International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:10, No:2, 2016

A Model-Driven Approach of User Interface for
MVP Rich Internet Application

Sarra Roubi, Mohammed Erramdani, Samir Mbarki

Abstract—This paper presents an approach for the model-driven
generating of Rich Internet Application (RIA) focusing on the
graphical aspect. We used well known Model-Driven Engineering
(MDE) frameworks and technologies, such as Eclipse Modeling
Framework (EMF), Graphical Modeling Framework (GMF), Query
View Transformation (QVTo) and Acceleo to enable the design and
the code automatic generation of the RIA. During the development of
the approach, we focused on the graphical aspect of the application
in terms of interfaces while opting for the Model View Presenter
pattern that is designed for graphics interfaces. The paper describes
the process followed to define the approach, the supporting tool and
presents the results from a case study.

Keywords—Code generation, Design Pattern, metamodel, Model
Driven Engineering, MVP,Rich Internet Application, transformation,
User Interface.

I. INTRODUCTION

EB applications concentrated around a client-server
architecture where the processing is done on the server
side, while the client side is only used to display static
content. These HTML-based Web applications are showing
their limitations, especially when it comes to integrate complex
activities to be performed via Graphical User Interfaces
(GUI). Rich Internet Applications (RIAs) were proposed
as a response to these necessities and have combined the
richness and interactivity of desktop interfaces into the web
distribution model. However, design and implantation of
graphical user interface for RIAs is known for its complexity
and difficulty in using existing tools which can become
tedious, time-consuming and requires additional efforts which
effect negatively the quality of the resulting RIA. That is
why such a model-driven approach adopted in the process
of development of RIAs [8] can significantly reduce the risk
of rework, improve the quality of the application in general
and the Ul in particular. In this context, the paper presents
an approach based on the MDE paradigm [1] that proposes
a complete development process based on a set of models
and transformations upon the Eclipse Modeling Project [13]
that allows obtaining the implementation of RIAs with JavaFX
platform as a target adopting a Model-View-Presenter (MVP)
architectural design pattern, focusing on the graphical part
of the application. The proposed approach can be replicated
for different design model and a different target technology
platform.
The paper is organized as follows. Section II discuss related
work dealing with Model-Driven development approaches. In

S. Roubi and M. Erramdani are with the MATSI Laboratory, Oujda Institute
of Technology, Morocco, 60000 (e-mail: roubi.sarra@gmail.com).

S. Mbarki is with the Computer Science Department of Ibn Tofail
University, Kenitra, Morocco (e-mail: samirmbarki @hotmail.com).

Sections III and IV, we present respectively the Model Driven
Engineering Approach and the Model View Presenter Pattern.
Section V describes the proposed approach and technologies
used to develop it, while in Section VI we report the result of
the case study of designing and generating the RIA to validate
the approach.

II. RELATED WORK

In the Web Engineering context, MDE principles are being
used to successfully address the development and evolution
of web applications. In [7], it is shown how MDD/MDA
principles are applied in the Web Domain to define models,
metamodels and transformations, to manage interchangeability
issues and to build tools that support the development
process. Also, a Rich Internet Application for web based
product development was presented in [8]. Besides, [9]
proposes approach called OOH4RIA which proposes a model
driven development process that extends OOH methodology
employing the OOHDM conceptual and navigational scheme
of a web application as the basic PIM for the MDA
process, using any UML-based design tool which produces
an XMlI-file as output. Besides, a combination of the UML
based Web Engineering (UWE) method for data and business
logic modeling with the RUX-Method for the user interface
modeling of RIAs was proposed as model-driven approach to
RIA development [10]. These methods use models to separate
the platform independent model (PIM) design of web systems
from the platform-dependent (PSM) implementations as much
as possible.

