
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:4, 2013

566

Abstract—Software maintenance is one of the essential processes

of Software-Development Life Cycle. The main philosophies of

retaining software concern the improvement of errors, the revision of

codes, the inhibition of future errors, and the development in piece

and capacity. While the adjustment has been employing, the software

structure has to be retested to an upsurge a level of assurance that it

will be prepared due to the requirements. According to this state, the

test cases must be considered for challenging the revised modules and

the whole software. A concept of resolving this problem is ongoing

by regression test selection such as the retest-all selections,

random/ad-hoc selection and the safe regression test selection.

Particularly, the traditional techniques concern a mapping between

the test cases in a test suite and the lines of code it executes.

However, there are not only the lines of code as one of the

requirements that can affect the size of test suite but including the

number of functions and faulty versions. Therefore, a model for test

case selection is developed to cover those three requirements by the

integral technique which can produce the smaller size of the test

cases when compared with the traditional regression selection

techniques.

Keywords—Software maintenance, regression test selection, test

case.

I. INTRODUCTION

MOUNTS of software are being developed for various

fields such as business, including education and industry

[1]. Themaintaining software is one of the most important

following issues in software-development cycle [2], [3]. One

of the major harms of software maintenance is to execute a

suitable test suite that is used to test before maintaining the

modified code [4]. Test suite comprises a set of test cases used

for fixing bugs, functions, and faults [5]. If test suite size is

huge, and then executing time increases, this can reduce the

abilities of the entire software. Therefore, this paper proposes

a model for selecting a minimum test suite to fix to this

problem. Another problem after selecting the cases, we should

avoid the unintended bugs that can be performed while

running the program. The reason is that the reduction of test

cases may remove some test cases that should not be deleted

from a test suite because they affect the entire programs (e.g.,

execution time increases) [6]. According to this, the regression

test techniques are proposed produce the appropriate test suite

before selecting them for the process of modifying the new

software version. In general, there are three main strategies in

regression test explained as follows; Regression Test

Minimization involves removing irrelevant test cases.

A. Lawanna is Lecturer at Assumption University, Bangkok, 10240

Thailand (phone: 662-719-1079; fax: 662-719-1639; e-mail:

adtha@scitech.au.edu).

Regression Test Selection can choose the appropriate test

cases based on multiple regressions. Regression Test

Prioritization can rank test cases into small groups and

selection the most relevant test cases [7]. Moreover, this paper

studies the retest-all technique, random/ad-hoc selection, and

the control graph flow which is a safe regression test selection

[8]. In addition, one of the main objectives of those techniques

is to produce the small test suite while faultless is still

preserved. The record shows that the retest-all technique is

simplest, but it introduces the maintenance cost because all

test cases are revised. In the meantime, the random/ad-hoc

selection techniques can reduce the running time, but it cannot

preserve faultless rate [9]. The safe test based regression test

selection can reduce numbers of test cases and offers the better

faultless rate than others [10]. Therefore, a model for test suite

selection (MT) is proposed to handle those problems

mentioned above. It gives the better results compared with the

traditional regression techniques. The challenge of MT is that

it standardizes the requirements (e.g., the number of functions,

the lines of code, and the faulty versions) and integrates them

to find the small amounts of the average test cases. According

to this, it claims that our selection technique can reduce many

more test cases than some of the traditional regression

selection techniques.

Basically, the software testers use the automated test case

generation to produce the test suites, in which contain

numbers of the test cases. Sometimes, a test suite is called a

test pool, whereas a reduced suite of test cases is required

during the process of maintaining software [11]. However, the

selected test cases are the most important of a reduced suite. A

test suite can be changed, where there are the numbers of

function are requested by the developers, test team and the

users. Specifically, the entire program, which contains the

lines of code, may produce bugs after faults are found [12]. To

the survey, the traditional regression selection concerns faults

that can change the properties of the program that contains

with many lines of code [13]. Unfortunately, many techniques

are working due to the assumptions of the numbers of function

are solved by the test team already before coming to the part

of a test case selection.Therefore, in the future works, many

researchers are trying to concerns those three factors (numbers

of function, lines of code, and faults) including the other

factors, such as the structure of source code and a structure of

the entire system.

