
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:11, 2007

3412

A Modified Cross Correlation in the
Frequency Domain for Fast Pattern
Detection Using Neural Networks

Hazem M. El-Bakry and Qiangfu Zhao

Abstract⎯⎯⎯⎯Recently, neural networks have shown good
results for detection of a certain pattern in a given image. In
our previous papers [1-5], a fast algorithm for pattern
detection using neural networks was presented. Such
algorithm was designed based on cross correlation in the
frequency domain between the input image and the weights
of neural networks. Image conversion into symmetric shape
was established so that fast neural networks can give the
same results as conventional neural networks. Another
configuration of symmetry was suggested in [3,4] to improve
the speed up ratio. In this paper, our previous algorithm for
fast neural networks is developed. The frequency domain
cross correlation is modified in order to compensate for the
symmetric condition which is required by the input image.
Two new ideas are introduced to modify the cross correlation
algorithm. Both methods accelerate the speed of the fast
neural networks as there is no need for converting the input
image into symmetric one as previous. Theoretical and
practical results show that both approaches provide faster
speed up ratio than the previous algorithm.

Keywords⎯⎯⎯⎯Fast Pattern Detection, Neural Networks,
Modified Cross Correlation

I. INTRODUCTION

Pattern detection is a fundamental step before pattern
recognition. Its reliability and performance have a major
influence in a whole pattern recognition system. Nowadays,
neural networks have shown very good results for detecting
a certain pattern in a given image [6,9,11,12]. But the
problem with neural networks is that the computational
complexity is very high because the networks have to
process many small local windows in the images [8,10].

Manuscript received May 3, 2004.
H. M. El-Bakry, is assistant lecturer with Faculty of Computer Science

and Information Systems – Mansoura University – Egypt. Now, he is PhD
student in University of Aizu, Aizu Wakamatsu, Japan 965-8580 (phone
+81-242-37-2519, Fax. +81-242-37-2743, E-mail:
helbakry20@yahoo.com).

Q. Zhao is professor with the Information Systems Department,
University of Aizu, Japan (e-mail: qf-zhao@u-aizu.ac.jp).

In our previous papers [1-5], a fast algorithm for pattern
detection using neural networks was presented. Such
algorithm was designed based on cross correlation in the
frequency domain between the input image and the weights
of neural networks. In [5], practical realization using
MATLAB proved that a symmetry condition is necessary
and must be found either in the input image or in the neural
weights so that those fast neural networks can give the same
correct results as conventional neural network for detecting
a certain pattern in a given image. In our previous papers
[3,4], we succeeded in improving the speed up of the
detection process by converting the input image into a
symmetric form with less dimensions compared with the old
symmetric image introduced in [5]. Mathematical analysis
and simulation results for this symmetric configuration
proved that the number of computation steps required by
fast neural networks is reduced. Although the speed up ratio
is increased, the symmetric condition still causes the fast
neural networks to consume a large number of computation
steps. This is because image conversion into symmetric
form increases the dimensions of the input image.

Here, the cross correlation, implemented in the
frequency domain, is modified in order to compensate for
the symmetric condition which is required in the input
image. Two approaches are presented in order to
compensate for the symmetric condition. Fast neural
networks for pattern detection are described in section II. In
section III, the previous symmetric configuration for the
input image to speed up the detection process is discussed.
Two new ideas to compensate for this symmetry condition
are presented.

II. THEORY OF FAST NEURAL NETWORKS BASED

ON CROSS CORRELATION IN THE FREQUENCY

DOMAIN FOR PATTERN DETECTION

Finding a certain pattern in the input image is a search
problem. Each subimage in the input image is tested for the
presence or absence of the required pattern. At each pixel
position in the input image each subimage is multiplied by a

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:11, 2007

3413

window of weights, which has the same size as the
subimage. The outputs of neurons in the hidden layer are
multiplied by the weights of the output layer. A high output
implies that the tested subimage contains the required
pattern and vice versa. Thus, we may conclude that this
searching problem is cross correlation between the image
under test and the weights of the hidden neurons.

