
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:9, 2007

2746

Abstract—This paper presents a modified version of the

maximum urgency first scheduling algorithm. The maximum
urgency algorithm combines the advantages of fixed and dynamic
scheduling to provide the dynamically changing systems with
flexible scheduling. This algorithm, however, has a major
shortcoming due to its scheduling mechanism which may cause a
critical task to fail. The modified maximum urgency first scheduling
algorithm resolves the mentioned problem. In this paper, we propose
two possible implementations for this algorithm by using either
earliest deadline first or modified least laxity first algorithms for
calculating the dynamic priorities. These two approaches are
compared together by simulating the two algorithms. The earliest
deadline first algorithm as the preferred implementation is then
recommended. Afterwards, we make a comparison between our
proposed algorithm and maximum urgency first algorithm using
simulation and results are presented. It is shown that modified
maximum urgency first is superior to maximum urgency first, since it
usually has less task preemption and hence, less related overhead. It
also leads to less failed non-critical tasks in overloaded situations.

Keywords—Modified maximum urgency first, maximum
urgency first, real-time systems, scheduling.

I. INTRODUCTION
N real-time systems, every real-time task has a deadline
before or at which it must be completed. Due to the

criticality of the tasks, the scheduling algorithms of these
systems must be timely and predictable. Tasks could either be
periodic or aperiodic. In this paper, we will only consider
periodic tasks. Real-time scheduling algorithms may assign
priorities statically, dynamically, or in a hybrid manner, which
are called fixed, dynamic and mixed scheduling algorithms,
respectively. These algorithms may allow preemptions to
occur or may impose a non-preemptive method.

A dynamically reconfigurable system can change in time
without the need to halt the system and hence needs a dynamic
scheduler. The Earliest Deadline First (EDF) algorithm
proposed by Liu and Layland is an optimal dynamic
scheduling algorithm [1]. This algorithm, however, is not

V. Salmani is a graduate student with the Computer Engineering

Department, Ferdowsi University, Mashad, Iran (e-mail: salmani@um.ac.ir).
S. Taghavi Zargar is a graduate student with the Computer Engineering

Department, Ferdowsi University, Mashad, Iran (e-mail: taghavi@stu-
mail.um.ac.ir).

M. Naghibzadeh is a professor with the Computer Engineering
Department, Ferdowsi University, Mashad, Iran (e-mail: naghib@um.ac.ir).

predictable in a transient overloaded situation in the sense that
it does not guarantee to execute the set of higher priority tasks
before their deadlines.

This paper proposes a Modified Maximum Urgency First
(MMUF) scheduling algorithm as an optimization of
Maximum Urgency First algorithm (MUF) [2] which is used
to predictably schedule dynamically changing systems. The
MMUF is a preemptive mixed priority algorithm for
predictable scheduling of periodic real-time tasks.

The rest of this paper is organized as follows. Section 2
briefly describes dynamic priority scheduling algorithms
including EDF, Least Laxity First (LLF), Modified Least
Laxity First (MLLF) and MUF. In section 3 we propose our
MMUF scheduling algorithm. Section 4 describes our
simulation experiments and results. Finally, Section 5 is a
short conclusion.

II. RELATED WORKS
The earliest deadline first [1] and least laxity first [3]

algorithms are presented as optimal dynamic priority
scheduling algorithms. However, the later is impractical to
implement because laxity ties result in poor system
performance due to the frequent context switches among the
tasks. The modified least laxity first algorithm proposed by Oh
and Yang solves the problem of the LLF algorithm by
reducing the number of context switches [4]. With all these
algorithms a transient overload in the system may cause a
critical task to fail, which is certainly undesirable. Stewart and
Khosla have presented a mixed priority algorithm called
Maximum Urgency First which defines a critical set of tasks
that is guaranteed to meet all its deadlines during a transient
overload [2].

A. Earliest Deadline First Algorithm
The earliest deadline first (also known as nearest deadline

first) is a dynamic priority algorithm which uses the deadline
of a task as its priority. The task with the earliest deadline has
the highest priority, while the lowest priority belongs to the
task with the latest deadline. Since priorities are dynamic, the
periods of tasks can change at anytime. In addition, this
algorithm has the schedulability bound of 100% for all task
sets.