Adtha Lawanna

A Model for Test Case Selection in the Software-

Development Life Cycle

A

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:4, 2013

567

II. RELATED WORKS

A. Retest-All Selection

The oldest and simplest technique of regression test

selection is the retest-all selections. It is the technique that

simply reuses all existing test cases in test suite and selected

test case, this technique “chooses" all test cases in T but failure

to preserve the faultless. This technique is very appropriate

when the size of a source code is proper. In order to measure

the size, it depends on the developers’ judgment. The problem

starts when the size is getting bigger that causes running time

increases. Unfortunately, that there are no reports about what

size is called small or proper size. Another reason is about

running time; it may refer to time consuming in searching data

inside database or may be executing time for checking bugs in

any lines of code. That’s why, the retest-all techniques cannot

response to faultless and time constraints, but no test selection

tools are available, developers often select test suite based on

“hunches", or loose associations of test suite with

functionality, line of codes and faulty versions [14].

B. Random/Ad-Hoc Selection

It randomly chooses some number of test cases from test

suite. The random algorithms can be varied by human

judgments. This technique claims that it is a fast selection,

which depends on random functions. Particularly, the different

numbers of random selection are required in one experiment.

One of the majors studying with this technique is to observe,

in which, what is the suitable random numbers that can reduce

the maximum numbers of test cases. Besides this, it is also

required to reduce the faults in a source code after running.

However, we found that this technique cannot guarantee the

abilities of reduction and faultless rate [15].

C. The Safe Test Technique

This paper focuses Rothermel and Harrold's regression test

selection tool because their results are better than the retest-all

and random/ad-hoc selection. This technique can be used to

construct the control flow graphs for a program or procedure

and its modified program and uses the flow graphs to select

test cases that execute the revised code from the original test

suite. They describe that, under certain conditions, the set of

test cases their technique selects includes every test case from

the original test suite that can expose faults in the modified

program or procedure. Particularly, although their algorithms

may choose some test case that cannot expose faults, they are

at least as accurate as other safe regression test selection

techniques. Unlike many other regression test selection

techniques, their algorithms can handle all types of program

modifications and all language constructs. They have

implemented their algorithms; initial empirical studies prove

that their technique can significantly reduce the cost of

regression testing modified program [16].

D. Subject Programs

In this paper, the eight subject programs, with a number of

modified versions and the test suites for each program are

provided. The programs are from two sources: a group of

seven programs collected and constructed initially by

Rothermel and Harrold and an interpreter for an array

definition language, used within a large aerospace application,

space. Table I shows the details of the subject programs, in

which those programs are originated by Hutchins and team.

These programs are written in C, and size varied from 138 to

516 lines of code. They applied a test pool of black-box to

generate these programs which test cases using the category

partition method with Siemens Test Specification Language

tool. Afterward, they applied additional white-box technique

to ensure that each exercisable statement, edge, and also

definition-use pair in the base program or its control flow

graph was exercised by at least 30 test cases. Hutchins and

team also generated faulty versions of each program, which

varied between 7 and 41 versions by modifying existing code

in the base version; in most the test cases they provided a

single line of code whereas in a few cases they changed

between 2 and 5 lines of code. Then, they discarded the

modifications that they realized either very easy to

determinethe changes (e.g., found by more than 350 test cases

in each test suite) or very difficult to find the fewer than three

test cases) with their previously created test cases. Another

program, Space has been used as a subject for several

regression test selections. As Table I describes, it contains 136

C functions and 6,218 lines of code. Each of the program has

33 versions contains a single fault that can bediscovered while

developing the program [16].

TABLE I
THE SUBJECT PROGRAMS

Name n l f

print-tokens 18 402 7

print-tokens2 19 483 10

replace 21 516 32

schedule 18 299 9

schedule2 16 297 10

space 136 6218 38

tcas 9 148 41

totinfo 7 346 23

The subject programs from Table I are often used for the

research area on techniques of choosing the test cases, e.g.,

regression test selection, minimization, and prioritization.

III. PROPOSED METHODS

A. Standardize the Requirements

According to the subject program as data set used

throughout this paper, the main requirements are standardized

at the first step of the proposed methods.