The convolution theorem in mathematical analysis says
that a convolution of f with h is identical to the result of the
following steps: let F and H be the results of the Fourier
Transformation of f and h in the frequency domain.
Multiply F and H in the frequency domain point by point
and then transform this product into the spatial domain via
the inverse Fourier Transform. As a result, these cross
correlations can be represented by a product in the
frequency domain. So, by using cross correlation in the
frequency domain, speed up in an order of magnitude can
be achieved during the detection process [1,2,3,4,5,6,7,9].

In the detection phase, a sub image I of size mxn (sliding
window) is extracted from the tested image, which has a
size PxT, and fed to the neural network. Let Xi be the vector
of weights between the input sub image and the hidden
layer. This vector has a size of mxn and can be represented
as mxn matrix. The output of hidden neurons hi can be
calculated as follows:

���
�

���
� �

=
+

�

=
=

m

1j ibk)k)I(j,(j,
n

1k iXgih (1)

where g is the activation function and bi is the bias of each
hidden neuron (i). Eq.1 represents the output of each hidden
neuron for a particular subimage I. It can be obtained from
image Z as follows:

⎟

⎟

⎠

⎞

⎜

⎜

⎝

⎛

∑

−=
∑

−=
+++

=

m/2

m/2j

n/2

n/2k ibk)vj,Z(uk)(j,iXg

v)(u,ih

(2)

Eq.2 represents a cross correlation operation. Given any two
functions f and d, their cross correlation can be obtained by
[1]:

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∑

∞
∞−=

∑

∞
∞−=

++

=⊗

m n
n)n)g(m,ym,f(x

y)g(x,y)f(x,

(3)

Therefore, Eq.2 can be written as follows [1]:

()ibiXZgih +⊗= (4)

where hi is the output of the hidden neuron (i) and hi (u,v) is
the activity of the hidden unit (i) when the sliding window
is located at position (u,v) and (u,v) ∈[P-m+1,T-n+1].

Now, the above cross correlation can be expressed in terms
of the Fourier Transform:

() ()()iX*FZF1FiXZ •−=⊗ (5)

Hence, by evaluating this cross correlation, a speed up ratio
can be obtained comparable to conventional neural
networks. Also, the final output of the neural network can
be evaluated as follows:

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∑

=
+=

q

1i
ob)vu,(ih(i)owgv)O(u, (6)

where q is the number of neurons in the hidden layer.
O(u,v) is the output of the neural network when the sliding
window is located at the position (u,v) in the input image Z.

The complexity of cross correlation in the frequency
domain can be analyzed as follows [5]:

1- For a tested image of NxN pixels, the 2D-FFT requires a
number equal to O(N2log2N

2) of complex computation
steps. Also, the same number of complex computation steps
is required for computing the 2D FFT of the weight matrix
for each neuron in the hidden layer.

2- At each neuron in the hidden layer, the inverse 2D FFT is
computed. So, q backward and (1+q) forward transforms
have to be computed. Therefore, for an image under test, the
total number of the 2DFFT to compute is
O((2q+1)N2log2N

2).

3- The input image and the weights should be multiplied in
the frequency domain. Therefore, a number of complex
computation steps equal to O(qN2) should be added.

4- The number of computation steps required by fast neural
networks is complex and must be converted into a real
version. It is known that the two dimensions Fast Fourier
Transform requires O((N2/2)log2N

2) complex
multiplications and O(N2log2N

2) complex additions. Every
complex multiplication is realized by six real floating point
operations and every complex addition is implemented by
two real floating point operations. So, the total number of
computation steps required to obtain the 2D-FFT of an NxN
image is [5]:

ρ=O(6((N2/2)log2N
2) + 2(N2log2N

2)) (7)

which may be simplified to:

ρ=O(5N2log2N
2) (8)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:11, 2007

3414

Performing complex dot product in the frequency domain
also requires O(6qN2) real operations.

