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Abstract—In this paper, we are concerned with the further study 

for system of nonlinear equations. Since systems with inaccurate 
function values or problems with high computational cost arise 
frequently in science and engineering, recently such systems have 
attracted researcher’s interest. In this work we present a new method 
which is independent of function evolutions and has a quadratic 
convergence. This method can be viewed as a extension of some 
recent methods for solving mentioned systems of nonlinear 
equations. Numerical results of applying this method to some test 
problems show the efficiently and reliability of method 
 

I. INTRODUCTION 
ONSIDER a system of nonlinear equations  
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(1) 
 

This system can be referred by ( ) 0F x = , where 

1 2( , , , ) : n n
nF f f f D… \ \= ⊂ → is continuously 

differentiable on an open neighborhood *D D⊂  of a solution 
* * *

1( , , )nx x x D…= ∈ of the system (1). Each function if  
maps a vector 1 2( , , , )nx x x x…= from the n -dimensional 
space n\ into \ . We assume that the system (1) admits a 
unique solution. The most known iterative method for solving 
systems of nonlinear equations is the classical Newton's 
method, given by 

1 1( ) ( ), 0p p p px x F x F x p+ −′= − ≥  (2) 

where ( )pF x′  denote the Jacobian matrix at the current 
approximation 1 2 2( , , , )p p p px x x x…= and 1px +  is the next 
approximation. In general, there exists no method that yields 
an exact solution for such equations. In recent years, 
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considerable interest in system of nonlinear equation  has been 
stimulated due to their numerous applications in the areas of 
science and engineering [1]and many powerful methods have 
been presented [6–29]. For example by using essentially 
Taylor's polynomial [1,2], decomposition [3], quadrature 
formulas [4,5] and other techniques [6-10]. 

In real life applications, there exist many problems where 
the system is known with some precision only, e.g. when the 
function and derivative values depend on the results of 
numerical simulations [11] or the precision of the desired 
function is available at a prohibitive cost, for example where 
function value results from the sum of an infinite series (e.g. 
Bessel or Airy functions [12,13,14]). So, it is very important  
to obtain methods, which are function evaluations free. These 
methods are ideal for situations with unavailable accurate 
function values or high computational cost. In this direction, 
several methods have been proposed for example in[15] a 
method proposed which applied for polynomial only. 

Also, there are some methods where, the function values in 
Newton's method are not directly evaluated from the 
corresponding component functions ( )if x , but are 
approximated by using appropriate quantities, which called 
WFEN method [16] and IWFEN [17]. 

This paper is structured as follows. In Section 2, a brief 
outline of the WFEN, IWFEN methods for systems of 
nonlinear equations has discussed. In Section 3 we modify 
some presented notations, in [16-17] and by using a 
geometrical interpretation, a method which can be viewed as a 
new improved Newton's method without direct function 
evaluations is presented. Some numerical examples are stated 
in Section 4 and a comparison between proposed method and 
WFEN, IWFEN, Newton's methods on these examples is 
given. Finally, Conclusions are drawn in Section 5. 

II. WFEN AND IWFEN METHODS 

For 1,2, ,i n…= , 1, 2,p …=  and by using the point 

1 1( , , , )n n
p p p px x x x… −= the pivot points has been defined in 

[16-18], as 

1 1
, , ,( , , , ) ( , )Pivot n n n

p i p p p i p p ix x x x y x… −= ≡  (3) 

Such points have the same 1n −  components with the point 
1 1( , , , )n n

p p p px x x x… −= and differ only at the n -th component. 
These points have imposed lying on the solution surfaces of 
the corresponding functions ( )if x , that is 

,( ) 0Pivot
p i

if x =  (4) 
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Hence, the unknown n -th component ,p i
nx of pivot points can 

be found by solving each of the corresponding one-
dimensional equations 

,( ) 0Pivot
p i

if x =   

Implicit Function Theorem [2], guaranties the existence the 
unique mappings iϕ  such that 

( ), ( ; ( )) 0n i i ix y f y yϕ ϕ= = and , ( )p i p
n ix yϕ= . 