Definitions in this step are provided as follows; N: the

number of functions; x: the elements of N; F(x): the

neighborhood of x; X\: the standardized of N. Given a

program, let Xx∈ be a requirement. Denote thatF(x) the

neighborhood of x and)(),()(ixxl xFxFUXF
l∈= contains

requirements which are close to some other requirements in lx

. Suppose that P is a frequency function of the requirement

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:4, 2013

568

running from 0 to 100%; equivalently there is a distribution of

requirement. Then the requirement size of lx is defined as

∑

∑

∈

∈
=

Xx

XFx

l
xP

xP

XSize l

)(

)(

)(
)((1)

The benefit of a requirement x with respect to a set,W of the

requirements is determined as;

∑
−∈ =

=
)()(1

)()(

WFxFUy l
k
i

yPxBFT (2)

where

)()(wFUWF Ww∈= (3)

The benefits of a requirement set or { }kxxxx ,...,, 321 is

defined as;

∑
−∈ =))((1

)(

WFxFUy l
k
i

yP (4)

The procedures of the standardization of the number of

functions are described as;

1. Determine the neighborhood F(x) for every requirement

Fx∈

2. Set φ=1x .

3. Select a number of function from F — X\ with the

maximal benefit with respect to F(X\) and add it to X\.

4. Repeat step 3 until F(Z) - F(Xi) is empty or X1 has k

elements.

Remark: the size of the test casesand the benefit are used. In

fact, the benefit can be defined on other notions as long as it

takes the concept of usefulness.

B. Determine the Test Cases

In response to step 1, the integral technique is used to

integrate F(X\)with respect to (f,l,n) as;

∫∫∫=
f

000
f\)(dndldXFT

ln

 (5)

where, over a particular (n,l), the variable f is restricted

between a(n,l) and b(n,l) and, for a particular n, the variable l

is restricted between c(n) and d(l). The number of functions

can be changed any time depends on the user requirements,

programmers, and test team. Those requirements cause

inefficient of the modified code, including lines of code can

affect the faulty version (e.g., bugs or faults). Example of the

computation;

∫∫∫=
f

000
f\)(dndldXFT

ln

∫∫∫ ++=
f

000
f)f(dndldlnT

ln

∫∫ ++=
f

0

2

0
ff)

2
(dldnnl
n

T
l

(6)

∫ ++=
f

0

22

ff)
22

(dnl
l

nl
n

T

)
2

f
n)(l)(()(f)

2

l
n)((f))()(

2
(

222

++= l
n

T

Therefore, the computations of finding the numbers of the

appropriate test cases can be done by using (6).

C. Determine the Average Test Cases

This step, the average test suite is computed by (7);

net
avr

T

T
T = (7)

The value of the net test cases netT is given by;

f××= lnTnet (8)

Equation (8) is useful for the computation, when the total

numbers of the test cases are needed.

IV. EXPERIMENTAL RESULTS

A. Standardization of the Requirements

According to the scientific data, the first step is to

standardize the requirements of test cases in a test suite in the

different programs shown in Figs 1-3. The results show that

after the subject programs are standardized, the amounts of

each requirement are reduced. Accordingly, the complexities

of the modified programs are also reduced; the reason is that

the smaller numbers of the requirements can reduce the

executing and testing time. However, the experiments must

avoid the lack of the correctness after reducing some

requirements.

The standardization must concern the relevant requirements

that can affect the ability of the entire software. The properties

of the standardization of this paper can help the software

maintainers to produce the minimum errors at approximately

30% due to (1)-(4). However, the standardization technique

does not depend on only these requirements because sometime

the process of software maintenance deals with other

requirements such as the human judgments, the ability of the

maintenance team, and the hardware-software configuration.

B. The Average Test Suite

After the standardizations of the requirements of each

subject program are done then the average test cases in the test

suites are defined. According to (5), it can help us to find the

proper test cases. Particularly, (6) is applied to find the

average test cases in a test suite which needs the net test cases

from the original requirements that normally can be computed

by the multiplication of related requirements. The random

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:4, 2013

569

technique and the safe regression test selection are preceded

and used for the evaluation. Moreover, the average test cases

of the software based on these techniques are shown in Fig. 4.

It shows that the average test cases of the random technique

are lower than the results of the safe test.

C. Reduction Rate

The first contribution of this paper is the value of the

reductions after selecting the test cases for the process of

maintenance is higher than the traditional techniques. The

formula that is used for calculate the value of the reductio

follows;

Fig. 5 shows the comparison between these techniques,

including the MT. It gives the higher reduction of test cases

than others except the result of the space program. The

random technique works well in this program this is because

the more complexity caused by the higher number of the

requirements can be handled by simply selection.

D. The Ratio between the Number of Test Cases

Versions

The ratio between the number of test cases and faulty

version is one of the evaluations that can help

maintainers to concern the possibilities of find the faults in the

modified program after using the different regression

techniques. Relevant to Fig. 6, it shows that the least of

finding the faults can be found in the MT. According to the

results, it guides the maintainers to concerns the influences of

the related requirements in the process of testing software

before running through the maintenance process. In fact, one

of the limitations of maintain the program, including

modifying source codes, depend on the understanding the

changes made by users, programmers, testers, and maintainers.