The CPU utilization of task Ti is computed as the ratio of its
worst-case execution time Ei to its request period Pi. The total
utilization Un for n periodic tasks is calculated as follows [1]:

A Modified Maximum Urgency First
Scheduling Algorithm for Real-Time Tasks

Vahid Salmani, Saman Taghavi Zargar, and Mahmoud Naghibzadeh

I

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:9, 2007

2747

1

n
i

n
i i

EU
P=

= ∑ (1)

A significant disadvantage of this algorithm is that there is
no way to guarantee which tasks will fail in a transient
overloaded situation. A transient overload occurs when the
worst case utilization is above 100%, in which case it is
possible that a critical task may fail at the expense of a lesser
important task. This may happen because there is no control
of which task fails and the deadline is the only scheduling
parameter. However, in a transient overloaded situation we
may want to consider task’s criticalness as the second
parameter.

The EDF algorithm was decided to be considered as a basis
for the MMUF algorithm which is proposed in this paper.

B. Least Laxity First Algorithm
The least laxity first (also known as minimum laxity first)

assigns higher priority to a task with the least laxity. The
laxity of a real-time task Ti at time t, Li(t), is defined as
follows:

() () ()i i iL t D t E t= − (2)
where Di(t) is the deadline by which the task must be
completed and Ei(t) is the amount of computation remaining to
be performed. In other words, laxity is a measure of the
flexibility available for scheduling a task. A laxity of Li(t)
means that if the task Ti is delayed at the most by Li(t) time
units, it will still meet its deadline.

A task with zero laxity must be scheduled right away and
executed without preemption or it will fail to meet its
deadline. The negative laxity indicates that the task will miss
the deadline, no matter when it is picked up for execution.

A major problem with LLF algorithm is that it is
impractical to implement because laxity ties result in the
frequent context switches among the corresponding tasks.
This will cause the system performance to remarkably
degrade. A laxity tie occurs when two or more tasks have the
same laxities.

Similar to EDF, LLF has a 100% schedulability bound.
Nevertheless, there is no way to control which tasks are
guaranteed to execute during a transient overload.

C. Modified Least Laxity First Algorithm
Our purpose in describing the modified least laxity first

algorithm in this section is to introduce it as an alternative to
the EDF in order to be used as a basis for the MMUF
algorithm which is proposed in this paper.

As it is mentioned earlier, the MLLF scheduling algorithm
solves the problem of LLF algorithm by significantly reducing
the number of context switches. By decreasing the system
overhead due to unnecessary context switches, MLLF
algorithm avoids the degradation of system performance and
conserves more system resources for unanticipated aperiodic
tasks.

As long as there is no laxity tie, MLLF schedules the task
sets the same as LLF algorithm. If the laxity tie occurs, the

running task continues to run with no preemption as far as the
deadlines of other tasks are not missed.

The MLLF algorithm defers the context switching until
necessary and it is safe even if the laxity tie occurs. That is, it
allows the laxity inversion where a task with the least laxity
may not be scheduled immediately. Laxity inversion applies to
the duration that the currently running task can continue
running with no loss in schedulability, even if there exist a
task (or tasks) whose laxity is smaller than the current running
task [4].

D. Maximum Urgency First Algorithm
The maximum urgency first algorithm solves the problem

of unpredictability during a transient overload for EDF, LLF
and MLLF algorithms. This algorithm is a combination of
fixed and dynamic priority scheduling, also called mixed
priority scheduling. With this algorithm, each task is given an
urgency which is defined as a combination of two fixed
priorities (criticality and user priority) and a dynamic priority
that is inversely proportional to the laxity. The criticality has
higher precedence over the dynamic priority while user
priority has lower precedence than the dynamic priority.

The MUF algorithm assigns priorities in two phases. Phase
One concerns the assignment of static priorities to tasks. Static
priorities are assigned once and do not change after the system
starts. Phase Two deals with the run-time behavior of the
MUF scheduler as it is clarified later.

The first phase consists of these steps [2]:
1) It sorts the tasks from the shortest period to the longest
period. Then it defines the critical set as the first N tasks such
that the total CPU load factor does not exceed 100%. These
tasks are guaranteed not to fail even during a transient
overload.
2) All tasks in the critical set are assigned high criticality.
The remaining tasks are considered to have low criticality.
3) Every task in the system is assigned an optional unique
user priority.

In the second phase, the MUF scheduler follows an
algorithm to select a task for execution. This algorithm is
executed whenever a new task is arrived to the ready queue.
The algorithm is as follows:
1) If there is only one highly critical task, pick it up and
execute it.
2) If there are more than one highly critical task, select the
one with the highest dynamic priority. Here, the task with the
least laxity is considered to be the one with the highest
priority.
3) If there is more than one task with the same laxity, select
the one with the highest user priority.