Based on the definition of pivot points, the method namely 
WFEN (Without direct Function Evaluations Newton), is 
given by 

1 1( ) ( ), 0.p p p px x F x W x p+ −′= − ≥  (5) 

Where , ,( ) ( )( )Pivot
p p i p p i

i n i n nw x f x x x= ∂ − . (for more details 
refer to [16]). 
The other iterative scheme namely IWFEN (Improved 
Without direct Function Evaluations Newton), As a 
modification of method (5) has presented, is given by 

1 1( ) ( ), 0.p p p px x L x L x p+ −′= − ≥  (6) 
Where 
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also ( )p
i yϕ ’s are the mappings were mentioned above.(for 

more details refer to [17]). 

III. DERIVATION OF THE NEW METHOD  

A. Some new definitions  
To develop a new method, let us  have the following 
definitions. 
Definition 1. For any , ( ) {1, 2, , }i j i n…∈ and 1,p …= , we 
define functions ( ) :p

j ig \ \→ as 

( ) ( )( ) ( , )p p
j i i j ig t f y t=   

Where ( ) ( | {{1, , } { ( )}})k
p p
j iy x k n j i…= ∈ − and 

( ) {1, 2, , }j i n…∈ introduce as followed in next subsection. 
Definition2.  For any , ( ) {1, 2, , }i j i n…∈ and 1,p …= , we 
extend the notion of pivot points(3) as the following form 

, ( ) 1 2 ( ) 1
, ,( , , , , , , )Pivot j i j i n n

p i p p p i p px x x x x x… … −=  (7) 

Form 1n − components of current point px . The ( )j i -th 

unknown component ( )
,

j i
p ix  of modified pivot points can be 

found by solving each of the corresponding one dimensional 
equation 

( ) ( ) 0.p
j ig t =  (8) 

According to Implicit Function Theorem there exist unique 
mappings iϕ  such that ( ) ( )j i ix yϕ= , 

( ) ( ), ( ; ( )) 0j i i i ix y f y yϕ ϕ= = and therefore  

( )
, ( )j i

p i p
ix yϕ=  

In this paper, we use Newton’s method using the initial 
guess ( )j i

px for solving each of the corresponding one-
dimensional equations(8)(For simplicity, the Maple command  
NewtonsMethod can be used). 

It is clear that the solution of (8) is depending on the 
expression of the components if and the current approach px . 
That is, if any of the Eq. (8) has no zeros, we are not able to 
apply our proposed method on a system of equations. Here, 
similar to what brought in [17], we can adopted some 
techniques to guarantee the existence of pivot points. For 
example  choosing a different component for solving (8) as 
stated in [19], or applying either a reordering technique like in 
[20] or a linear combination between the components if like 
in [21]). For the needs of this work we consider that we are 
always able to find the zeros of (8) is possible. 

B. Illustration of new method  
The key idea in this paper is to define new quantities to 

approximate function values in Newton’s method(2). 
At the first, we use the first order’s Taylor expansion of 

( ) ( )p
j ig t around the point ( )

p
j it x= as  

( ) ( ) ( )

( )
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dg
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(9) 

Setting ( )
,

j i
p it x= at (9), based on the definitions of ( ) ( )p

j ig t , we 
have 

,
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,
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( ) ( )
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g x f x
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(10) 

Due to the definition of pivot points and (7) and 
( )
,

( ) ( ) 0j i
p p i
j ig x = , the above relation (10) becomes 

,
( ) ( ) ( )( ) ( )( )p p p p i

i j i i j i j if x f x x x≈ ∂ −  (11) 

In Fig. 1, for any ( ) {1, 2, , }j i n…∈ we can see the behavior of 

function ( ) ( )p
j ig x  around the point ( )( ,0)p

j iA x= . Also we 

have the If we bring from the pivot point , ( )
,( ,0)Pivot j i

p iB x= , the 
parallel line to the tangent of the function at the point 

( )( , ( ))p p
j i iP x f x= , this line cuts the segment AP at the 

point ,
( ) ( ) ( ) ( )( , ( )( ))p p i p p

j i j i i j i j iQ x f x x x= ∂ − . 
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Fig.1 The behavior of function ( ) ( )p

j ig x  
Also it can be easily verified that the coordinate of point C is 

( )
( )

( )( ,0)
( )

p
p i
j i p

j i i

f xx
f x

−
∂

. From the similar triangles, the 

function value ( )p
if x , denoted by the segment AP, can be 

approximated by the quantity ,
( ) ( ) ( )( )( )p p i p

j i i j i j if x x x∂ − , 

denoted by the segment AQ.suitable direction of ( )j i . 
Using similarity in triangles,  it can be verified  that whenever 
segment BC has a fewer length, the 
approximation ,