5- In order to perform cross correlation in the frequency
domain, the weight matrix must have the same size as the
input image. So, a number of zeros = (N2-n2) must be added
to the weight matrix. This requires a total real number of
computation steps = O(q(N2-n2)) for all neurons. Moreover,
after computing the FFT2 for the weight matrix, the
conjugate of this matrix must be obtained. So, a real number
of computation steps =O(qN2) should be added in order to
obtain the conjugate of the weight matrix for all neurons.
Also, a number of real computation steps equal to O(N) is
required to create butterflies complex numbers (e-jk(2Πn/N)),
where 0<K<L. These (N/2) complex numbers are multiplied
by the elements of the input image or by previous complex
numbers during the computation of FFT2. To create a
complex number requires two real floating point operations.
So, the total number of computation steps required by fast
neural networks becomes [5]:

σ=O((2q+1)(5N2log2N2) +6qN2+q(N2-n2)+qN2 +N) (9)

which can be reformulated as:

σ=O((2q+1)(5N2log2N2) +q(8N2-n2) +N) (10)

6- Using a sliding window of size nxn for the same image of
NxN pixels, O(q(2n2-1)(N-n+1)2) computation steps are
required when using traditional neural networks for pattern
detection process. The theoretical speed up factor η can be
evaluated as follows [5]:

���
�����

+++
+=η

N)n-q(8N)Nlog1)(5N(2q

1)n-1)(N-q(2n
O

222
2

2

22
(11)

7- But as proved in [5], this cross correlation in the
frequency domain (Fast Neural Networks) gives the same
results as conventional cross correlation (Conventional
Neural Networks) only in two cases. Either the weights are
symmetric or the input image is symmetric. It is very
complex to allow the weights to be symmetric in the
required form which needs to be as follows [5]:

⎥

⎦

⎤

⎢

⎣

⎡

=
dw

w
W

0

0
(12)

Adding this constraint to the learning rules will cause many
well known problems during the training process of the
neural network. Another solution is to convert the input
image into one of the required symmetric forms as shown in
Fig. 1. As the input image has a dimension of (N), the new
symmetric image will have a length of (2N). In this case,
the number of computation steps required by fast neural
networks can be calculated as follows [5]:

σ2N=O((2q+1)(5(2N)2log2(2N)2)+q(8(2N)2-n2) +2N) (13)

But, converting the non-symmetric input image into a
symmetric one will slow down the proposed fast neural
networks more compared to conventional neural networks.
In this case, for any size of the input image, dividing the
number of operations required for conventional neural
networks by those needed by fast neural networks (Eq. 11)
gives a lower speed up ratio than the one listed in Table 1
[5].

III. A MODIFIED CROSS CORRELATION

ALGORITHM FOR FAST NEURAL NETWORKS

In this section, a modification in the cross correlation
function, implemented in the frequency domain, is
established by two methods in order to improve the speed of
the fast neural networks. In [3,4], the symmetric form shown
in Fig. 2 for the input image was presented. This form
reduced the number of computation steps required by fast
neural networks for pattern detection. The input image was
converted into symmetric form by rotating it 180 degrees.
Then, both the up and down images were tested as one
(symmetric) image consisting of two images. In this case,
this symmetric image has (2NxN) dimensions. By
substituting in Eq. 9 for the these dimensions, the number of
computation steps required for cross correlating this
symmetric image with the weights in the frequency domain
can be calculated as follows [3,4]:-

σ=O((2q+1)(5(2N2log2N+2N2log22N))+q6(2N2)+ q(2N2-
n2)+q(2N2)+2N) (14)

which can be simplified to:

σ=O((2q+1)(10N2(log22N+ log2N)) +q(16N2-n2)

+2N) (15)

So, the speed up ratio in this case can be calculated as:

���
�		
�

++++
+=η

2N)n-q(16NN))log2N(log1)(10N(2q

1)n-1)(N-q(2n
O

22
22

2

22
(16)

The theoretical speed up ratio in this case with different
sizes of the input image and different in size weight
matrices is listed in Table 2. Practical speed up ratio for
manipulating images of different sizes and different in size
weight matrices is listed in Table 3 using 700 MHz
processor and MATLAB.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:11, 2007

3415

Here, two methods are presented to compensate for this
symmetry condition by modifying the cross correlation
implemented in the frequency domain.

A) The First Method

Modification in cross correlation is performed by
rotating the input image down and computing the Fast
Fourier Transform in two dimensions for the rotated
version. Then, the conjugate matrix of the resulted matrix is
obtained. The conjugate matrix of the Fast Fourier
Transform in two dimensions for the weight matrix is also
calculated. This method provides a correct result as
conventional neural networks when cross correlation is
done in the frequency domain. Using this procedure, there is
no need to convert either the input image or the weights
into symmetric form. In this case, Eq. 10 can be written as
follows:

σ=O((2q+1)(5N2log2N2) +q(8N2-n2)+2N2+N) (17)

The term 2N2 is added to the number of computation steps
required by fast neural networks (Eq. 10). N2 computation
steps are required for image rotation into down direction.
The other N2 computation steps corresponds to the
computation of the conjugate matrix of the Fast Fourier
Transform for the input image in two dimensions.

