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Abstract—In this note, we discuss the convergence behavior of
a modified inexact Uzawa algorithm for solving generalized saddle
point problems, which is an extension of the result obtained in a
recent paper [Z.H. Cao, Fast Uzawa algorithm for generalized saddle
point problems, Appl. Numer. Math., 46 (2003) 157-171].
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I. INTRODUCTION

IN this note, we consider the generalized saddle point
problems of the form

(
A BT

B −C
)(

x
y

)
=

(
p
q

)
, (1)

where A ∈ Rn×n is symmetric positive definite, B ∈ Rm×n

is of full row rank, and C ∈ Rm×m is symmetric positive
semidefinite, p ∈ Rn and q ∈ Rm are given vectors, with
m ≤ n.

The generalized saddle point problems (1) arises in a wide
variety of scientific and engineering applications, see [2] and
references therein. Frequently, the matrices A and B are
large and sparse. So iterative methods become more attractive
than direct methods for solving the generalized saddle point
problems (1). Many efficient iterative methods have been
studied in the literature [1], [2], [8], [9], [12], [13], [15]. For
example, Miao and Wang [12] studied a class of stationary
iterative methods for (1) based on the work of Yun and Kim
[14].

Uzawa-type algorithms are of interest because they are
simple, efficient and have minimal computer memory require-
ments. Therefore, Uzawa-type algorithms are widely used in
engineering community, especially, are used for solving saddle
point problems [1], [3], [4], [5], [6], [7], [10], [11], [15].

Recently, Cao [5] consider the inexact Uzawa algorithm
for solving generalized saddle point problems (1), which is
an extension of the results obtained in [3]. In this note, a
slight modification of the inexact Uzawa algorithm for solving
generalized saddle point problems (1) (see [5]) is discussed, a
bound of convergence rate is obtained.

Shu-Xin Miao is with the Department of Mathematics, Northwest Normal
Univerisity, Lanzhou, 730070, P.R. China e-mail: shuxinmiao@gmail.com.

Manuscript received ****; revised ****.

II. MODIFIED INEXACT UZAWA ALGORITHM

Let QA and QB be symmetric, positive definite n× n and
m×m matrix, respectively, satisfying

(1 − δ)(QAu, u) ≤ (Au, u)

< (QAu, u), ∀ u ∈ Rn,

(1 − γ)(QBv, v) ≤ ((BA−1BT + C)v, v)

≤ (QBv, v), ∀ v ∈ Rm (2)

for some 0 < δ < 1 and 0 ≤ γ < 1. Here (·, ·) is the
Euclidean inner product in Rn or Rm. Then the inexact Uzawa
algorithm for solving (1) as follows:

Algorithm 1. (INEXACT UZAWA ALGORITHM) For x0 ∈
Rn and y0 ∈ Rm, given, the iterative sequence {(xi, yi)} is
defined, for i = 1, 2, · · ·, by{

xi+1 = xi +Q−1

A (p− (Axi +BT yi)),
yi+1 = yi +Q−1

B (Bxi+1 − Cyi − q).

From (2), we can see that QA −A and QB are symmetric
and positive definite, therefore we can define an inner product
in Rn ×Rm by (cf. [3], [5])[(

u
v

)
,

(
r
s

)]

=

((
QA −A

QB

)(
u
v

)
,

(
r
s

))

≡ ((QA −A)u, r) + (QBv, s). (3)

The corresponding norm is denoted by

[|q|] = [q, q]1/2, ∀ q ∈ Rn ×Rm. (4)

For the inexact Uzawa algorithm 1, Cao [5] provide the
following convergence theorem:

Theorem 2. Assume that (2) hold. Let x, y be the solution
pair for (1), xi, yi be defined by the inexact Uzawa algorithm
1, and set

ei =

(
ex
i

ey
i

)
=

(
x− xi

y − yi

)
.

Then for i = 1, 2, · · ·
[|ei|] ≤ ρi[|e0|],

where

ρ =
γ(1 − δ) +

√
γ2(1 − δ2) + 4δ

2
.

In this note, we discuss the following slight modification of
the inexact Uzawa algorithm 1 for solving generalized saddle
point problem (1).