( ) ( ) ( )( )( )p p i p
j i i j i j if x x x∂ −  instead of ( )p

if x  is 

more valid. So , we should choose that direction ( )j i  which 
minimizes the expression. 
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From triangular inequality, we have  
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It is clear that, the expression 
( )

( )
( )

p
i

p
j i i

f x
f x∂

minimizing 

whenever the numerator expression achieves its maximum 
value. Hence, in this paper we set ( )j i J=  when 

( ) ( )p p
J i k if x f x∂ ≥ ∂ , for any {1, , }k n…∈ ,  i.e. that 

direction which has to steepest slope of the gradient vector at 
the point px . 
Now, using  (11) in Newton method (2), we have  
o �

( ) ( ) ( )( ) 0.p p p pV x L x F x x x′+ − =  (12) 
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Under the assumptions of Implicit Function Theorem the 
diagonal matrix o( )pV x is invertible and (12) becomes  
o �

1( ) ( )( ) ( ).p p p pV x F x x x L x− ′ − = −  (13) 

Now, we consider the function  
�

( )(1) 1 ( )( ) ( ), , ( )
t

j j n nL x x y x y…ϕ ϕ= − −  (14) 

Utilizing again the Implicit Function Theorem to 
derive ( ) ( )j i i xϕ∂ we get  

o 1
,

( )

( )
( ( ) )

( )
m k

k m
j k k

f x
L x

f x
− ∂′ =

∂
 

(15) 

Eqs. (14) and (15) introduce iterative method given by  
o �

1 1( ) ( ), 0.p p p px x L x L x p+ −′= − ≥  (16) 

We will refer to this iteration iterative scheme (16) as BGM 
method, as the modified Newton method to solve systems of 
nonlinear equations. 
we have a following convergence theorem that shows the 
order of convergence of the proposed method(16). 
Theorem 1. Suppose that  1 2 n( , , , ) : n nF f f f D \ \= ⊂ →  is 
twice continuously differentiable on an open 
neighborhood *D D⊂ of a point * * * *

1 2( , , , )nx x x x D…= ∈ for 

which *
n( ) 0F x =  and *

n( )F x′ is nonsingular. Then the 

iterations , 1, 2,px p …= of the new method, given by (16) 

will converge to *x provided the initial guess *x  is 

sufficiently close to *x . Moreover the order of convergence 
will be two. 
Proof. Refer to[17]. 

. 

IV. NUMERICAL EXAMPLES 
In this section, some examples are presented to illustrate the 

efficiency of proposed iterative family. In order to compare 
the results, we take the same examples were presented in [16-
18]. 

In Tables 1-4 we present the results obtained, for various 
initial points, by Newton's method and the schemes (5) , (6) 
and (16).  

Example 1. The first system has two 
roots 1 (0.1,0.1,0.1)r = and 2 ( 0.1, 0.1, 0.1).r = − − − . It is given 
by  

3
1 1 2 3 1 1 2 3

2
2 1 2 3 2 1 3

2 1 2 3 1 3 2 1

( , , ) 0

( , , ) 0
( , , ) 10 0.1 0

f x x x x x x x

f x x x x x x
f x x x x x x x

= − =

= − =
= + − − =

 

 

  
Example 2. The second example is 

3
1 1 2 3 1 1 2 3

2
2 1 2 3 2 1 3

2 1 2 3 1 3 2 1

( , , ) 0

( , , ) 0
( , , ) 10 0.1 0

f x x x x x x x

f x x x x x x
f x x x x x x x

= − =

= − =
= + − − =

 

with the solution 
4 4 4( 0.9999001 10 , 0.9999001 10 ,0.9999001 10 )r − − −= − × − × ×

Due to the definition of pivot points(3), It is clear that so 
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called “WFEN” and “IWFEN” methods are sensitive to the 
order of place of unknowns in component functions ( )if x . 
This is a clear shortcoming of this methods in some systems. 
This sensitivity are shown in the followings examples. 
Example 3. Rewrite Example 1. by changing the rule of 

3 2,x x , as 
3

1 1 2 3 1 1 2 3

2
2 1 2 3 3 1 2

2 1 2 3 1 2 3 1

( , , ) 0

( , , ) 0
( , , ) 10 0.1 0

f x x x x x x x

f x x x x x x
f x x x x x x x

= − =

= − =
= + − − =

 

 

According to example1., this system has the 
1 (0.1,0.1,0.1)r = and 2 ( 0.1, 0.1, 0.1)r = − − −  roots. 