The speed up ratio can be calculated as follows:

���
�����

++++
+=η

NN2)n-q(8N)Nlog1)(5N(2q

1)n-1)(N-q(2n
O

2222
2

2

22
(18)

The theoretical speed up ratio in this case with different
sizes of the input image and different in size weight
matrices is listed in Table 4. Also, practical speed up ratio
for manipulating images of different sizes and different in
size weight matrices is listed in Table 5 using 700 MHz
processor and MATLAB.

On the other hand, instead of rotating the input image, the
weight matrix can be rotated into down direction. Therefore,
qN2 operations are added to the total number of
computation steps required for Fast Neural Networks. But
the final matrix resulted at the output of neural network
should be rotated into down direction. This adds N2

operations to the number computation steps required by Fast
Neural Networks. The conjugate of the Fast Fourier
Transform for the input image is automatically computed in
the dot function. Thus, N2 operations are added to the
number computation steps required by Fast Neural
Networks. In this case, Eq. 10 can be written as follows:

σ=O((2q+1)(5N2log2N2) +q(9N2-n2)+2N2+N) (19)

The speed up ratio can be calculated as follows:

���
�		
�

++++
+=η

NN2)n-q(9N)Nlog1)(5N(2q

1)n-1)(N-q(2n
O

2222
2

2

22
(20)

B) The Second Method

The problem is that the MATLAB dot function computes
the conjugate of the input image automatically which is not
needed to perform cross correlation in the frequency
domain. Therefore, we have to remove the effect of
computing this conjugate matrix so that fast neural networks
can give the same results as conventional neural networks.
The idea is to compensate for the symmetry condition by
performing a permutation between the input image and the
weight matrix. In this case, there is no need to compute the
conjugate of the weight matrix as it will be obtained
automatically during the computation of the dot function.
The dot function in MATLAB computes the conjugate of
the first matrix automatically before performing the dot
multiplication (See Appendix A). So, a permutation is made
between the first and the second matrix before the dot
multiplication is started. In this case, the first matrix after
permutation will be the weight matrix. By performing this
permutation and applying the dot multiplication, there is no
need to convert the input image into symmetric one.
Furthermore, there is no need to rotate either the input
image or the weight matrix. Moreover, there is no need to
compute the conjugate matrix of the Fast Fourier Transform
either for input image or the weight matrix as the conjugate
matrix of the Fast Fourier Transform for the weight matrix
is computed automatically through the dot function. In this
case, the total number of computation steps required by fast
neural networks is:

σ=O((2q+1)(5N2log2N2) +q(8N2-n2)+N) (21)

and the speed up ratio can be calculated as follows:

��

�����

+++
+=η

N)n-q(8N)Nlog1)(5N(2q

1)n-1)(N-q(2n
O

222
2

2

22
(22)

The theoretical speed up ratio in this case with different
sizes of the input image and different in size weight
matrices is listed in Table 6. Also, practical speed up ratio
for manipulating images of different sizes and different in
size weight matrices is listed in Table 7 using 700 MHz
processor and MATLAB. It is clear that the results listed in
Tables 6 and 7 are the same as those listed in Tables 4
and 5. This is because the effect of the term 2N2 on the
number of computation steps in Eq. 17 is very small. So, the
speed up ratio given by Eq. 18 is approximately the same as
that in Eq. 22.

Note that, in all of these experiments the Fast Fourier
Transform of the weight matrix as well as all related
computation for the weights (such as rotation and conjugate

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:11, 2007

3416

of the Fast Fourier Transform) can be rotated off line before
starting the test phase. Thus, all the calculations and terms
corresponding to the weight matrix can be removed.
Although, this reduces the number of computation steps
required by fast neural networks, a restriction on the input
image to be with fixed dimensions is added.