UWE [11] follows the MDA principles and uses the
OMG standards [1]. The process makes use of model
transformations defined at metamodel level and specified by
general purpose transformation languages, such as QVT [2]
and graph transformations. Furthermore, an MDA approach
for AJAX web applications [12] was the subject of a study
that proposes a UML scheme by using the profiling for
modeling AJAX user interfaces, and report on the intended
approach of adopting AndroMDA for creating an AJAX
cartridge to generate the corresponding AJAX application
code, in ICEFACES, with back-end integration. A meta model
of AJAX has been defined using the AndroMDA tool.

The main difference between the proposed approach and
the considered related ones is the focus that we put on the
graphical aspect of the application on the one hand, and the
complete abstraction of the input model from any technical
knowledge of the targeted platform on the other hand. This
guarantees the translation of the user’s expectation from a
simple model to an automatically generated RIA that respects

362

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:10, No:2, 2016

a MVP pattern and provides well designed graphical user
interfaces.

III. THE OMG APPROACH AND ACRONYMS

In November 2000, the OMG (The Object Management
Group), a consortium of over 1,000 companies, initiated the
MDA (Model Driven Architecture) approach [6]. The OMG
presents this approach as a way to develop systems that
offer greater flexibility in the evolution of the system while
remaining true to customer needs and satisfaction. According
to Model-Driven Engineering (MDE) principles [3] - [5],
software development is focused on the modeling of the
application behavior, structure and requirements using formal
modeling languages on the one hand and the transformation
engines on the other. The aim is to increase productivity,
simplify the design process and promote the communication
between the stakeholders.

In MDE, every artifact, including the source code, is
considered as a model element, and the whole development
process can be seen as a set of related transformations from
one model to the next one in order to automate the system’s
implementation from its requirements. Which brings up the
three different layers of abstraction that can be described:
Computing Independent Model (CIM): It represents a high
level specification of the system’s functionality. It shows
exactly what the system is supposed to do, but hides all the
technology specifications.

Platform Independent Model (PIM): It allows the extraction
of the common concept of the application independently from
the platform target.

Platform Specification Model (PSM): It combines the
specifications in the PIM with the details required of the
platform to stipulate how the system uses a particular type
of platform which leads to include platform specific details.

Fig. 1 shows the three layers of the MDA approach and the
and the transformation necessary for the transition from one
to the other.

Cim

Computing Independant Model
4

l Transformation

PIM
Platform Independant Model

-4

l Transformation
1

]
‘L PSM
N Platform Specific Model

TT
'E i Code generating

ey =
Code J

Fig. 1 The levels separation in the Model Driven
Engineering approach

e

Fig. 2 The MVP design pattern

IV. THE MVP DESIGN PATTERN

The Model View Presenter pattern is a derivation of the
MVC pattern. Its architecture is used mostly for building User
Interface since it provides a cleaner implementation of the
Observer connection between Application Model and view.
The MVP pattern is based on the principle of separation of
concerns in presentation logic and carry the three layers (see
Fig. 2):

o« The model: It represents an interface defining the
information and data that the user wishes to view or
handle within the views of the application.

o The view: It is a passive interface that displays the
necessary information of the use case to which it is
related. It also responds to the user actions and routes
the commands to the presenter.

o The presenter: It is a control component that acts upon
the model and the View and orchestrate the operation of
the web layer of the application.

Based on this pattern, many frameworks were designed to
assist and help developers build their application focusing
on the presentation layer. With JavaFX, we find the clear
separation of roles between the view and the control with the
FXML (EFF-ects eXtended Markup Language) that is used
only for layout. We can say that the tow does compromise
and give a better results for developing RIAs.

V. THE MODEL DRIVEN PROPOSED PROCESS

The approach described in this paper adopts MDE
technologies in order to enable the automatic generation of
a MVP Rich Internet Application starting from a simplified
designed model. When we adopt a model driven development
approach, a variety of technologies and frameworks are
available. These tools and technologies can be effectively used
to achieve the final goal which is the automatic generation of
code. In this section, we present the steps followed and the
technologies and tools used to elaborate our approach.