A modified inexact Uzawa Algorithm
for generalized saddle point problems
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Algorithm 3. (MODIFIED INEXACT UZAWA ALGORITHM)
For x0 ∈ Rn and y0 ∈ Rm, given, the iterative sequence
{(xi, yi)} is defined, for i = 1, 2, · · ·, by{

xi+1 = xi +Q−1

A (p− (Axi +BT yi)),
yi+1 = yi + ωQ−1

B (Bxi+1 − Cyi − q),

where ω ∈ (0, 1] is a real parameter.
Remark 4. Algorithm 3 is an extension of Algorithm 1. It is

also an extension of the inexact Uzawa algorithm considered
in [6].

III. CONVERGENCE ANALYSIS

In what follows, we consider the convergence of the modi-
fied inexact Uzawa algorithm 2. Similar to (3), we can define
inner product as⌊(

u
v

)
,

(
r
s

)⌋
= ((QA −A)u, r) + ω−1(QBv, s).

Therefore the corresponding norm for ei can be defined as

|||ei||| = [((QA −A)ex
i , e

x
i ) + ω−1(QBe

y
i , e

y
i )]1/2. (5)

We have the following convergence result for Algorithm 2.
Theorem 5. Assume that (2) hold. Then for i = 1, 2, · · ·

|||ei||| ≤ ρi
ω|||e0|||,

where ρω = max{r1(ω), r2(ω)} and

r1(ω) =
1

2
[(1 − δ)(1 − ω(1 − γ))

+
√

(1 − δ)2(1 − ω(1 − γ))2 + 4δ ],

r2(ω) =
√
δ.

Proof. Denote Sa = BA−1BT +C and QB(ω) = ω−1QB , it
is easy to see that the iterative error equation can be expressed
as (cf. [5]) ( −ex

i+1

ey
i+1

)
= M1

(
ex
i

ey
i

)
, (6)

where

M1 =

( −(I −Q−1

A A) Q−1

A BT

QB(ω)−1B(I −QAA) I −QB(ω)−1Sa

)
.

From [5] and (6), we know that

|||ei+1||| ≤ σ(M1)|||ei|||,
where σ(M1) is the spectrum of matrix M1. Since M1 is sym-
metric with respect to the �·, ·� inner product, its eigenvalues
are real. We shall bound the positive and negative eigenvalue
of M1 in what follows.

We first provide a bound for the positive eigenvalues of M1.
Let

N =

( −δI δ1/2L
δ1/2L∗ I − L∗L−QB(ω)−1C

)
,

where L = (I − Q−1

A A)−1/2Q−1

A BT and L∗ =
QB(ω)−1B(I−Q−1

A A)1/2. Then the largest eigenvalue of M1

is bounded by the largest eigenvalue of N (see [5]). Let λ

be a positive eigenvalue of N with corresponding eigenvector
{ψ1, ψ2}, i.e.,

−δψ1 + δ1/2Lψ2 = λψ1,
δ1/2L∗ψ1 + (I − L∗L−QB(ω)−1C)ψ2 = λψ2.

(7)

Eliminating ψ1 gives

−λL∗Lψ2 = (λ+ δ)QB(ω)−1Cψ2 + (λ+ δ)(λ− 1)ψ2.

From the first equation of (7), we can see that ψ2 	= 0, and
hence

−λ(QB(ω)L∗Lψ2, ψ2) (8)
= (λ+ δ)(Cψ2, ψ2) + (λ+ δ)(λ− 1)(QB(ω)ψ2, ψ2).

By the first equation of (2) and the definition of L and L∗ it
follows that

(QB(ω)L∗Lψ2, ψ2) = (Q−1

A BTψ2, B
Tψ2)

≥ (1 − δ)(BA−1BTψ2, ψ2).

Now (8) imply

0 = λ(QB(ω)L∗Lψ2, ψ2) + (λ+ δ)(Cψ2, ψ2)

+(λ+ δ)(λ− 1)(QB(ω)ψ2, ψ2)

≥ λ(1 − δ)(BA−1BTψ2, ψ2) + (λ+ δ)(Cψ2, ψ2)

+(λ+ δ)(λ− 1)(QB(ω)ψ2, ψ2)

= λ(1 − δ)(Saψ2, ψ2) + δ(1 + λ)(Cψ2, ψ2)

+(λ+ δ)(λ− 1)(QB(ω)ψ2, ψ2)

≥ λ(1 − δ)(1 − γ)(QBψ2, ψ2)

+(λ+ δ)(λ− 1)(QB(ω)ψ2, ψ2)

= [λ(1 − δ)(1 − γ) + ω(λ+ δ)(λ− 1)](QBψ2, ψ2).