VI. CONCLUSION

Two new approaches for fast neural networks have been
presented. The number of computation steps required by
both methods has been proved to be less than the previous
method. This has been accomplished by modifying the
frequency domain cross correlation algorithm implemented
in MATLAB. By using these new methods, there is no need
for image conversion into symmetric shape as presented in
our previous work. Simulation results have shown that both
methods give the same speed up ratio which is faster than
the previous one.

Appendix “A”
For the “dot(a,b)” function implemented in MATLAB, when
dealing with complex numbers (i.e. a and b are complex numbers),
this dot function provides different result unless the conjugate of
the first number “a” is computed at the first. The next is an
example for computing the dot product of two complex numbers (a
and b) and executed at the MATLAB dot prompt:

» a=1-2i
a =

1.0000 - 2.0000i
» b=4-3i
b =

4.0000 - 3.0000i
» c=a*b
c =

-2.0000 -11.0000i
» d=dot(a,b)
d =

10.0000 + 5.0000i
» e=conj(a)
e =

1.0000 + 2.0000i
» dnew=dot(e,b)
dnew =

-2.0000 -11.0000i

The correct result "c" is different from “d=dot(a,b)”. Unless we
compute "e=conj(a)", and then perform dot(e,b). The result is
“dnew=c”. The same error occurred when “a” and “b” are matrices
“dot(a,b,dim)”, unless the conjugate of matrix “a” is computed
before the dot multiplication is performed.

REFERENCES

[1] Hazem M. El-Bakry, and Qiangfu Zhao, “Fast Sub-Matrix
Detection Using Neural Networks and Cross Correlation in the
Frequency Domain,” Second Workshop of Tohoku Branch,
IPSJ, (Information Processing Society of Japan), University of
Aizu, Aizuwakamatsu, Japan, Jan. 21, 2005.

[2] Hazem M. El-Bakry, and Qiangfu Zhao, “Fast Object/Face
Detection Using Neural Networks and Fast Fourier
Transform,” the International Journal of Signal Processing,
vol.1, no.3, pp. 182-187, 2004.

[3] H. M. El-Bakry, and Qiangfu Zhao, “A New Symmetric Form
for Fast Sub-Matrix (Object/Face) Detection Using Neural
Networks and FFT,” under publication in the International
Journal of Signal Processing.

[4] Hazem M. El-Bakry, and Qiangfu Zhao, “Fast Pattern
Detection Using Normalized Neural Networks and Cross
Correlation in the Frequency Domain,” under publication in
the European Journal of Applied Signal Processing.

[5] Hazem M. El-Bakry, “Comments on Using MLP and FFT for
Fast Object/Face Detection,” Proc. of IEEE IJCNN'03,
Portland, Oregon, July, 20-24, 2003, pp. 1284-1288.

[6] Hazem M. El-Bakry, “Human Iris Detection Using Fast
Cooperative Modular Neural Networks and Image
Decomposition,” Machine Graphics & Vision Journal
(MG&V), vol. 11, no. 4, pp. 498-512, 2002.

[7] Hazem M. El-Bakry, “Face detection using fast neural
networks and image decomposition,” Neurocomputing
Journal, vol. 48, pp. 1039-1046, 2002.

[8] S. Srisuk and W. Kurutach, “A New Robust Face Detection in
Color Images,” Proc. of IEEE Computer Society International
Conference on Automatic Face and Gesture Recognition
(AFGR'02), Washington D.C., USA, May 20-21, 2002, pp.
306-311.

[9] Hazem M. El-Bakry, “Automatic Human Face Recognition
Using Modular Neural Networks,” Machine Graphics &
Vision Journal (MG&V), vol. 10, no. 1, pp. 47-73, 2001.

[10] Ying Zhu, Stuart Schwartz, and Michael Orchard, “Fast Face
Detection Using Subspace Discriminate Wavelet Features,”
Proc. of IEEE Computer Society International Conference on
Computer Vision and Pattern Recognition (CVPR'00), South
Carolina, June 13 - 15, 2000, vol.1, pp. 1636-1643.

[11] R. Feraud, O. Bernier, J. E. Viallet, and M. Collobert, “A Fast
and Accurate Face Detector for Indexation of Face Images,”
Proc. of the Fourth IEEE International Conference on
Automatic Face and Gesture Recognition, Grenoble, France,
28-30 March, 2000.