A. Steps Followed and Adopted MDE Technologies to
Develop the Approach
The process followed to define our modeling approach
includes three main steps as described in Fig. 3 and listed
below:
o Defining PIM and PSM Metamodel. First, for the input
model, we focused on keeping the models as simple as

363

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942
Vol:10, No:2, 2016

possible. We also wanted the input model to describe the
user’s expectation from the application to be in terms of
activities and operations. That is why we started from
a the basic notion of the use case that descries the
main goal of the view to be developed. Second, for the
PSM metamodel, we chose a reference architecture which
is the Model View Presenter Design Pattern. To define
the two meta models, we used the Eclipse Modeling
Framework (EMF).

o Developing a Graphical Modeling Tool: A graphical
editor was developed to enable the developer to create,
view, and edit the models and instances of the defined
PIM meta model. To this aim, we used the Eclipse
Graphical Modeling Framework (GMF).

o Developing transformations: ~ Model to Model
transformation was defined to generate automatically
the MVP RIA model from the simple model input.
Then, Model To Text rules were defined to automatically
generate the RIA code source using Acceleo Templates.
See Figs. 7 and 8.

/ Adopted process / Adopted Technologies \

Defining Meta Model for | o Eclipse Modelling Framework
GUIas PIM (EMF)

Deveilc;p:ng:;a (;r?.ph!;:al € Eclipse Graphical Modelling
il s Framework (GMF)

Metamodel

Defining Meta Model for

2 Eclipse Modelling Framewaork
MVP Rich Internet

n

EMF
Appligation ()
.
Developing i i
Transformation Model To | & Query View Transformation
Model and Model To (avm
Code Acceleo /

RichInternet Application)
K generated respecting MVP
/ Design Pattern)

Fig. 3 Process and technologies adopted to define our
model-driven approach

B. The Defined Design Meta Models and Tool

1) PIM and PSM Meta Models: First, we developed the
PIM meta model, that is the input to our modeling process.
We focused on keeping the terms as simple as possible so
the designer does not have to learn a new language or a
complex design process. We also wanted to keep the focus
on the graphical aspects of the application. Indeed, the meta
model translates the users vision of the application in terms
of actions and interactions, by describing what is expected
from the application from a graphical point of view. On the
one hand, the major goal of the view is described through
the use case that is divided into several main operations that
gathers the atomic actions leading to achieve that goal. We
added an enumeration of the basic actions types that any user
is familiar with (input, selection, clicks). Finally, we assigned

a property in each action (is it a password, a single choice),
to help choose the most appropriate widget while defining the
transformation rules. All these elements are embraced in the
UMLPackage. Finally, we added a Disposition for each action
to be able to give each component the appropriate position in
the view. Besides, the user can define the model elements that
will define the business layer of the RIA that are made up of
attributes and methods. Fig. 4 shows the proposed PIM meta
model and the relationship between its elements.

H Property
= Name : EString

o singleChoice : EBoolean = hAlign : Elnt
: = vAlign : Elnt

prope 1
layout
M C—

ctivi
= “":" . £ Activity
" | = Type : ActivityType

H Disposition

H MainOperation
o Title : EString
o position : Position

useCase

activit] H UMLPackage
e 14 = Name : EString
H UseCase

0.
operl'mu—, = Name : EString

= Id : Elnt

H Method L*
= Name : EString [mathod

H ModelComponent 0.*
= Name : EString

H Attribute

= Name : EString§.. -
= Type : attrType

pojo

Fig. 4 Proposed GUI PIM meta model for RIA

Second, we defined the PSM metamodel for the RIA
adopting the MVP as a core architectural pattern (e.g., the
JavaFX implementation platform in the case of this article).
As shown in Fig. 5, we have the three packages:

o ViewPackage, containing meta-classes to represent
Views and the graphical components taking into account
the hierarchy in it.

« ModelPackage, representing the domain or the business
layer of the application and is made up of Methods and
Beans.