The MUF scheduler has been implemented as the default
scheduler of CHIMERA II, a real-time operating system being
used to control sensor-based control systems [5].

III. MODIFIED MAXIMUM URGENCY FIRST ALGORITHM
Although MUF is an efficient algorithm, it has a major

disadvantage. Since the rescheduling operation is performed
whenever a task is arrived to the ready queue [2], [6], there is

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:9, 2007

2748

the possibility of failing a critical task in certain situations. In
these situations, a task with minimum laxity may be selected
whose remaining execution time is greater than remaining
time to another task’s laxity. This problem is due to
performing the rescheduling operation whenever a new task is
added to the ready queue. According to [7], the scheduling
should be performed at any given instant and the scheduler
will choose the highest priority task to run among all available
tasks. Therefore, the schedule should be produced in such a
way that the task having the highest priority always be
running.

Consider two tasks, T1 and T2, shown in Table I. Fig. 1
shows the schedule which is produced by the MUF algorithm
for the task set in Table I.

TABLE I

AN EXAMPLE OF TASK SET

 Remaining
Execution Time Deadline Remaining Time

to Laxity

T1 4 6 2

T2 1 4 3

As it is shown in Fig. 1 the MUF will select the task with

minimum laxity (T1) at time zero. The remaining execution
time of task T1 is greater than remaining time to T2’s laxity.
This selection will cause task T2 to miss its deadline.

Fig. 1 Schedule generated by the MUF scheduling algorithm

The modified maximum urgency first algorithm we propose

in this paper is a modified version of MUF algorithm which
resolves the mentioned MUF algorithm’s deficiency. In
addition it has some extra advantages which will be explained
later.

The modifications are as follows: With this algorithm, we
use a unique importance parameter, instead of using tasks’
request intervals, to create the critical set. The importance
parameter is a fixed priority which can be defined as user
priority or any other optional parameter which expresses the
degree of the task’s criticalness. It is trivial that the task with
the shortest request period is not necessarily the most
important one. Furthermore, using the importance parameter,
it is not needed to use period transformation [8] as it is done
in MUF algorithm [2]. With the MMUF algorithm, either EDF
or MLLF can be used to define the dynamic priority. Another

optimization made in this algorithm is the elimination of
unnecessary context switches which in turn reduced the
overall system overhead. This is done firstly by using MLLF
instead of LLF and secondly, by letting the currently running
task to keep running while there are some other tasks with the
same priority.

The MMUF algorithm consists of two phases with the
following details:
Phase 1: In this phase fixed priorities are defined only once as
follows. These fixed priorities will not change during
execution time.
1) Order the tasks from the most importance to the least

importance
2) Add the first N tasks to the critical set such that the total

CPU load factor does not exceed 100%
Phase 2: This phase calculates the dynamic priorities at every
scheduling event and selects the task to be executed next.
1) If there is at least one critical task in the ready queue

a. Select the critical task with the earliest deadline
(EDF algorithm) if there is no tie

b. If there are two or more critical tasks with the same
earliest deadline

i. If any of these critical tasks is already
running select it to continue running

ii. Otherwise, select the critical task with the
highest importance

2) If there is no critical task in the ready queue
a. Select the task with earliest deadline (EDF algorithm)

if there is no tie
b. If there are two or more tasks with the same earliest

deadline
i. If any of these tasks is already running

select it to continue running
ii. Otherwise, select the task with the highest

importance
As it is mentioned earlier, the MLLF algorithm can be used

instead of the EDF in the above algorithm.
The MMUF algorithm needs the start time, deadline

parameter and worst-case execution time of each task to be
specified before the system starts.

When using EDF algorithm, a scheduling event occurs
whenever a task is arrived to the ready queue or a task finishes
its execution time. For the MLLF algorithm, there is a third
scheduling event which is explained in [4].

A. RM, EDF, LLF, MLLF and MUF as Special Cases of
MMUF

It was shown in [5] that the RM (Rate Monotonic [9]), EDF
and LLF algorithms are special cases of the MUF algorithm. If
the period is used as the importance parameter and the
optimization which is made for the reduction of context
switches is omitted, the MMUF scheduler with either of EDF
or MLLF behaves like the MUF scheduler. If all tasks specify
zero as the worst-case execution time, the EDF (used in
MMUF) behaves like the LLF (used in MUF). In this case the
laxity would be a function of deadline [5]. As long as there
exists no laxity tie, the MLLF (used in MMUF) behaves like

T1

T2

 0 1 2 3 4 5 6

T2 misses its deadline
CPU
Load Factor
= 91.7%

t

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:9, 2007

2749

LLF (used in MUF) [4]. Therefore, the RM, EDF, LLF and
MUF algorithms are special cases of the MMUF algorithm.
When the processor utilization is less than or equal to one (i.e.
there is no non-critical task in the system), if a task which was
already running is not selected in the case there are two or
more tasks with the same dynamic priority, the MMUF
scheduler behaves like the MLLF scheduler. Therefore,
MLLF is also a special case of MMUF.