Example 4. Reconsider Example 2. by changing the rule of 
3 1,x x , given by 

2
3 4

1 1 2 3 1 3 1

2 2 2
2 1 2 3 3 3 2 2 1 2

3 3
2 1 2 3 2 1

( , , ) 10 0

( , , ) ( ) ( ) 0

( , , ) 0

xf x x x x x x e

f x x x x x x x x x

f x x x x x

−= − + =

= + + − =

= + =

 

 

According to example2., this system has the same root 
4 4 4(0.9999001 10 , 0.9999001 10 , 0.9999001 10 )r − − −= × − × − × . 

In Tables 1 and 4, `IT' indicates the number of the 
iterations, `FE' the number of the function evaluations 
(including derivatives). Results were obtained by using Maple 
software via 30 digit floating point arithmetic (Digits:=30) and 
following stopping criteria 

1 14( ) 10k k kx x f x+ −− + ≤   

V. CONCLUSION  
In this paper, a modification of some existing method for 

solving system of nonlinear equations are presented. This 
method is independent of function evaluation and can be used 
in some systems that function calculations are quite costly or 
can’t be done precisely. As seen in tables[1-4], the numerical 
results of proposed method are quite satisfactory and admit the 
geometrical explanations. in some cases the results of our are 
very acceptable and there is a sufficient reduction on the 
number of iterations and hence the proposed method look be a 
reliable refinement for Newton’s method. It can be viewed as 
an improvement and refinement of the Newton’s methods and 
some resent methods. 
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TABLE I 
COMPARISON DIFFERENT METHODS FOR EXAMPLE 1 

 
0
1x  0

1x  0
1x  Newton WFEN IMFEN BGM 

   IT FE IT FE IT FE IT FE 
0.4 0.5 0.5 53 636 20 240 20 180 16 144 
-4 -2 1 33 396 33 396 33 297 23 207 
-1 -2 0.6 51 612 51 612 51 459 10 90 
-1 -2 1 29 384 29 384 29 261 19 171 
0.5 2 1 54 648 54 648 54 486 18 162 
5 -2 -2 38 456 38 456 38 342 18 162 
10 -2 -2 39 468 39 468 39 351 33 297 

 
 

TABLE II 
COMPARISON DIFFERENT METHODS FOR EXAMPLE 2 

 
0
1x  0

2x  0
3x  Newton WFEN IMFEN BGM 

   IT FE IT FE IT FE IT FE 
2 2 2 42 504 38 456 38 342 12 108 
-2 -2 -2 27 324 27 324 27 243 7 63 
3 3 5 92 1104 43 516 18 162 24 216 
4 4 4 73 876 26 312 26 234 27 243 

0.5 0.5 0.5 46 552 32 384 32 288 7 63 
1 1 5 37 444 37 444 37 333 11 99 
-4 -1 -2 28 336 26 312 26 234 17 153 

 
 

TABLE III 
 

COMPARISON DIFFERENT METHODS FOR EXAMPLE 3 
 
0
1x  0

2x  0
3x  Newton WFEN IMFEN BGM 

   IT  FE IT  FE IT  FE IT  FE 
0.4 0.5 0.5 53 636 Div - Div - 16 144 
-4 1.5 5 38 456 Div - Div - 13 208 
-1 6 -2 15 180 Div - Div - 13 208 
1 -2 -2 11 132 Div - Div - 10 90 
1 2 0.5 54 648 Div - Div - 18 288 
5 2 2 15 180 Div - Div - 10 90 
-2 -2 10 39 468 Div - Div - 33 528 
Div= Divergent 
 

TABLE IV 
 

COMPARISON DIFFERENT METHODS FOR EXAMPLE 3 
 

0
1x

 

0
2x

 

0
3x

 

Newton WFEN IMFEN BGM 

   IT FE IT FE IT FE IT FE 
2 2 2 42 504 Div - Div - 12 108 
-2 -2 -2 27 324 46 552 46 414 7 63 
3 5 3 92 1104 Div - Div - 24 216 
4 4 4 73 876 51 612 43 387 27 243 
.5 .5 .5 46 552 Div - Div - 7 63 
1 1 5 37 444 Div - Div - 11 99 
-2 -1 -4 28 336 Div - Div - 17 153 
Div= Divergent 
 

 


