algorithm is the elimination of 
unnecessary context switches which in turn reduced the 
overall system overhead. This is done firstly by using MLLF 
instead of LLF and secondly, by letting the currently running 
task to keep running while there are some other tasks with the 
same priority. 

The MMUF algorithm consists of two phases with the 
following details: 
Phase 1: In this phase fixed priorities are defined only once as 
follows. These fixed priorities will not change during 
execution time. 
1) Order the tasks from the most importance to the least 

importance 
2) Add the first N tasks to the critical set such that the total 

CPU load factor does not exceed 100% 
Phase 2: This phase calculates the dynamic priorities at every 
scheduling event and selects the task to be executed next. 
1) If there is at least one critical task in the ready queue 

a. Select the critical task with the earliest deadline 
(EDF algorithm) if there is no tie 

b. If there are two or more critical tasks with the same 
earliest deadline 

i. If any of these critical tasks is already 
running select it to continue running 

ii. Otherwise, select the critical task with the 
highest importance 

2) If there is no critical task in the ready queue 
a. Select the task with earliest deadline (EDF algorithm) 

if there is no tie 
b. If there are two or more tasks with the same earliest 

deadline 
i. If any of these tasks is already running 

select it to continue running 
ii. Otherwise, select the task with the highest 

importance 
As it is mentioned earlier, the MLLF algorithm can be used 

instead of the EDF in the above algorithm. 
The MMUF algorithm needs the start time, deadline 

parameter and worst-case execution time of each task to be 
specified before the system starts. 

When using EDF algorithm, a scheduling event occurs 
whenever a task is arrived to the ready queue or a task finishes 
its execution time. For the MLLF algorithm, there is a third 
scheduling event which is explained in [4]. 

A. RM, EDF, LLF, MLLF and MUF as Special Cases of 
MMUF 

It was shown in [5] that the RM (Rate Monotonic [9]), EDF 
and LLF algorithms are special cases of the MUF algorithm. If 
the period is used as the importance parameter and the 
optimization which is made for the reduction of context 
switches is omitted, the MMUF scheduler with either of EDF 
or MLLF behaves like the MUF scheduler. If all tasks specify 
zero as the worst-case execution time, the EDF (used in 
MMUF) behaves like the LLF (used in MUF). In this case the 
laxity would be a function of deadline [5]. As long as there 
exists no laxity tie, the MLLF (used in MMUF) behaves like 

T1 
 
 
T2 

 0      1      2      3     4      5      6 

T2  misses its deadline 
CPU  
Load Factor 
= 91.7% 

t
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LLF (used in MUF) [4]. Therefore, the RM, EDF, LLF and 
MUF algorithms are special cases of the MMUF algorithm. 
When the processor utilization is less than or equal to one (i.e. 
there is no non-critical task in the system), if a task which was 
already running is not selected in the case there are two or 
more tasks with the same dynamic priority, the MMUF 
scheduler behaves like the MLLF scheduler. Therefore, 
MLLF is also a special case of MMUF. 

B. MMUF as an Efficient Hybrid Algorithm 
The efficiency of MMUF can be inferred from optimality of 

EDF [10] and MLLF [4] algorithms. As it is explained earlier, 
EDF and MLLF are special cases of MMUF algorithm. If 
there is no non-critical task in the system, that is the CPU 
utilization is less than or equal 100%, the MMUF algorithm 
behaves exactly like EDF or MLLF algorithms depending on 
which one is chosen within the MMUF, and hence it is 
optimal too. If the CPU load factor exceeds 100%, i.e., there 
are some non-critical tasks, the same things hold for EDF and 
MLLF. That is, there is no guarantee for these tasks to meet 
their deadlines. 

IV. PERFORMANCE EVALUATION 
In this section we first compare our proposed MMUF 

algorithm in case of using either EDF or MLLF and will show 
that the MMUF is more efficient when the EDF is used. 
Therefore, we propose using EDF instead of MLLF in the 
MMUF algorithm. Then the MMUF algorithm is compared 
with the MUF algorithm. 