[12] S. Baluja, H. A. Rowley, and T. Kanade, “Neural Network -
Based Face Detection,” IEEE Trans. on Pattern Analysis and
Machine Intelligence, vol. 20, no. 1, pp. 23-38, 1998.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:11, 2007

3417

TABLE 1
A COMPARISON BETWEEN THE NUMBER OF COMPUTATION STEPS (IN MILLIONS) REQUIRED FOR CONVENTIONAL AND FAST NEURAL NETWORKS TO

MANIPULATE IMAGES SHOWN IN FIG.1 WITH DIFFERENT SIZES (N=20).

Image size Conventional Neural Networks Fast Neural Networks (2N) Speed up ratio

100x100 157,267170 196,098091 .802
200x200 785,281170 882,028364 .890
300x300 1892,695170 2113,036584 .896
400x400 3479,509170 3918,549456 .888
500x500 5545,723170 6319,116413 .877
600x600 8091,337170 9330,582337 .867
700x700 11116,351170 12965,856005 .857
800x800 14620,765170 17235,856005 .848
900x900 18604,579170 21986,745146 .846

1000x1000 23067,793170 27716,501654 .832

TABLE 2
THE THEORETICAL SPEED UP RATIO IN CASE OF CONVERTING AN

IMAGE INTO SYMMETRIC ONE THROUGH ROTATION INTO DOWN

DIRECTION.

Image size Speed up ratio
(n=20)

Speed up ratio
(n=25)

Speed up ratio
(n=30)

100x100 1.71 2.36 2.96
200x200 1.88 2.79 3.79
300x300 1.89 2.85 3.96
400x400 1.86 2.85 3.99
500x500 1.84 2.82 3.98
600x600 1.82 2.80 3.96
700x700 1.80 2.77 3.93
800x800 1.78 2.74 3.90
900x900 1.76 2.72 3.87

1000x1000 1.74 2.70 3.84

TABLE 3
SIMULATION RESULTS FOR SPEED UP RATIO IN CASE OF CONVERTING AN

IMAGE INTO SYMMETRIC ONE THROUGH ROTATION INTO DOWN

DIRECTION.

Image size Speed up ratio
(n=20)

Speed up ratio
(n=25)

Speed up ratio
(n=30)

100x100 5.29 6.74 11.16
200x200 4.46 6.24 9.94
300x300 4.17 5.08 8.66
400x400 3.59 4.78 7.45
500x500 3.40 4.34 6.87
600x600 3.30 4.42 6.16
700x700 3.12 4.20 5.74
800x800 2.60 3.58 4.76
900x900 2.97 4.10 5.38

1000x1000 2.57 3.47 4.63

TABLE 4
THE THEORETICAL SPEED UP RATIO IN CASE OF ROTATING THE INPUT

IMAGE DOWN AND COMPUTING THE CONJUGATE OF FAST FOURIER

TRANSFORM IN TWO DIMENSIONS FOR THE INPUT IMAGE.

Image size Speed up ratio
(n=20)

Speed up ratio
(n=25)

Speed up ratio
(n=30)

100x100 3.67 5.04 6.34
200x200 4.01 5.92 8.05
300x300 4.00 6.03 8.37
400x400 3.95 6.01 8.42
500x500 3.89 5.95 8.39
600x600 3.83 5.88 8.33
700x700 3.78 5.82 8.26
800x800 3.73 5.76 8.19
900x900 3.69 5.70 8.12

1000x1000 3.65 5.65 8.05

TABLE 5
SIMULATION RESULTS FOR SPEED UP RATIO IN CASE OF ROTATING THE

INPUT IMAGE INTO DOWN DIRECTION AND COMPUTING THE CONJUGATE OF

FAST FOURIER TRANSFORM IN TWO DIMENSIONS FOR THE INPUT IMAGE.

Image size Speed up ratio
(n=20)

Speed up ratio
(n=25)

Speed up ratio
(n=30)

100x100 7.88 10.75 14.69
200x200 6.21 9.19 13.17
300x300 5.54 8.43 12.21
400x400 4.78 7.45 11.41
500x500 4.68 7.13 10.79
600x600 4.46 6.97 10.28
700x700 4.34 6.83 9.81
800x800 4.27 6.68 9.60
900x900 4.31 6.79 9.72

1000x1000 4.19 6.59 9.46

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:11, 2007

3418

TABLE 6
THE THEORETICAL SPEED UP RATIO IN CASE OF MODIFYING THE CROSS

CORRELATION ALGORITHM IN THE FREQUENCY DOMAIN BY PERMUTING THE

INPUT IMAGE AND THE WEIGHT MATRIX IN DOT FUNCTION.