B. MMUF as an Efficient Hybrid Algorithm
The efficiency of MMUF can be inferred from optimality of

EDF [10] and MLLF [4] algorithms. As it is explained earlier,
EDF and MLLF are special cases of MMUF algorithm. If
there is no non-critical task in the system, that is the CPU
utilization is less than or equal 100%, the MMUF algorithm
behaves exactly like EDF or MLLF algorithms depending on
which one is chosen within the MMUF, and hence it is
optimal too. If the CPU load factor exceeds 100%, i.e., there
are some non-critical tasks, the same things hold for EDF and
MLLF. That is, there is no guarantee for these tasks to meet
their deadlines.

IV. PERFORMANCE EVALUATION
In this section we first compare our proposed MMUF

algorithm in case of using either EDF or MLLF and will show
that the MMUF is more efficient when the EDF is used.
Therefore, we propose using EDF instead of MLLF in the
MMUF algorithm. Then the MMUF algorithm is compared
with the MUF algorithm.

We analyze the number of context switches, global
performance ratio and the number of failed non-critical tasks
by performing the simulation results. In our simulation
experiments, we assume that:
1) All tasks are periodic and the deadline parameter of each

task is equal to its request period.
2) The period of tasks is chosen randomly between 10 and

200 time units.
3) The worst-case execution time is chosen randomly. It is at

least one and at most 30% of the corresponding task’s
request period.

4) All tasks start simultaneously at time zero.
It is worth mentioning that when a task is being started for

execution we have first check to see whether it can be
completed in time or not, assuming that it will not be
preempted. If the task cannot meet its deadline, it will not be
started and it is considered as a failed task [11].

A. Comparison of MMUF using EDF and MLLF
The notations used to evaluate performance are as follows:

1) MMUF-EDF, MMUF-MLLF: the MMUF algorithm using
either EDF or MLLF to calculate the dynamic priorities,
respectively.

2) NMMUF-EDF, NMMUF-MLLF: the number of context switches
that is produced by MMUF-EDF and MMUF-MLLF
scheduling algorithms, respectively.

3) TMMUF-EDF, TMMUF-MLLF: the total scheduling overhead.

4) FMMUF-EDF, FMMUF-MLLF: the number of failed non-critical
tasks.

In Fig. 2, /MMUF EDF MMUF MLLFN N
− −

 (i.e. the number of context
switches ratio) is shown as a function of processor utilization
with the fixed number of tasks = 10 and 20. As the processor
utilization increases, the number of context switches ratio goes
down.

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
CPU Utilization

10 tasks
20 tasks

 Fig. 2 Comparison of the number of context switches

Fig. 3 shows the /MMUF EDF MMUF MLLFT T

− −
 (i.e. the global

performance ratio) with the fixed number of tasks = 10 and
20. As it is shown the global performance ratio, in most cases,
is less than one. Furthermore, it is less than one in all cases in
which the processor utilization is greater than one.

0.9

0.95

1

1.05

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
CPU Utilization

10 tasks
20 tasks

 Fig. 3 Global performance ratio

In Fig. 4, the /MMUF EDF MMUF MLLFF F

− −
 (i.e. the number of failed

non-critical tasks ratio) is shown as a function of processor
utilization with the fixed number of tasks = 10 and 20. The
number of failed non-critical tasks ratio is less than one and as
the number of tasks increases, the number of failed non-
critical tasks ratio reduces too. It is trivial that the number of
failed non-critical tasks is zero when the processor utilization
is less than or equal to one, since there in no non-critical task
in the system.

MMUF EDF

MMUF MLLF

T

T

−

−

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

MMUF EDF

MMUF MLLF

N

N

−

−

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:9, 2007

2750

0.9

0.95

1

1.05

1 2 3 4 5

CPU Utilization

10 tasks

20 tasks

Fig. 4 Comparison of the number of failed non-critical tasks

B. Comparison of MMUF and MUF
The notations used to evaluate performance are as follows:

1) MMUF: the MMUF algorithm using EDF to calculate the
dynamic priorities.