From the survey, many techniques concern only the lines of

code and the effect from the faulty versions before selecting

the test cases for the next process. This may not handle some

of the most important requirements such as the number of

functions. This is the reason why a model for test case

selection is proposed.

From the whole picture of the abilities of the comparative

studies, the MT gives the better capability than others. This is

because;

(1) It offers the smallest size of the test cases.

(2) The MT gives the maximum of the reduction rate.

(3) The numbers of faults are smaller than others.

Fig. 1 Before and after the standardization of the number of functions

test selection are preceded

and used for the evaluation. Moreover, the average test cases

of the software based on these techniques are shown in Fig. 4.

It shows that the average test cases of the random technique

The first contribution of this paper is the value of the

reductions after selecting the test cases for the process of

maintenance is higher than the traditional techniques. The

formula that is used for calculate the value of the reduction

Fig. 5 shows the comparison between these techniques,

including the MT. It gives the higher reduction of test cases

than others except the result of the space program. The

random technique works well in this program this is because

lexity caused by the higher number of the

requirements can be handled by simply selection.

Test Cases and Faulty

The ratio between the number of test cases and faulty

version is one of the evaluations that can help the software

maintainers to concern the possibilities of find the faults in the

modified program after using the different regression

techniques. Relevant to Fig. 6, it shows that the least of

finding the faults can be found in the MT. According to the

ults, it guides the maintainers to concerns the influences of

the related requirements in the process of testing software

before running through the maintenance process. In fact, one

of the limitations of maintain the program, including

des, depend on the understanding the

changes made by users, programmers, testers, and maintainers.

From the survey, many techniques concern only the lines of

code and the effect from the faulty versions before selecting

This may not handle some

of the most important requirements such as the number of

functions. This is the reason why a model for test case

From the whole picture of the abilities of the comparative

pability than others. This is

It offers the smallest size of the test cases.

The MT gives the maximum of the reduction rate.

The numbers of faults are smaller than others.

Before and after the standardization of the number of functions

Fig. 2 Before and after the standardization of the lines of code

Fig. 3 Before and after the standardization of the faulty versions

Fig. 4 The studies of the comparison techniques

Fig. 5 The reduction of the comparison techniques

Before and after the standardization of the lines of code

Before and after the standardization of the faulty versions

The studies of the comparison techniques

The reduction of the comparison techniques

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:4, 2013

570

Fig. 6 The comparison of finding faults

net

avrnet

T

TT
duction

−
=Re

V. CONCLUSION AND FUTURE

This paper contributes two benefits, which are the higher

reduction and faultless when compared with the traditional

technique such as a random/ad-hoc selection, and

based regression test selection. However, the MT cannot

guarantee that it is the best because there are many

complexities involves in the process of maintenance (e.g.,

functions, faulty version, bugs, run time execute time,

numbers of test cases and test suite size). Those factors may

decrease the abilities of the entire source code while retesting,

rerunning and re-debugging the programs, particularly, in all

processes of maintaining software mostly spent very long

time. By two main objectives, the selected test cases must not

affect the performance of keeping faultless after the test suite

selection. For future works, we will apply the concept of test

case deletion, test case addition, or partition techniques to

improve the performance of any software.

REFERENCES
[1] A. Abran, and K. Nguyen, “Measurement of themaintenance process

from a demand-based Perspective,” JSMR, USA
63–90.

[2] W. Royce, “Managing the development of large software systems
9thInt. Conf. Software Engineering USA, 1987,

[3] A.M. Davis, H. Bersoff, and E.R. Comer, “A Strategy for Comparing

Alternative Software Development Life Cycle Models

Softw. Eng.USA.,vol. 14, no. 10, Oct. 1988,pp.
[4] E.B. Swanson, “The dimensions of maintenance

Engineering, USA, 1976, p. 492–497.

[5] J. Barton, E. Czeck, Z. Segall, and D. Siewiorek, “Fault injection
experiments using FIAT,” IEEE Trans. on Comp

pp. 575–582, 1990.

[6] E. Jenn, J. Arlat, M. Rimen, J. Ohlsson, and J. Karlsson, “Fault injection
into VHDL models: The MEFISTO tool,” IEEE

vol. 39, no. 4, Apr. 1990, pp. 575-582.