Image size Speed up ratio
(n=20)

Speed up ratio
(n=25)

Speed up ratio
(n=30)

100x100 3.67 5.04 6.34
200x200 4.01 5.92 8.05
300x300 4.00 6.03 8.37
400x400 3.95 6.01 8.42
500x500 3.89 5.95 8.39
600x600 3.83 5.88 8.33
700x700 3.78 5.82 8.26
800x800 3.73 5.76 8.19
900x900 3.69 5.70 8.12

1000x1000 3.65 5.65 8.05

TABLE 7
SIMULATION RESULTS FOR SPEED UP RATIO IN CASE OF MODIFYING THE

CROSS CORRELATION ALGORITHM IN THE FREQUENCY DOMAIN BY

PERMUTING THE INPUT IMAGE AND THE WEIGHT MATRIX IN DOT FUNCTION.

Image size Speed up ratio
(n=20)

Speed up ratio
(n=25)

Speed up ratio
(n=30)

100x100 7.88 10.75 14.69
200x200 6.21 9.19 13.17
300x300 5.54 8.43 12.21
400x400 4.78 7.45 11.41
500x500 4.68 7.13 10.79
600x600 4.46 6.97 10.28
700x700 4.34 6.83 9.81
800x800 4.27 6.68 9.60
900x900 4.31 6.79 9.72

1000x1000 4.19 6.59 9.46

Fig. 1. Image conversion from non-symmetric to symmetric one. Fig. 2. Image conversion from non-
symmetric to symmetric one through

rotation into down direction.

Eng. Hazem Mokhtar El-
Bakry (Mansoura, EGYPT 20-
9-1970) received B.Sc. degree
in Electronics Engineering, and
M.Sc. in Electrical
Communication Engineering
from the Faculty of
Engineering, Mansoura
University – Egypt, in 1992 and
1995 respectively. Since 1997,
he has been an assistant lecturer
at the Faculty of Computer
Science and Information
Systems – Mansoura University
– Egypt. Currently, he is a
doctoral student at the

Multimedia device laboratory, University of Aizu - Japan. In 2004,
he got a Research Scholarship from Japanese Government based on a
recommendation from University of Aizu.

His research interests include neural networks, pattern
recognition, image processing, biometrics, cooperative intelligent
systems and electronic circuits. In these areas, he has published more
than 39 papers as a single author in major international journals and
conferences. He is the first author in 8 refereed international journal
papers and more than 60 refereed international conference papers.

Eng. El-Bakry has the patent No. 2003E 19442 DE HOL / NUR,
Magnetic Resonance, SIEMENS Company, Erlangen, Germany,
2003. He is a referee for the International Journal of Machine
Graphics & Vision and many different international conferences. He
was selected as a chairman for the Facial Image Processing Session

in the 6th International Computer Science Conference, Active Media
Technology (AMT) 2001, Hong Kong, China, December 18-20,
2001 and for the Genetic Programming Session, in ACS/IEEE
International Conference on Computer Systems and Applications
Lebanese American University Beirut, Lebanon, June 25-29, 2001.
He was invited for a talk in the Biometric Consortium, Orlando,
Florida, USA, 12-14 Sep. 2001, which co-sponsored by the United
States National Security Agency (NSA) and the National Institute of
Standards and Technology (NIST).

Dr. Zhao received the Ph. D
degree from Tohoku University of
Japan in 1988. He joined the
Department of Electronic
Engineering of Beijing Institute of
Technology of China in 1988, first
as a post doctoral fellow and then
associate professor. He was
associate professor from Oct. 1993
at the Department of Electronic
Engineering of Tohoku University
of Japan. He joined the University
of Aizu of Japan from April 1995 as
associate professor, and became

tenure full professor in April 1999. Prof. Zhao research interests
include image processing, pattern recognition and understanding,
computational intelligence, neurocomputing and evolutionary
computation.