2) NMMUF, NMUF: the number of context switches that is
produced by MMUF and MUF scheduling algorithms,
respectively.

3) FMMUF, FMUF: the number of failed non-critical tasks.
In Fig. 5, /MMUF MUFN N (i.e. the number of context switches

ratio) is shown as a function of processor utilization with the
fixed number of tasks = 10 and 20. In all cases, the number of
context switches ratio is less than one and it shows an
improvement in MMUF algorithm.

0.6

0.7

0.8

0.9

1

1.1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
CPU utilization

10 tasks
20 tasks

Fig. 5 Comparison of the number of context switches

Fig. 6 shows the /MMUF MUFF F (i.e. the number of failed non-

critical tasks ratio) with the fixed number of tasks = 10 and
20. The number of failed non-critical tasks ratio is less than
one and as the number of tasks increases, the number of failed
non-critical tasks ratio reduces.

0.9

0.95

1

1.05

1 2 3 4 5
CPU Utilization

10 tasks
20 tasks

 Fig. 6 Comparison of the number of failed non-critical tasks

V. CONCLUSION
In this paper, we presented a modified version of MUF

scheduling algorithm called MMUF which resolves the
deficiency of the MUF algorithm in which a critical task may
miss its deadline in certain situations. Moreover, some
additional optimizations are applied in the MMUF algorithm.
The performance of the MMUF was compared to MUF
algorithm and showed to be superior. It usually has less task
preemption and hence, less related overhead. It also leads to
less failed non-critical tasks in overloaded situations in which
the CPU load factor is greater than 100%.

REFERENCES
[1] C. L. Liu, and J. W. Layland, “Scheduling Algorithms for

Multiprogramming in a Hard real Time Environment,” Journal of the
Association for Computing Machinery, vol.20, no.1, pp. 44-61, January
1973.

[2] D. B. Stewart, and P. k. Khosla, “Real-Time Scheduling of Dynamically
Reconfigurable Systems,” in Proc. IEEE International Conference on
Systems Engineering, Dayton Ohio, August 1991, pp. 139-142.

[3] A. Mok. “Fundamental Design Problems of Distributed Systems for
Hard Real-time Environments”. PhD thesis, Massachusetts Institute of
Technology, Cambridge, MA, 1983.

[4] S. H. Oh, and S. M. Yang, “A Modified Least-Laxity-First Scheduling
Algorithm for Real-Time Tasks”, in Proc. Fifth International
Conference on Real-Time Computing Systems and Applications, October
1998, pp. 31-36

[5] D. B. Stewart, D. E. Schmitz, and P. K. Khosla, “Implementing Real-
Time Robotic Systems using CHIMERA II,” in Proc. IEEE
International Conference on Robotics and Automation, Cincinnati, OH,
May 1990, pp. 598-603.

[6] D. B. Stewart, and P. k. Khosla , “Real-Time Scheduling of Sensor-
Based Control Systems”, in Proc. Eighth IEEE Workshop on Real-Time
Operating Systems and Software, in conjunction with 17th IFAC/IFIP
Workshop on Real-Time Programming, Atlanta, GA, May 1991, pp.
144-150.

[7] J. Goossens, and P. Richard, “Overview of real-time scheduling
problems”, in Proc. the ninth international workshop on project
management and scheduling, Nancy, France, April 2004.

[8] L. Sha, J. P. Lehoczky, and R. Rajkumar, “Solutions for Some Practical
Problems in Prioritized Preemtive Scheduling,” in Proc. 10th IEEE
Real-Time Systems Symposium, Santa Monica, CA, December 1989.

[9] M. Naghibzadeh, M. Fathi, “Intelligent Rate-Monotonic Scheduling
Algorithm for Real-Time Systems”, Kuwait Journal of Science and
Engineering, vol. 30, no. 2, pp. 197-210, 2003.

[10] M. L. Dertouzos. “Control robotics: The procedural control of physical
processes”, in Proc. the IFIP Congress, 1974, pp. 807–813.

[11] M. Naghibzadeh, “A modified Version of Rate-Monotonic Scheduling
Algorithm and its efficiency Assessment”, in Proc. Seventh IEEE
International Workshop on Object-Oriented Real-time Dependable
Systems, San Diego, January 2002.

MMUF

MUF

N

N

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

MMUF EDF

MMUF MLLF

F

F

−

−

 1.1 1.2 1.3 1.4 1.5

MMUF

MUF

F

F

 1.1 1.2 1.3 1.4 1.5