We analyze the number of context switches, global 
performance ratio and the number of failed non-critical tasks 
by performing the simulation results. In our simulation 
experiments, we assume that: 
1) All tasks are periodic and the deadline parameter of each 

task is equal to its request period. 
2) The period of tasks is chosen randomly between 10 and 

200 time units. 
3) The worst-case execution time is chosen randomly. It is at 

least one and at most 30% of the corresponding task’s 
request period. 

4) All tasks start simultaneously at time zero. 
It is worth mentioning that when a task is being started for 

execution we have first check to see whether it can be 
completed in time or not, assuming that it will not be 
preempted. If the task cannot meet its deadline, it will not be 
started and it is considered as a failed task [11]. 

A. Comparison of MMUF using EDF and MLLF 
The notations used to evaluate performance are as follows: 

1) MMUF-EDF, MMUF-MLLF: the MMUF algorithm using 
either EDF or MLLF to calculate the dynamic priorities, 
respectively. 

2) NMMUF-EDF, NMMUF-MLLF: the number of context switches 
that is produced by MMUF-EDF and MMUF-MLLF 
scheduling algorithms, respectively. 

3) TMMUF-EDF, TMMUF-MLLF: the total scheduling overhead. 

4) FMMUF-EDF, FMMUF-MLLF: the number of failed non-critical 
tasks. 

In Fig. 2, /MMUF EDF MMUF MLLFN N
− −

 (i.e. the number of context 
switches ratio) is shown as a function of processor utilization 
with the fixed number of tasks = 10 and 20. As the processor 
utilization increases, the number of context switches ratio goes 
down. 
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 Fig. 2 Comparison of the number of context switches 
 
Fig. 3 shows the /MMUF EDF MMUF MLLFT T

− −
 (i.e. the global 

performance ratio) with the fixed number of tasks = 10 and 
20. As it is shown the global performance ratio, in most cases, 
is less than one. Furthermore, it is less than one in all cases in 
which the processor utilization is greater than one. 
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 Fig. 3 Global performance ratio 

 
In Fig. 4, the /MMUF EDF MMUF MLLFF F

− −
 (i.e. the number of failed 

non-critical tasks ratio) is shown as a function of processor 
utilization with the fixed number of tasks = 10 and 20. The 
number of failed non-critical tasks ratio is less than one and as 
the number of tasks increases, the number of failed non-
critical tasks ratio reduces too. It is trivial that the number of 
failed non-critical tasks is zero when the processor utilization 
is less than or equal to one, since there in no non-critical task 
in the system. 
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Fig. 4 Comparison of the number of failed non-critical tasks 

B. Comparison of MMUF and MUF 
The notations used to evaluate performance are as follows: 

1) MMUF: the MMUF algorithm using EDF to calculate the 
dynamic priorities. 

2) NMMUF, NMUF: the number of context switches that is 
produced by MMUF and MUF scheduling algorithms, 
respectively. 

3) FMMUF, FMUF: the number of failed non-critical tasks. 
In Fig. 5, /MMUF MUFN N  (i.e. the number of context switches 

ratio) is shown as a function of processor utilization with the 
fixed number of tasks = 10 and 20. In all cases, the number of 
context switches ratio is less than one and it shows an 
improvement in MMUF algorithm. 
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Fig. 6 shows the /MMUF MUFF F  (i.e. the number of failed non-

critical tasks ratio) with the fixed number of tasks = 10 and 
20. The number of failed non-critical tasks ratio is less than 
one and as the number of tasks increases, the number of failed 
non-critical tasks ratio reduces. 
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V. CONCLUSION 
In this paper, we presented a modified version of MUF 

scheduling algorithm called MMUF which resolves the 
deficiency of the MUF algorithm in which a critical task may 
miss its deadline in certain situations. Moreover, some 
additional optimizations are applied in the MMUF algorithm. 
The performance of the MMUF was compared to MUF 
algorithm and showed to be superior. It usually has less task 
preemption and hence, less related overhead. It also leads to 
less failed non-critical tasks in overloaded situations in which 
the CPU load factor is greater than 100%. 
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