« PresenterPackage, containing the presenters to ensure
the connection between the tow layers of the MVP
pattern.

Note that the View/Presenter layers are responsible for
describing the structure and content of views in terms of
behavioral elements while the navigation flow is ensure
through the presenter’s handler that are connected to the
specified services from the model layer. In the view part, the
scene is composed of graphical components, named controls
that could be containers as Roots. We added a hierarchical
relationship between graphical components base on their type.
We also thought about the composite relationship that can
connect containers with simple components. Besides, we
associate each component with its position in the grid that
will divide the whole scene so we can put each component in
a specific position as defined in the input model. All those
elements give us a well defined RIA respecting the MVP

364

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942
Vol:10, No:2, 2016

, | H MVPModel
maodel
MModel # Piiodel Presenter # yModel iew
0
e .
Model :
{i-,l__________________ E Presenter TheView = Scene
themodel 0.1
4
Jbearis i
. D..%‘ ICes. hgndles E Root
H JavaBean bises H Service |p.1 B EventHandler
i triggers]
g9 U,iﬁ\hia?dles 0.*
e 5etOMmg ActionEvent@.1 | Contal PG
= trjggersEvent
H Attributes [F. 4 4\[&‘
B Input H Label | H Selection

pattern and taking into account the richness of the graphical

H Click

Fig. 5 A simplified version of the MVP design metamodel for RIA

aspects of these applications.
2) Transformation Process: Once the meta modeling phase

established, we defined the transformation rules. Since we have
defined the PIM and PSM metamodels, we need to define
both the Model To Model transformation using the QVTo
standard and the Model To Text transformation with Acceleo
to generate the final code source for the RIA first modeled.

Finally we get as a result of this transformation a model
corresponding to the JavaFX meta model defined.

modeltype GUIMVP uses "http://guimmMyP/1.8";
modeltype JAVAFXMVP uses "http://javafxmmMvP/1.8";

transformation guiToJavaFXmvp(in src:GUIMVP, out dest:JAVAFXMVP);

=main(} {
src.objectsOf Type(UMLPackage)->map umlPackToMVCPack();

Tnstance of

1 1
PIM GUI PSM MVP ::I TEMPLATES
metamodel <":I H metamodel

Transformation Rules

Instance of

= mapping UMLPackage::umlPackToMVCPack() :
result.Name := "MVP ' + self.Name;
result.VPackage := object ViewPackage {

JavaFXPackage {

—>@‘° /I b

Name := self.Name + 'View';
views += self.useCase->map useCaseToScene();

: b
result.MPackage := object ModelPackage {
<JAVA Name := self.Name + 'Model';

model += self.useCase.map useCaseToModel();

N
SN - SN
B <> result.PPackage := object PresenterPackage {

o Name := self.Name + 'Presenter’;

Transformation Transformation L
Tnput Modl Engine Oufput Model Egine presenter += self.useCase-»map useCaseToPresenter();
M2M: QVTo M2T : Acceleo b
r

Fig. 7 QVTo portion of the transformation engine

Fig. 6 Transformation process in the MDE approach

o« Model To Model: The entry point of the transformation
i main method. This
correspondence

is the

between

method makes
all elements of

o Model To Text: we defined templates, Fig. 8, with
Acceleo to automatically transform models obtained in
the first transformation phase. The execution of these
templates we developed gives the source code of the

the
type

UmlPackage of the input model and the elements
of type JavaFXPackage output model. For instance, for
each use case from the input model we create a presenter,
a model and a view. The view components are defined
from the main operations and activities in each use case.

application with Java files for the views, the presenters
and the models. With these generated files we are able to
create an MVP JavaFX project that give us the graphical
interface with all the components as desired and also all
the connections with the application’s three layers.