Since QB is symmetric positive definite and ψ2 	= 0, we get

λ(1 − δ)(1 − γ) ≤ −ω(λ+ δ)(λ− 1),

From which we have

λ ≤ r1(ω),

where

r1(ω) =
1

2
[(1 − δ)(1 − ω(1 − γ))

+
√

(1 − δ)2(1 − ω(1 − γ))2 + 4δ ].

Next we estimate the negative eigenvalue of M1, let λ <
0 be an eigenvalue of M1 with corresponding eigenvector
{φ1, φ2}, i.e.,⎧⎨

⎩
−(I −Q−1

A A)φ1 +Q−1

A BTφ2 = λφ1,
QB(ω)−1B(I −Q−1

A A)φ1

+(I −QB(ω)−1BQ−1

A BT + C)φ2 = λφ2.
(9)

From (9), we can see that φ1 	= 0 (cf. [5]). Thus, any
eigenvector of M1 corresponding to a negative eigenvalue must
have a nonzero component φ1.

From (9) we have

((1 − λ)I −QB(ω)−1C)φ2 = λQB(ω)−1Bφ1.
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By (2) and noting λ < 0, it follows that (1−λ)I−QB(ω)−1C
is invertible. Thus, we get

φ2 = λ((1 − λ)I −QB(ω)−1C)−1QB(ω)−1Bφ1. (10)

Substituting (10) into the first equation in (9) and taking an
inner product with QAφ1 gives

(1 + λ)(QAφ1, φ1) (11)
= (Aφ1, φ1)

+λ(((1 − λ)I −QB(ω)−1C)−1QB(ω)−1Bφ1, Bφ1).

For φ1 ∈ Rn, we have

(((1 − λ)I −QB(ω)−1C)−1QB(ω)−1Bφ1, Bφ1)

= (((1 − λ)QB(ω) − C)−1Bφ1, Bφ1)

= sup
v∈Rm

(((1 − λ)QB(ω) − C)−1Bφ1, v)
2

(((1 − λ)QB(ω) − C)−1v, v)

= sup
v∈Rm

(φ1, B
T v)2

(((1 − λ)QB(ω) − C)v, v)

≤ 1

1 − λ
sup

v∈Rm

(φ1, B
T v)2

((QB(ω) − C)v, v)

≤ 1

1 − λ
sup

v∈Rm

(Aφ1, φ1)(BA
−1BT v, v)

((QB(ω) − C)v, v)
. (12)

As ω ∈ (0, 1], the following inequality hold

sup
v∈Rm

(Aφ1, φ1)(BA
−1BT v, v)

((QB(ω) − C)v, v)

≤ ω sup
v∈Rm

(Aφ1, φ1)(BA
−1BT v, v)

((QB − C)v, v)
.

Then from (12) and (2), we have

(((1 − λ)I −QB(ω)−1C)−1QB(ω)−1Bφ1, Bφ1)

≤ ω

1 − λ
sup

v∈Rm

(Aφ1, φ1)(BA
−1BT v, v)

((QB − C)v, v)

≤ ω

1 − λ
(Aφ1, φ1).

Now (11) becomes

(1 + λ)(QAφ1, φ1) ≥ (Aφ1, φ1) +
λω

1 − λ
(Aφ1, φ1).

Note that ω ≤ 1 and λ < 0, we therefore have

[λ2 − δ](QAφ1, φ1) ≤ 0.

QA is symmetric positive definite, therefore we obtain the
bound for the negative eigenvalue of M1 as

−
√
δ ≤ λ < 0.

We complete the proof.

Remark 6. In particular, if ω = 1, then Algorithm 3 be-
comes Algorithm 1. Therefore, we can obtain the convergence
result of Algorithm 1 (Theorem 2) directly from Theorem 5.

Remark 7. We remark that r2(ω) < 1 as 0 < δ < 1. It is
elementary to see that r1(ω) < 1− 1

2
ω(1−δ)(1−γ). Therefore

ρω < 1, that is to say that the modified inexact Uzawa method
(Algorithm 3) converges if (2) hold.
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