[7] H.K.N. Leung, and L.J. White, "Insights into Testing and Regre
Testing Global Variables,"JSMR, USA., vol.

209-222.

[8] H. Agrawal, J. Horgan, E. Krauser, and S. London, “Incremental
regression testing,” Conf. Software Maintenance

348-357.

[9] M.V. Zelkowitz, D.R. Wallace, and D.W. Binkley,
Validation of New Software Technology

Engineering, World Scientific, 2003,pp. 229–263.

[10] A.B. Taha, S.M. Thebaut, and S.S. Liu, “An Approach to Software Fault
Localization and Revalidation Based on Incremental

comparison of finding faults

 (9)

UTURE WORKS

This paper contributes two benefits, which are the higher

reduction and faultless when compared with the traditional

hoc selection, and the safe test

based regression test selection. However, the MT cannot

guarantee that it is the best because there are many

complexities involves in the process of maintenance (e.g.,

functions, faulty version, bugs, run time execute time,

ses and test suite size). Those factors may

decrease the abilities of the entire source code while retesting,

debugging the programs, particularly, in all

processes of maintaining software mostly spent very long

s, the selected test cases must not

affect the performance of keeping faultless after the test suite

selection. For future works, we will apply the concept of test

case deletion, test case addition, or partition techniques to

A. Abran, and K. Nguyen, “Measurement of themaintenance process

USA, vol. 5, no. 2, 1993, pp.

W. Royce, “Managing the development of large software systems,”
 p. 1-9.

R. Comer, “A Strategy for Comparing

Alternative Software Development Life Cycle Models,” IEEE Trans. on

1988,pp. 1462-1477.
of maintenance,”2ndInt. Conf. Software

J. Barton, E. Czeck, Z. Segall, and D. Siewiorek, “Fault injection
on Comp. USA., vol. 39, no. 4,

Rimen, J. Ohlsson, and J. Karlsson, “Fault injection
IEEE Trans. on Comp. USA.,

H.K.N. Leung, and L.J. White, "Insights into Testing and Regression
 2, no. 4, Dec. 1990, pp.

H. Agrawal, J. Horgan, E. Krauser, and S. London, “Incremental
tenance, USA., Sep. 1993, p.

M.V. Zelkowitz, D.R. Wallace, and D.W. Binkley, Experimental
Validation of New Software Technology. Empirical Software

263.

A.B. Taha, S.M. Thebaut, and S.S. Liu, “An Approach to Software Fault
Revalidation Based on Incremental Data Flow

Analysis,” 13th Conf. Computer Software and Applications

1989, p. 527-534.

[11] V.R. Basili, and R.W. Selby, “Comparing the Effectiveness of Software
Testing Strategies,” IEEE Trans

1987, pp. 1278–1296.

[12] E. Wong, and A.P. Mathur, “Fault Detection Effectiv
and Data-flow Testing,” SQJ,USA

[13] G. Rothermel, and M. Harrold, “A safe efficient regression test selection

technique,”ACM Trans. on Softw
173-210.

[14] G. Rothermel, and M. Harrold, “Empirical studies of a safe regression

test selection technique,” IEEE Trans
6, Jun. 1998, pp. 401-419.

[15] F.I. Vokolos, and P.G. Frankl, “Empirical evaluation of

differencing regression testing technique
Maintenance,USA., Nov. 1998,

[16] G. Rothermel, and M. Harrold, “Analyzing regression test selection

techniques,” IEEE Trans. on
1996, pp. 529-551.

Computer Software and Applications,USA., Sep.

V.R. Basili, and R.W. Selby, “Comparing the Effectiveness of Software
IEEE Trans. on Soft. Eng. USA.,vol. 13, no. 12, Dec.

Mathur, “Fault Detection Effectiveness of Mutation
USA.,vol. 4, no. 1, 1995, pp. 69–83.

G. Rothermel, and M. Harrold, “A safe efficient regression test selection

Softw. Eng. USA., vol. 6, no. 2, Apr 1997, pp.

G. Rothermel, and M. Harrold, “Empirical studies of a safe regression

IEEE Trans. on Softw. Eng. USA., vol. 24, no.

F.I. Vokolos, and P.G. Frankl, “Empirical evaluation of the textual

differencing regression testing technique,” the Int. Conf. on Software
, Nov. 1998, p. 44-53.

G. Rothermel, and M. Harrold, “Analyzing regression test selection

on Softw. Eng. USA., vol. 22, no. 8, Aug.