365

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:10, No:2, 2016

[comment encoding = UTF-8 /]
[module generatelFX('http://javafammivp/1.8")]

= [template public generatelFXCode(alavaFXPackage : JavaFXPackage)]
[comment @main/]
[for (theScene : Scene | alavaFXPackage.VPackage.views)]
[file (' /view/'+theScene.Name.toUpperfirst().replaceAll(’ '
false, 'UTF-8'}]
<?uml version="1.8" encoding="UTF-8"?:

; T el

<?import java.lang.*®?>
<?import javafx.scene.control.*?>
<?import javafx.sceme.layout.*?»

<AnchorPane xmlns:fx="http://javafx.com/fxml/1"
xmlns="http://javafx.com/javafx/2.2"
fx:controller="controller.[theScene.hasPresenter.
Name . escapeSpecialChar(). trim()/]">
<children:
<BorderPane>
[for (theRoot : Root | theScene.roots)]
[createViewFiles(theRoot)/]
[/for]
</BorderPane>
</childrens)|

Fig. 8 Acceleo portion of the transformation templates

C. GMF Graphical Tool

.E . contact g g 5} =48 .E
E A 11‘ PH‘EﬁE D ()
il h&EG- b
Um TlieCae g
Wconmswiﬁﬂﬁ contadt @ Opeton L
Name ;
0 . Ay \fwi
1 Propety '1,
s =1 electon fems 'u
il

L o ‘
U oy |1 i it 5 odd Comparent 5
= Model Atrbute 0
L Uyt odeeted

[T I

Fig. 9 The graphical Modeling Editor showing an excerpt the
design model of one view of the Contacts Application

In order to simplify the task for the user, a graphical editor
was developed to enable creation, edition and view of the
models in a graphical way that reminiscent of the typical
structure of an application view. Here after a screen shot of
the input model generated using the graphical tool.

l&) contact_App.guimmmvp 53

|._[\j Rezource Set

i L&) platform:/resource/Testing_Instances_GMF/models/cont
4 4 UML Package
4 [| Use Case Edit User
4 (% Main Operation Edition part
4 Activity label
[] Property First Mame
4 Activity input
4 (% Main Operation Bearmer
4 Activity label
[] Property My Contacts Application
o Activity label :
4 <# Main Operation Saving part
4 Activity input
[*2] Property Save
4 Activity input
751 Drmmarh: Caneel
4 Model Component Person

| Method UpdatelastMame
» Attribute Name

Fig. 10 The input model file generated from the developed
Graphical Tool

VI. FROM A MODEL TO A RUNNING EXAMPLE

In order to validate our approach, we applied it to
generate a simple Contact application for searching and editing
contacts information. The application enables its users to:
View the contacts in a list, select a contact, edit a contact,
update a contact’s information. We provide the design model,
instance of the proposed PIM meta model, as input for
the transformation engine and using the graphical tool, as
described in Fig. 9. The code source and files were then
produced to implement the application first designed.

A. The Contact Application Design Model

Fig. 10 shows the input model designed using the graphical
tool developed for the approach. We defined the two views
that we want for our application with all the operation and
activities that the user expect to find in the final application.
Also, we find the model elements that will be used in the
processing of information in the application. For instance, we
have the Edit view that have tow main operations that are the
view of the user’s information and the saving/canceling part.
The first operation needs inputs and labels components, while
the others needs tow buttons. In addition, a model component
Person is needed with first name and last name attributes
is needed. Once the input model of the contacts application
is sufficiently modeled respecting the PIM meta model, the
resulting file is used as an input for the transformation engine
developed for the approach. Indeed, we will first generate a
MVP model for the contact Application that respects the PSM
defined metamodel. Then, it will became the input for the code
generation part.

366

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:10, No:2, 2016

[£ Package Bxplorer 2 | =] | v

a Tﬂ“ contactApplication
a {3 sre/mainfjava
4 £ com.matsi.contact.gui

» [J] FirstContactApp.java

= = O ¢ ContactDetail.fxml 3

wopa

<?import java.lang.*?>

<?xml version="1.8" encoding="UTF-8"2} -

<?import javafx.scene.control.*?>
<?import javafx.scene.layout.*?>

fx:centroller="com.matsi.gui.detail.ContactDetailPresenter”
xmlns; fx="http://javafx. com/fxml">

<Label text="First nome" GridPane.rowIndex="8" GridPane.columnIndex="8"/>
<TextField fx:id="firstNameField"” GridPane.rowIndex="8" GridPane.columnIndex="1"/>

name” GridPane.rowIndex="1" GridPane.columnIndex="8"/>
“LastNameField” GridPane.rowIndex="1" GridPane.columnIndex="1"/>

GridPane.rowIndex="2" GridPane.columnIndex="8" GridPane.columnSpan="2":

3
2
i [J] FirstContactAppFactory.java 6
4 [} com.matsi.contact.detail _-“_ <Gridpane fx:idi"r‘l".:ot" -
 [J] ContactDetailPresenterjava g hewp: "10° ¥Eap- 10
4 3 com.matsi.contact.gui.main 18
 [J] MainPresenter.java 11
4 £ com.matsi.contac.guisearch 125 <children>
1 [J] ContactSearchPresenterjava -3
4 {3} com.matsi.contact.service i;
b [J] Contactjava 16 <Label text="lLast
&+ [J] ContactServicejava 17 <TextField fx:id=
a & fuml 18
& ContactDetail fiml . <HBox spacing="18"
208 <children>

4> ContactSearch.fiml
<> Main.fxml

& styles.css
(> = JRE System Library [J25E-1.5]

[
o=

il

</children>
</HBox>

e e

("]
B

3
1

<Button text="Save” onAction="#save"/>
<Button text="Cancel” onAction="#cancel”/»

Fig. 11 The contact application RIA as an Eclipse project

B. The Contact Application Generated RIA

After the design and generation of the application, the set
of artifacts produced by the code generator tool constitute
a RIA ready to be deployed. Fig. 11 shows the generated
RIA loaded into Eclipse IDE as JavaFX project. The Eclipse
package explorer shows the list of code artifacts produced
respecting the MVP pattern and the view editor shows the
FXML file responsible for the view part.

The conducted case study confirmed the correct functioning
of the tools developed to support our approach. We can say
that the fast and automatic generation of RIA based only on the
designed input model makes it possible to verify and validate
the design itself and to undertake a design refinement process
effortlessly.

' Myc.mtacmp?-v'm‘_——_——,..
My Contacts Agenda

|

Version 1.0

Search | Sarra Search

Sarra Roubi
Mohammed Erramdani
Samir Mbarki

Adam Smith

Homer Simpson

Fig. 12 The main view of the Contact App automatically
generated

& My Contact App V10 ool
[= My Contact App -V |

My Contacts Agenda

Version 1.0

Last name | Roubi

Save Cancel

Fig. 13 The detail view of the selected contact from the
application

VII. CONCLUSION AND PERSPECTIVES

In this paper we have presented an approach for the
model-driven generation of Rich Internet Application using
Eclipse technologies and frameworks such as EMF, GMEF,
QVTo and Acceleo. The approach consists of first defining
tow metamodels as PIM and PSM respecting the MVP pattern.
Second, we defined the transformation rules for both Model
To Model and Model To Text transformation. Finally, we
developed a graphical tool to help manage and use the
approach efficiently. A case study conducted on designing
and generating a RIA for contact management has shown that
the approach is valid and the supporting tools work properly.
In particular, the approach enables effortlessly repeating the
development cycle “modeling-generating-validating” to verify
and improve the design of the application.

In the future, this work will be extended to allow
the generation of other components of RIAs besides the
configuration files, we also aim at refining the graphical tool
and enlarge the specter of use for other technologies, patterns
and supporting other interesting target platforms (e.g., for
mobile devices).

367

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:10, No:2, 2016

REFERENCES Samir Mbarki S. Mbarki is with the

. Computer Science Department of Ibn

[1] OMG - Object Management Group (MOF, MDA, XMI, QVT, UML, Tofail University, Kenitra, Morocco, e-mail:
MOEM2T) - http://www.omg.org/. samirmbarki @hotmail.com

[2] D. C. Schmidt. Model-Driven Engineering. Computer, 39:25 31, 2006. m He is a professor in the Department of Computer

IEEE Comquer S901ety ¥ d § Science at Faculty of Science Ibn Tofail University.

(31 G. M. Kapitsaki, D. a. Kateros, G. N. Prezerakos, and 1. S. 1 : His research interests include software engineering,

Venieris, "Model-driven development of composite context-aware web | w— model driven architecture, software metrics and
applications,” Inf. Softw. Technol., vol. 51, no. 8, pp. 12441260, 2009. | 3 software tests. He obtained an HDR in computer
[4] Z. Ahmed and V. Popov, "Integration of Flexible Web Based GUI in . A& science from Ibn Tofail University in 2010.
I-SOAS,” 2010. -
[5] S. Meli, J. Gmez, S. Prez, and O. Daz, ”A model-driven development for
GWT-based rich internet applications with OOH4RIA,” Proc. - 8th Int.
Conf. Web Eng. ICWE 2008, pp. 1323, 2008.
[6] Miller, J., Mukerji, J., al. MDA Guide Version 1.0.1 (OMG, 2003).
[71 N. Koch, S. Melia-Beigbeder and J. Vara-Mesa. ModelDriven Web
Engineering. European Journal for the Informatics Professional - Joint
issue with NOVATICA, IX(2):4045, April 2008.
[8] Z. Ahmed and V. Popov, Integration of Flexible Web Based GUI in
ISOAS, 2010.
[9] S. Meli, J. Gmez, S. Prez, and O. Daz, A model-driven development for
GWT-based rich internet applications with OOH4RIA, Proc. - 8th Int.
Conf. Web Eng. ICWE 2008, pp. 1323, 2008.
[10] J. C. Preciado, M. Linaje, R. Morales-Chaparro, F. Sanchez-Figueroa,
G. Zhang, C. Kroi, and N. Koch, Designing rich internet applications
combining UWE and RUX-method, Proc. - 8th Int. Conf. Web Eng.
ICWE 2008, pp. 148154, 2008.
[11] N. Koch and A. Kraus. The expressive power of uml-based web
engineering. In Proc. of the 2nd International Workshop on Web Oriented
Software Technology, IWWOST2002. Springer Verlag, 2002.
[12] Gharavi, V., Mesbah, A., Deursen, A. V., Modelling and Generating
AJAX Applications: A Model-Driven Approach. Proceeding of the7th
International Workshop on Web- Oriented Software Technologies, New
York, USA (Page: 38, Year of publication: 2008, ISBN: 978-80-227-
2899-7)
[13] The Eclipse Modeling Project. http://www.eclipse.org/modeling

Sarra Roubi S. Roubi is a PhD student with the
MATSI Laboratory, Oujda Institute of Technology,
Morocco, 60000 e-mail: roubi.sarra@gmail.com
She got a degree of engineer in Computer Science
from the National School of Applied Science. She
is focusing her researches on the Model Driven
Engineering approach applied to the automatic
generation of the Graphical User Interface.

Mohammed Erramdani M. Erramdani is with the
MATSI Laboratory, Oujda Institute of Technology,
Morocco, 60000 e-mail: m.erramdani @gmail.com
He is a professor in the Department of Management
at the Institute of Technology and teaches the
concept of Information System. He got his thesis of
national doctorate in 2001. His activities of research

||"|u‘ iq the MATSI- Laboratory (Applieq Mathemati-cs,
||'Iil|lllng Signal Processing and Computer Science) focusing
B

i

ﬂ|||||,| on MDA (Model Driven Architecture) integrating
" new technologies XML, EJB, MVC, Web Services,

368

